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Abstract: In dense scenes, pedestrians often exhibit a variety of symmetrical features, such as
symmetry in body contour, posture, clothing, and appearance. However, pedestrian detection poses
challenges due to the mutual occlusion of pedestrians and the small scale of distant pedestrians in the
image. To address these challenges, we propose a pedestrian detection algorithm tailored for dense
scenarios called YOLO-RAD. In this algorithm, we integrate the concept of receiving field attention
(RFA) into the Conv and C2f modules to enhance the feature extraction capability of the network. A
self-designed four-layer adaptive spatial feature fusion (ASFF) module is introduced, and shallow
pedestrian feature information is added to enhance the multi-scale feature fusion capability. Finally,
we introduce a small-target dynamic head structure (DyHead-S) to enhance the capability of detecting
small-scale pedestrians. Experimental results on WiderPerson and CrowdHuman, two challenging
dense pedestrian datasets, show that compared with YOLOv8n, our YOLO-RAD algorithm has
achieved significant improvement in detection performance, and the detection performance of
mAP@0.5 has increased by 2.5% and 6%, respectively. The detection performance of mAP@0.5:0.95
was improved by 2.7% and 6.8%, respectively. Therefore, the algorithm can effectively improve the
performance of pedestrian detection in dense scenes.

Keywords: YOLOv8; dense pedestrian; receptive field attention; adaptive spatial feature fusion;
dynamic head

1. Introduction

In today’s society, urbanization is advancing rapidly, leading to a continual increase in
population density within cities. The high mobility of crowds in these dense urban scenes
poses significant challenges for traffic management, security monitoring, and various other
fields. Consequently, the importance of object detection technology, particularly pedestrian
detection, has become more pronounced. Despite significant progress in the field of object
detection, accurately identifying pedestrians in dense scenes remains a formidable task.
Traditional algorithms rely on manually engineered feature representations. For example,
Haar wavelet features combine human motion and appearance features [1], HOG features
analyze edge direction information for pedestrian contour outlining [2], and LBP features [3]
provide grayscale and rotation invariance, along with scale invariance similar to the SIFT
feature [4]. However, these traditional methods often suffer from drawbacks such as slow
processing speeds and lower accuracy levels.

In recent years, deep learning has revolutionized pedestrian detection, with algo-
rithms broadly categorized into two types: two-stage and one-stage algorithms. Two-stage
algorithms, like the R-CNN series [5–8] and SPPNet [9], first identify regions of interest
within an image and then use a classification network to detect objects in these regions. In
contrast, one-stage algorithms, such as SSD [10], YOLO series [11–17], RetinaNet [18], and
CenterNet [19], directly predict object locations and categories without the need for region
proposal extraction. These algorithms have shown significant improvements in detection
performance by eliminating the region proposal step.
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Nevertheless, pedestrian detection in dense scenes remains challenging due to occlu-
sion between pedestrians and difficulties in detecting small-scale pedestrians. To address
these challenges, this paper proposes the YOLO-RAD pedestrian detection algorithm, with
the following key contributions:

1. In this study, receptive field attention (RFA) [20], combined with Conv and C2f modules
in the model, solves the parameter sharing problem of the convolutional kernel and
significantly improves the ability of the network to extract pedestrian features.

2. In this study, the neck of YOLOv8 was improved, and a four-layer adaptive spatial
feature fusion (ASFF) [21] module was designed to reduce the feature information
conflicts between different feature layers in the fusion process. Experiments show that
the proposed method can effectively enhance the fusion ability of pedestrian feature
information between different feature layers.

3. In this study, a small-target dynamic head structure (DyHead-S) based on the dynamic
head (DyHead) framework [22] is proposed and used to improve the ability to detect
small-scale pedestrians.

