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Abstract: Mainstream semi-supervised learning (SSL) techniques, such as pseudo-labeling and
contrastive learning, exhibit strong generalization abilities but lack theoretical understanding. Fur-
thermore, pseudo-labeling lacks the label enhancement from high-quality neighbors, while contrastive
learning ignores the supervisory guidance provided by genuine labels. To this end, we first introduce
a generalized bias-variance decomposition framework to investigate them. Then, this research in-
spires us to propose two new techniques to refine them: neighbor-enhanced pseudo-labeling, which
enhances confidence-based pseudo-labels by incorporating aggregated predictions from high-quality
neighbors; label-enhanced contrastive learning, which enhances feature representation by combining
enhanced pseudo-labels and ground-truth labels to construct a reliable and complete symmetric
adjacency graph. Finally, we combine these two new techniques to develop an excellent SSL method
called GBVSSL. GBVSSL significantly surpasses previous state-of-the-art SSL approaches in stan-
dard benchmarks, such as CIFAR-10/100, SVHN, and STL-10. On CIFAR-100 with 400, 2500, and
10,000 labeled samples, GBVSSL outperforms FlexMatch by 3.46%, 2.72%, and 2.89%, respectively. On
the real-world dataset Semi-iNat 2021, GBVSSL improves the Top-1 accuracy over CCSSL by 4.38%.
Moreover, GBVSSL exhibits faster convergence and enhances unbalanced SSL. Extensive ablation
and qualitative studies demonstrate the effectiveness and impact of each component of GBVSSL.

Keywords: bias-variance decomposition; semi-supervised learning; pseudo-labeling; contrastive
learning

1. Introduction

In recent years, semi-supervised learning [1–8] (SSL) based on various pseudo-
labeling [2,3,9] and contrastive learning approaches [10–12] has demonstrated tremen-
dous potential, thereby attracting widespread attention in the academic community. Since
these semi-supervised learning (SSL) methods fit model predictions with true labels on
scarce labeled data and efficiently utilize a large amount of unlabeled data for self-training,
they significantly enhance the models’ generalization performance and effectively reduce
reliance on costly manual labeling.

Mainstream pseudo-labeling methods [2,3,13] use their models to assign reliable
pseudo-labels to unlabeled samples for self-training. For example, UDA [13] and Fix-
Match [2] select pseudo-labels with confidence scores exceeding a fixed threshold (e.g., 0.95)
for training, but they discard a considerable number of uncertain yet correct pseudo-labels.
To compensate for this deficiency, methods such as Dash [14] and Adamatch [15] propose
dynamic growing thresholds, while approaches like Flexmatch [3] and Adsh [16] adopt
category-aware adaptive thresholds to acquire more pseudo-labels and consequently en-
hance the performance of FixMatch. However, these types of adaptive threshold methods
may accept more incorrect pseudo-labels, thereby misleading the model. Therefore, confi-
dence threshold-based pseudo-labeling mechanisms suffer from the dilemma of balancing
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utilization and accuracy. Furthermore, existing pseudo-labeling relies on classifiers trained
on labeled datasets to make individual predictions for unlabeled instances, overlooking the
label enhancement from high-quality neighbors and the propagation of label supervision.
This oversight can lead to imprecise pseudo-labels, consequently causing confirmation bias.

On the other hand, related research integrating contrastive learning [11,12] with SSL
technology [1,6,8] has made remarkable contributions to the field of semi-supervised learn-
ing, significantly enhancing the performance of existing models. Early self-supervised
contrastive learning [10,12] aims to separate perturbed versions of different instances in
a pre-training task. This category-agnostic feature learning approach inevitably leads to
the dispersion of sample features within the same class, severely violating the clustering
property of SSL [1,6]. To address this issue, relevant researchers propose class-aware con-
trastive learning [1]. This approach mainly incorporates a neighborhood graph constructed
by pseudo-labels from unlabeled samples into the contrastive loss function, aiming to
effectively maintain the similarity of features within the same class and the distinctiveness
of features between different classes, thus better adapting to semi-supervised learning
tasks. However, existing class-aware contrastive learning still has some limitations. For
instance, inaccurate pseudo-labels can lead to the misallocation of positive and negative
pairs by the class-aware mechanism, thereby forming an adjacency graph with numerous
erroneous connections. Such an adjacency graph will guide the contrastive constraints
to push features from the same class apart and pull features from different classes closer,
inevitably compromising the effectiveness of representation learning. Furthermore, it fails
to utilize reliable labeled supervision to effectively guide the learning process of unlabeled
data, leading to suboptimal feature representations.