2. Related Work
2.1. Pedestrian Detection

Despite significant advancements in pedestrian detection technology, multi-scale and
occlusion issues remain major challenges. Yang et al. [23] proposed the Scale-Sensitive
Feature Reorganization Network (SSNet), which utilizes multiple parallel branch sampling
modules to flexibly adjust the receptive field and anchor stride to extract scale-sensitive
features. Additionally, a context-enhanced fusion module was introduced to reduce in-
formation loss in mid-to-high-level features. Although SSNet performs well in detecting
small-scale pedestrians, it fails to meet real-time requirements. Ma et al. [24] proposed
the MSCM ANet network, which introduces multi-scale convolution modules and adds
attention modules to focus the detection network on pedestrian features. Although MSCM
ANet improves detection accuracy, it reduces detection speed. Yan et al. [25] proposed R-
SSD based on the SSD architecture, where different scale feature maps are fused during the
feature fusion process, and the fusion blocks are combined with other layers to generate six
prediction layers of varying depths. Each prediction layer in SSD includes residual blocks
to enhance prediction performance. This method does not require anchor configuration
for different datasets but performs poorly in crowded pedestrian scenes. Yang et al. [26]
proposed a pedestrian detection method based on parallel feature fusion using the Choquet
integral. The integration of the Choquet integral allows for the parallel fusion of HOG
and LBP features. The resulting parallel feature, HOG-HOLBP, not only retains the advan-
tages of HOG and LBP but also avoids the dimensionality disaster inherent in traditional
serial fusion. Chintakindi Balaram Murthy et al. [27] introduced an improved YOLOv2
pedestrian detection algorithm (YOLOv2PD) that employs a multi-layer feature fusion
(MLFF) strategy to enhance the model’s feature extraction capabilities and removes one
convolutional layer in the final stage to reduce computational complexity. Additionally, the
normalized improved loss function is used to enhance detection performance. YOLOv2PD
can perform real-time detection; however, its performance is suboptimal for detecting
small-scale and occluded pedestrians. Most pedestrian detectors perform well when visi-
bility is high and occlusion is minimal. However, their performance may degrade when
pedestrians are occluded, particularly under severe occlusion conditions. Liu et al. [28]
proposed a global context-aware feature extraction module that integrates contextual in-
formation with both local and global pedestrian features. Additionally, they designed a
visual feature enhancement module that incorporates unincluded upper body information
into the network to enhance the representation of extracted features. However, this method
shows inconsistent performance across different datasets and has weak generalization
capabilities. Qin et al. [29] proposed the FE-CSP single-stage pedestrian detection algo-
rithm, which combines GCB and attention mechanisms and uses deformable convolutions
to enhance the feature extraction capability of the backbone network. Additionally, it
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employs a feature pyramid network to fuse low-level and high-level features, capturing
more semantic information. However, FE-CSP struggles to accurately detect individual
pedestrians in very crowded situations. He et al. [30] introduced the DMSFLN pedestrian
detection network, which employs both a standard full-body detection branch and an
additional visible-body branch for pedestrian detection. These two branches are supervised
by full-body and visible-body annotations, respectively, but the performance in crowded
scenes is still suboptimal.

In summary, addressing the aforementioned challenges, this study proposes the YOLO-
RAD model. This model not only enhances the network’s ability to extract pedestrian
features but also significantly improves the recognition of small and occluded targets in
dense scenes. It achieves good detection performance on the WiderPerson and CrowdHu-
man datasets.

2.2. YOLOv8 Network Model

YOLOv8 [31] represents an advanced object detection model, building upon previous
iterations with optimizations and enhancements for higher performance, flexibility, and
efficiency. It consists of three main components: the backbone network, neck network, and
detection head. Notably, the backbone network is based on the Darknet53 architecture,
with the C2f module replacing the commonly used C3 module, inspired by the ELAN
philosophy from YOLOv7. The SPPF module enhances the Spatial Pyramid Pooling (SPP)
module, improving computational speed and addressing redundant information in feature
extraction. The neck network combines FPN [32] and PAN [33] structures for enhanced
feature fusion, facilitating the integration of high-level features with low-level feature
maps. In YOLOv8, the detection head has shifted from the original coupling head to the
decoupling head and from the Anchor-Based approach of YOLOv5 to Anchor-Free. This
updated design eliminates the previous Objectness branch, replacing it with decoupled
classification and regression branches. The classification branch employs BCE Loss, while
the regression branch utilizes Distribution Focal Loss (DFL) [34] alongside CIoU Loss.

Most contemporary object detectors emphasize positive and negative sample alloca-
tion strategies. Notable examples include simOTA in YOLOX [35], Task Aligned Assigner
in TOOD [36], and Dynamic Soft Label Assigner in RTMDet [37]. These assigners primarily
utilize dynamic allocation strategies, while YOLOv5 still adheres to a static allocation strat-
egy. Recognizing the advantages of dynamic allocation strategies, the YOLOv8 algorithm
directly incorporates the Task Aligned Assigner from TOOD; it involves the measurement
of task alignment and the strategy of sample allocation. Specifically, it uses a combination
of the classification score and the higher-power product of the IoU to measure the degree
of task alignment, as illustrated in Equation (1):

t = sα × uβ, (1)

where s denotes the predicted score corresponding to the annotated category and u represents
the intersection over union (IoU) between the predicted box and the ground truth box.

Indeed, YOLOv8 has surpassed many previous models with its excellent detection
performance, making it one of the most popular object detection networks currently avail-
able. Moreover, it offers scalability by providing models of different scales to meet various
usage requirements. The structure of the YOLOv8 model is shown in Figure 1.
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3. Method
3.1. YOLO-RAD Network Model

This paper proposes a pedestrian detection model, YOLO-RAD, tailored specifically
for dense scenes to address the challenge of low detection accuracy caused by pedestrian
occlusion and scale changes. Figure 2 shows the overall architecture of YOLO-RAD. Firstly,
this paper introduces the concept of receptive field attention (RFA) and modifies the Conv
and C2f modules in the YOLOv8 model. It adopts RFAConv and C2f_RFA modules to
replace the original Conv and C2f modules, addressing the parameter sharing issue caused
by the convolutional kernel and enhancing the feature extraction capability of the model.
Secondly, this paper proposes a 4-layer adaptive spatial feature fusion (ASFF) module,
which is added to the neck network. This module gradually fuses information between
different feature layers, reducing conflicts in feature information during the fusion process
and improving the model’s ability to integrate feature information. Finally, to enhance the
detection head, the small-target dynamic head structure (DyHead-S) is utilized to improve
the overall detection performance of the model for small-scale pedestrians.
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3.2. Receptive Field Attention
3.2.1. RFAConv Module

The Conv module is a fundamental component of the YOLO algorithm, responsible
for extracting image features and performing object detection. However, with standard
convolution operations, emphasis is placed on local connections and weight sharing. In
other words, the convolution kernel’s weight corresponds to the entire input graph. Since
objects in different positions of the image vary in shape and size, the information at
different positions differs. Standard convolution, with shared parameters, does not capture
positional differences effectively. Consequently, the performance of convolutional neural
networks is limited to some extent. The RFAConv module integrates standard convolution
with receptive field attention, comprehensively addressing the issue of parameter sharing
in convolution kernels. Additionally, it considers the importance of each feature in the
receptive field.

The core idea of RFAConv is to integrate spatial attention with standard convolution,
prioritizing the importance of different features within the receptive field. This allows the
network to process local areas of the image more efficiently and enhance feature extraction
accuracy. Moreover, RFAConv enables the network to identify and emphasize crucial
regions of the input feature map, adjusting the convolutional kernel’s weight accordingly.
By doing so, the network can allocate computational resources more effectively, focusing
on informative features while capturing a wide range of information. This enhances
overall processing efficiency and network performance. Through this approach, the issue
of convolution kernel parameter sharing is successfully addressed.

Using a 3 × 3 convolution kernel as an example, as illustrated in Figure 3, ‘spatial features’
represent the original feature map, while ‘receptive field spatial features’ are obtained by
transforming spatial features using non-overlapping sliding windows. Each 3 × 3 window in
the spatial feature space represents a receptive field slider when extracting features.
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Figure 3. The receptive field spatial features are obtained by transforming the spatial features.

To generate dynamic unfolding features based on the size of the receptive field, group
convolution (Group Conv) is employed. When a 3 × 3 convolutional kernel is used for
feature extraction, each 3 × 3 window in the receptive field spatial features represents a
receptive slider. After the receptive field features are extracted using group convolution,
the original features are mapped to new features. However, interacting with each receptive
field feature incurs additional computational overhead. To mitigate computational costs
and reduce the number of parameters, global information for each receptive field feature
is aggregated using AvgPool. Subsequently, information interaction occurs through 1 × 1
group convolution operations. Finally, Softmax is applied to emphasize the importance of
each feature in the receptive field. The structure of RFAConv is depicted in Figure 4.

The calculation process of the receptive field attention convolution is depicted in
Equation (2):

F = Softmax
(

g1×1(AvgPool(X))
)
× ReLu

(
Norm

(
gk×k(X)

))
= Arf × Frf, (2)

Firstly, feature maps are processed through average pooling to aggregate global
information for each receptive field feature. Subsequently, 1 × 1 convolutional layers are
employed to exchange information, highlighting the significance of individual features
within the receptive field through a normalization process. Within the receptive field sliding
window, importance levels are assigned to different features, and spatial features within the
receptive field are prioritized to ensure that the generated convolutional kernels can extract
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key features first, generating attention maps for subsequent convolutional kernel weight
allocation. Then, the original feature map undergoes convolution to generate receptive field
spatial features with the same size and dimensions as the attention map. Both attention
and receptive field spatial features are computed through grouped convolution to reduce
parameter and computational load in network operations. Finally, features are extracted
from the receptive field spatial features based on the weights of the attention map and
adjusted to an appropriate size to obtain the output of receptive field attention convolution.
Here, g1×1 represents a group convolution with a size of i × i, k denotes the size of the
convolution kernel, “Norm” signifies normalization, X represents the input feature map,
and F is the result obtained by multiplying the attention map Arf with the transformed
receptive field spatial features Frf.
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3.2.2. C2f_RFA Module

This paper introduces a novel C2f_RFA module by incorporating the concept of RFA
into the C2f module of YOLOv8. This module utilizes the backbone network to extract
features from input images and integrates these features through the neck network, which
plays a crucial role in comprehending the overall context of the image. To enhance the
model’s performance, we replaced the second convolution in the Bottleneck part of the C2f
module with RFAConv. By integrating RFAConv into C2f, the model gains the ability to
comprehensively handle features at various positions in the image, thereby improving its
adaptability and effectiveness in addressing complex scenes. The modified structures of
the Bottleneck and C2f are illustrated in Figures 5 and 6, respectively.
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3.3. Adaptive Spatial Feature Fusion Module

In the process of detecting pedestrians in crowded scenes, pedestrians exhibit a variety
of gestures, such as standing, walking, and running, along with varying distances between
pedestrians. This leads to changes in pedestrian posture in the image and the formation of
targets of different scales. Adaptive spatial feature fusion (ASFF) networks utilize spatial
filtering to suppress inconsistencies in spatial features at different scales during the fusion
process, retaining only the information relevant for combination. By adaptively fusing
different feature layers, ASFF effectively utilizes feature information of varying scales,
significantly reducing the loss of target feature information. Additionally, we designed a
4-layer ASFF module and introduced a shallow feature layer in the backbone network to
enrich the shallow feature information of pedestrians. In YOLOv8, we utilize ASFF to fuse
feature information from four different feature layers, each with different resolutions and
channel numbers. Features from other layers are first aligned to the same resolution and
number of channels before being fused together, resolving potential conflicts in functional
information between different levels. This adaptive fusion of features from different
levels ensures that conflicting information is filtered out while retaining and emphasizing
dominant features. The ASFF process is illustrated in Figure 7.

In the multi-level feature fusion process, ASFF fuses four different layers of feature
information, requiring their dimensions to be adjusted to the same size initially. For each
scale, both upsampling and downsampling need to be performed. For the upsampled part,
the number of channels in the other layers is first adjusted to match the number of channels
in the current layer using 1 × 1 convolutions. Subsequently, interpolation is applied to
improve the resolution. Regarding downsampling, different convolutional operations are
used depending on the downsampling factor. For 2× downsampling, a 2 × 2 convolution
with a stride of 2 is utilized; for 4× downsampling, a 4 × 4 convolution with a stride of 4 is
employed; and for 8× downsampling, an 8 × 8 convolution with a stride of 8 is used. The
adaptive spatial feature fusion operation combines the features from different levels with
their respective weights to create a fused feature vector at the desired level l. The process
of ASFF fusing the four channel features is depicted in Equation (3):

yl
ij = αl

ij·x1→l
ij + βl

ij ·x2→l
ij + γl

ij ·x3→l
ij + δl

ij ·x4→l
ij , (3)

Here, yl
ij is the resulting feature vector at position (i, j) after the adaptive spatial fusion

at level l. It is the combined feature vector from four different levels. xn→l
ij are the feature

vectors at position (i, j) from levels n to level l. They represent the low-level, mid-level, and
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potentially high-level features being fused. αl
ij, β

l
ij, γ

l
ij, δ

l
ij are the spatial weights assigned to

the features from the four levels at level l, and they satisfy αl
ij +βl

ij + γl
ij + δl

ij = 1, meaning
they represent a linear combination of the input features.

Symmetry 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 7. The process of ASFF. 

In the multi-level feature fusion process, ASFF fuses four different layers of feature 

information, requiring their dimensions to be adjusted to the same size initially. For each 

scale, both upsampling and downsampling need to be performed. For the upsampled 

part, the number of channels in the other layers is first adjusted to match the number of 

channels in the current layer using 1 × 1 convolutions. Subsequently, interpolation is ap-

plied to improve the resolution. Regarding downsampling, different convolutional oper-

ations are used depending on the downsampling factor. For 2× downsampling, a 2 × 2 

convolution with a stride of 2 is utilized; for 4× downsampling, a 4 × 4 convolution with a 

stride of 4 is employed; and for 8× downsampling, an 8 × 8 convolution with a stride of 8 

is used. The adaptive spatial feature fusion operation combines the features from different 

levels with their respective weights to create a fused feature vector at the desired level l. 

The process of ASFF fusing the four channel features is depicted in Equation (3): 

y
ij
l  = αij

l  · xij

1→l
 + β

ij

l  · xij

2→l
 + γ

ij
l  · xij

3→l
 + δij

l  · xij

4→l
, (3) 

Here, y
ij
l  is the resulting feature vector at position (i, j) after the adaptive spatial fu-

sion at level l. It is the combined feature vector from four different levels. xij
n→l are the 

feature vectors at position (i, j) from levels n to level l. They represent the low-level, mid-

level, and potentially high-level features being fused. αij
l , β

ij

l , γ
ij
l , δij

l  are the spatial 

weights assigned to the features from the four levels at level l, and they satisfy αij 
l + 

β
ij

l  + γ
ij
l  + δij

l  = 1, meaning they represent a linear combination of the input features. 

3.4. Small-Target Dynamic Head Structure 

In scenes with a large number of people, each pedestrian in the same image may 

exhibit different postures, scales, and positions. To address these challenges, the detection 

model’s head must possess a certain degree of spatial perception. Therefore, we intro-

duced a dynamic head (DyHead). 

Figure 7. The process of ASFF.

3.4. Small-Target Dynamic Head Structure

In scenes with a large number of people, each pedestrian in the same image may
exhibit different postures, scales, and positions. To address these challenges, the detection
model’s head must possess a certain degree of spatial perception. Therefore, we introduced
a dynamic head (DyHead).

DyHead, as illustrated in Figure 8, operates by enhancing the feature map through
a series of attention modules to improve object detection performance. First, the feature
map is adjusted to the same scale, forming a tensor. This tensor then passes through
three different attention modules sequentially: the scale perception module, the spatial
perception module, and the task perception module. In the scale perception module (πL),
the L dimensions of the tensor are globally average pooled to capture average information
of features at different levels. A 1 × 1 convolutional layer is then applied to extract this
information and enhance nonlinearity through the ReLU activation function. The result is
multiplied with the original feature map via a hard sigmoid activation function, producing a
weight plot reflecting the importance of features at different scales. In the spatial awareness
module (πS), a 3 × 3 convolutional layer learns offset values and weights of the feature
map. Deformable convolution is then employed to enable flexible focusing on key regions
in the spatial dimension, enhancing the recognition of target shape and position. In the task
awareness module (πC), tensors are globally average pooled in L × S dimensions to reduce
the dimension and computational burden. This information is further processed through
two fully connected layers and a normalized layer. The ReLU operation dynamically adjusts
the channel of the feature map according to different detection tasks (such as classification,
frame regression), making the features of different tasks more prominent.
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Figure 8. The detailed structure of DyHead.

To enhance DyHead’s capability to detect small objects, we implemented a strategy
by adding a new detection head on top of the dynamic head, specifically designed for
detecting small-scale pedestrians, as depicted in Figure 9. This design incorporates a second
layer of feature mapping into the overall feature fusion framework, thereby preserving
shallower semantic information crucial for identifying small-scale pedestrians. To achieve
this, we introduced an additional feature map during the feature extraction phase, with a
size of 160 × 160 pixels, aimed at capturing more detailed information about small-scale
pedestrians. To ensure the effective fusion of the new feature map with other feature maps,
we first upsampled and then downsampled it. These modifications increased the number
of dynamic heads from three to four, significantly enhancing the perception and sensitivity
of dynamic heads to small targets. Hence, we named this head structure the small-target
dynamic head structure (DyHead-S).
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4. Experiment
4.1. Dataset Introduction

The dataset utilized in this study comprises the publicly available WiderPerson
dataset [38] and the CrowdHuman dataset [39], which were employed to validate the
algorithm’s robustness. As separate annotation files for a test set were not provided in
the WiderPerson and CrowdHuman datasets, the original training set was divided into
training and validation sets at an 8:2 ratio, with the original validation set serving as the
test set.

The WiderPerson dataset functions as a benchmark dataset tailored specifically
for pedestrian detection in crowded scenes. It consists of 13,382 images collected from
various scenes and is annotated with approximately 400,000 occlusion labels. The dataset
originally comprised five categories: “pedestrians,” “riders,” “partially-visible persons,”
“ignore regions,” and “crowd.” Given the focus of this study on dense pedestrian detec-
tion, the categories “ignore regions” and “crowd” were deemed unnecessary for practical
applications. Furthermore, the “crowd” category is annotated with large bounding boxes
in the dataset. As a result, these two labels were omitted, and the remaining categories
(“pedestrians,” “riders,” “partially-visible persons”) were amalgamated into a single
category, termed “pedestrians.”

The CrowdHuman dataset, developed by SenseTime, constitutes a substantial col-
lection of crowd images captured in real-world environments like streets and parks. It
encompasses a total of 24,370 images, with around 470,000 pedestrian instances spread
across both the training and validation sets. On average, each image contains 23 pedestrian
instances, showcasing a notable presence of multi-scale and occluded targets. This dataset
proves especially beneficial for examining and tackling pedestrian detection challenges,
particularly under occlusion conditions.

4.2. Evaluation Indicators

This paper evaluates the model’s detection performance using commonly used metrics
such as precision, recall, and mean average precision.

Precision, denoted as P, represents the ratio of correctly detected positive samples to
all samples predicted as positive by the model, as indicated in Equation (4). Recall, denoted
as R, represents the ratio of correctly detected positive samples to all true positive samples,
as illustrated in Equation (5).

P =
TP

TP + FP
, (4)

R =
TP

TP + FN
, (5)

where TP represents the correctly detected positive samples by the model, FP represents
the negative samples mistakenly labeled as positive by the model, and FN represents the
positive samples missed by the model.

Mean average precision, abbreviated as mAP, refers to the average of AP across all
classes by the model. A higher mAP indicates better overall performance of the model
across the entire dataset, as illustrated in Equation (6).

mAP =
∑k

i=1 APi

k
, (6)

where AP is a metric obtained by averaging the precision–recall curve of the model for a
specific class, with k representing the number of classes.

4.3. Experimental Environment and Parameter Configuration

The experiments in this paper were conducted on the Ubuntu operating system, and
the parameters used are listed in Table 1.
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Table 1. Experimental environment parameter configuration.

Type Name Configuration

Software

OS Ubuntu20.04
Python 3.8
CUDA 11.8
Pytorch 2.0.0

Hardware
CPU Intel(R) Xeon(R) Gold 6430
GPU GeForce RTX 4090

Parameter

Image size 640 × 640
Epochs 300

Batch size 8
Optimizer SGD

Learning rate 0.01
Momentum 0.937

Weight decay 0.0005

4.4. Comparison Experiment

In this study, we compared our model to other detection models on the same dataset,
including YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv8n, RT-DETR-l, YOLO-World-n, and
RTMDet-tiny. All models were trained for 300 epochs, and none used pre-training weights.
The training results of each model are shown in Table 2.

Table 2. Results of different models.

Model P/% R/% mAP@0.5/% mAP@0.5:0.95/%

YOLOv5n 79.4 61.9 72.8 43.9
YOLOv6n 80.5 65.8 76 48.2

YOLOv7-tiny 81.6 65.9 76.3 45.5
YOLOv8n 81.5 65.3 76.4 48.1

YOLO-World-n [40] 81.6 65.3 76.6 48.5
RT-DETR-l [41] 80.4 62.7 73.9 44.3
RTMDet-tiny - - 74 47.7
YOLO-RAD 81.5 67.9 78.9 50.8

In Table 2, compared with other models, the YOLO-World model has the highest
accuracy, with P, mAP@0.5, and mAP@0.5:0.95 reaching 81.6%, 76.6%, and 48.5%, respec-
tively. In addition, it can be seen from the table that the accuracy rate of our proposed
model reaches 81.5%, although the accuracy is not the highest, only 0.1% lower than that of
YOLOv7-tiny and YOLO-World models, our model recall rate is the best, reaching 67.9%.
The significant increase in the recall rate of the YOLO-RAD model indicates that the algo-
rithm’s ability to detect target objects, capture more true positives, and reduce missed tests
has been enhanced. This high recall rate is critical in practical applications such as safety
monitoring and disease diagnosis, where sensitivity is essential to minimize false negatives.
It is worth noting that our model also achieved the best performance in mAP@0.5 and
mAP@0.5:0.95, reaching 78.9% and 50.8%, respectively. Compared to YOLO-World, our
algorithm improves by 2.3% in both mAP@0.5 and mAP@0.5:0.95.

4.5. Ablation Experiment

To evaluate the impact of each enhancement module proposed in YOLO-RAD, we
conducted an ablation study with consistent parameters and training procedures. The
study was performed using the WiderPerson dataset, and the results are summarized in
Table 3, where “

√
” denotes the utilization of the corresponding module.
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Table 3. Results of ablation experiment.

Model RFA ASFF DyHead-S P/% R/% mAP@0.5/% mAP@0.5:0.95/%

YOLOv8n

81.5 65.3 76.4 48.1√
81.5 66.3 77.1 48.9√
81.1 67.6 77.8 49.5√
80.4 67.1 78 49.8√ √
81.7 67.4 78 49.7√ √
80.9 67.8 78.5 50.3√ √
81.4 67.7 78.6 50.5√ √ √
81.5 67.9 78.9 50.8

In this study, we conducted a series of ablation experiments on the benchmark model
YOLOv8n to evaluate the effect of adding different modules on pedestrian detection
performance. The accuracy index values of the initial benchmark model are (P) 81.5%, (R)
65.3%, (mAP@0.5) 76.4%, and (mAP@0.5:0.95) 48.1%. We added RFA, ASFF, and DyHead-S,
respectively. The results show that after RFA was added alone, the accuracy of the model
was slightly improved; P is 81.5%, R is 66.3%, mAP@0.5 is 77.1%, and mAP@0.5:0.95 is 48.9%.
When ASFF was added alone, the recall rate of the model increased significantly, with R
reaching 67.6%, while mAP@0.5 and mAP@0.5:0.95 also increased significantly, reaching
77.8% and 49.5%, respectively. After the addition of DyHead-S alone, the model achieved
a certain degree of improvement in R and mAP@0.5 indices and especially improved in
mAP@0.5:0.95, which reached 49.8%. After further combination experiments, we observed
that the model improved in P, R, mAP@0.5, and mAP@0.5:0.95. In particular, when RFA,
ASFF, and DyHead-S were introduced at the same time, the comprehensive performance
of the model reached the best level; P was 81.5%, R was 67.9%, mAP@0.5 was 78.9%,
and mAP@0.5:0.95 was 50.8%. These results show that the proposed YOLO-RAD model
achieves excellent performance in pedestrian detection tasks.

Figure 10 shows the curves of accuracy rate, recall rate, mAP@0.5 and mAP@0.95
after the addition of RFA, ASFF, and DyHead-S and compares them with the basic model
YOLOv8n. It can be clearly seen that the three independent improvements are all effective.
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The PR curves and mAP of YOLOv8n and YOLO-RAD are visualized in Figures 11 and 12,
respectively. From this, we can see that the accuracy of YOLO-RAD is higher than that of the
basic model. With the increase in the number of training epochs, the mAP@0.5 and mAP@0.95
of the improved algorithm are gradually improved compared with the original YOLOv8n
algorithm.

Symmetry 2024, 16, x FOR PEER REVIEW 14 of 19 
 

 

Figure 10 shows the curves of accuracy rate, recall rate, mAP@0.5 and mAP@0.95 after 

the addition of RFA, ASFF, and DyHead-S and compares them with the basic model 

YOLOv8n. It can be clearly seen that the three independent improvements are all effective. 

 

Figure 10. A visual comparison of three improvement points: precision, recall, mAP@0.5, and 

mAP@0.5:0.95. 

The PR curves and mAP of YOLOv8n and YOLO-RAD are visualized in Figures 11 

and 12, respectively. From this, we can see that the accuracy of YOLO-RAD is higher than 

that of the basic model. With the increase in the number of training epochs, the mAP@0.5 

and mAP@0.95 of the improved algorithm are gradually improved compared with the 

original YOLOv8n algorithm. 

 

Figure 11. Comparison of PR curves before and after improvement. Figure 11. Comparison of PR curves before and after improvement.

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 19 
 

 

 

Figure 12. Comparison of mAP@0.5 and mAP@0.95 curves before and after improvement. 

4.6. Validation on Other Datasets 

To assess the generality and robustness of the proposed method, we chose the 

CrowdHuman public dataset for validation. The validation results are presented in Table 4. 

Table 4. Results of CrowdHuman experiment. 

Class 
P/% R/% mAP@0.5/% mAP@0.5:0.95 

YOLOv8n/Our  YOLOv8n/Our YOLOv8n/Our YOLOv8n/Our 

All 84.4/85 69/75.3 77.9/83.9 48.3/55.1 

Head 86.3/86.3 70.8/77.6 78.5/85 48/54.8 

Person 82.5/83.7 67.2/73 77.3/82.8 48.5/55.4 

We conducted detailed comparative experiments on the CrowdHuman dataset with 

the original YOLOv8n, comparing their performance on various categories and overall 

recognition results. From these experimental results, we can clearly see the significant ad-

vantages of the YOLO-RAD model in various indicators. Specifically, compared to the 

YOLOv8n, the YOLO-RAD improved by 0.6%, 6.3%, 6%, and 6.8% in the four evaluation 

indicators, respectively. We further found that in the Head label category, recall rates in-

creased by 6.8%, while mAP@0.5 and mAP@0.5:0.95 saw increases of 6.5% and 6.8%, re-

spectively. In the Person label category, we observed a 1.2% increase in accuracy, a 5.8% 

increase in recall, a 5.5% increase in mAP@0.5, and a 6.9% increase in mAP@0.5:0.95. These 

results clearly show that our proposed YOLO-RAD method shows significant detection 

performance advantages on different datasets. 

4.7. Detection Performance 

To visually demonstrate the superiority of the proposed algorithm in recognizing 

pedestrians in dense environments, we conducted detections using YOLOv8n and YOLO-

RAD on images from the WiderPerson and CrowdHuman datasets. The detection perfor-

mance is illustrated in Figures 13 and 14. 

Figure 12. Comparison of mAP@0.5 and mAP@0.95 curves before and after improvement.

4.6. Validation on Other Datasets

To assess the generality and robustness of the proposed method, we chose the Crowd-
Human public dataset for validation. The validation results are presented in Table 4.

Table 4. Results of CrowdHuman experiment.

Class
P/% R/% mAP@0.5/% mAP@0.5:0.95

YOLOv8n/Our YOLOv8n/Our YOLOv8n/Our YOLOv8n/Our

All 84.4/85 69/75.3 77.9/83.9 48.3/55.1
Head 86.3/86.3 70.8/77.6 78.5/85 48/54.8

Person 82.5/83.7 67.2/73 77.3/82.8 48.5/55.4

We conducted detailed comparative experiments on the CrowdHuman dataset with
the original YOLOv8n, comparing their performance on various categories and overall
recognition results. From these experimental results, we can clearly see the significant
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advantages of the YOLO-RAD model in various indicators. Specifically, compared to the
YOLOv8n, the YOLO-RAD improved by 0.6%, 6.3%, 6%, and 6.8% in the four evaluation
indicators, respectively. We further found that in the Head label category, recall rates
increased by 6.8%, while mAP@0.5 and mAP@0.5:0.95 saw increases of 6.5% and 6.8%,
respectively. In the Person label category, we observed a 1.2% increase in accuracy, a 5.8%
increase in recall, a 5.5% increase in mAP@0.5, and a 6.9% increase in mAP@0.5:0.95. These
results clearly show that our proposed YOLO-RAD method shows significant detection
performance advantages on different datasets.

4.7. Detection Performance

To visually demonstrate the superiority of the proposed algorithm in recognizing
pedestrians in dense environments, we conducted detections using YOLOv8n and YOLO-
RAD on images from the WiderPerson and CrowdHuman datasets. The detection perfor-
mance is illustrated in Figures 13 and 14.
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5. Conclusions

This paper introduces an improved pedestrian detection model that can significantly
improve pedestrian detection performance in dense scenes. The main purpose is to solve
some problems of the existing object detection models for pedestrian detection in dense
scenes, especially those of occlusion and small scale. The YOLO-RAD model in this paper
first combines the Conv module and C2f module with receptive field attention (RFA) to
solve the parameter sharing problem of the convolution kernel and significantly improve
the ability of the network to extract pedestrian features. Secondly, in order to better fuse the
feature information of different feature layers, a four-layer adaptive spatial feature fusion
(ASFF) module is designed to reduce the feature information conflicts between different
feature layers in the fusion process. Finally, in order to enhance the detection performance
of small-scale pedestrians, we propose a small-target dynamic head structure (DyHead-S)
to improve the detection head of the model and improve the ability of the model to detect
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small-scale pedestrians. By combining these methods, the model can better adapt to the
pedestrian detection task in dense scenes, so as to improve the detection performance of the
whole model. To evaluate the validity of the proposed model, two widely recognized public
datasets were used to conduct experimental studies, and the experimental results clearly
demonstrate the superiority of the proposed YOLO-RAD model over existing methods.
Not only did it show excellent performance in identifying crowded pedestrians, but it also
significantly improved recall rates. In addition, we also consider the practicability of the
proposed method. With the increase in urbanized population and the advancement of
security technology, the demand for pedestrian detection in urban monitoring is rising.
Our YOLO-RAD model exhibits good portability and detection efficacy, making it capable
of running efficiently on devices such as monitoring systems. Therefore, we believe that the
model holds broad application prospects and can play a significant role in urban security,
intelligent transportation, and other fields. In future studies, we will continue to optimize
the performance and efficiency of this model to further enhance its practical value in
real-world scenarios.
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