In addition to the aforementioned deficiencies, pseudo-labeling and contrastive learn-
ing commonly lack theoretical foundations, and their theoretical connections remain un-
clear. To address these issues, we propose a generalized bias-variance decomposition
framework to study and understand these two techniques, inspired by the observation that
the bias-variance decomposition of cross-entropy is closely related to the SSL approach
with respect to structure and generalization ability. This study initially inspires us to
propose neighbor-enhanced pseudo-labeling and label-enhanced contrastive learning to
address the limitations of existing techniques. Subsequently, it motivates us to unify them
into a single loss function, resulting in the introduction of a novel SSL method named
GBVSSL. Specifically, GBVSSL constructs two representations for each instance: one is the
class probability output by the classifier, and the other is the low-dimensional embedding
output by the projection head. The two representations interact and co-evolve through
neighbor-enhanced pseudo-labeling and label-enhanced contrastive learning. Bias analysis
encourages neighbor-enhanced pseudo-labeling to improve the individual predictions of
target samples by leveraging aggregated predictions from high-quality neighbors, thereby
enhancing the accuracy of corresponding pseudo-labels. Variance analysis guides label-
enhanced contrastive learning to once again utilize aggregated predictions to enhance
the pseudo-labels of unlabeled samples, while combining label supervision to construct a
reliable adjacency graph, thereby enhancing feature representation. In essence, GBVSSL ef-
fectively reduces the generalization error of the model by simultaneously minimizing both
bias and variance. The main advantage lies in effectively propagating label supervision to
unlabeled data, enhancing the quality of pseudo-labels and feature representation. GBVSSL
demonstrates outstanding generalization advantage on standard benchmarks, such as
CIFAR-10/100, SVHN, and STL-10. Especially for CIFAR-100 with 400, 2500, and 10,000 la-
beled samples, GBVSSL achieves error rates of 37.27%, 23.45%, and 18.86%, outperforming
the well-known method FlexMatch by 3.46%, 2.72%, and 2.89%, respectively. Furthermore,
on the real-world dataset Semi-iNat 2021, GBVSSL improves the Top-1 accuracy over
CCSSL [1] by 4.38%.

Our main contributions can be summarized in four aspects:

1. We introduce a generalized bias-variance decomposition framework for studying and
understanding pseudo-labeling and contrastive learning;
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2. We propose neighbor-enhanced pseudo-labeling and label-enhanced contrastive learn-
ing to improve pseudo-label and feature representation, respectively.

3. We present a novel SSL algorithm, GBVSSL, which combines neighbor-enhanced
pseudo-labeling and label-enhanced contrastive learning.

4. Extensive experiments demonstrate that GBVSSL outperforms previous state-of-the-
art methods on multiple SSL benchmarks and establishes a new performance bench-
mark on the real-world dataset Semi-INet 2021.

2. Related Work
2.1. Confidence-Based Pseudo-Labeling

In mainstream semi-supervised learning methods, confidence-based pseudo-
labeling [2,6,17] serves as a pivotal component capable of substantially enhancing their
performance. Currently, these methods [3–5,13,14,18] focus on improving the quality of
pseudo-labels. For example, FixMatch [2] and UDA [13] directly employ a fixed high-
confidence threshold to ensure pseudo-label accuracy. However, recent studies have
indicated that this approach exhibits poor performance in low-data settings, specifically
showing overfitting issues, particularly on easily learnable minority classes. To tackle
such issues, Flexmatch [3] and Dash [14] propose category- or instance-based adaptive
threshold methods. FreeMatch [18] adopts a confidence threshold method that is adaptive
to the training state of the model. In addition, ReMixMatch [4] utilizes a sliding average
of pseudo-labels, while SoftMatch [5] weights the samples using a truncated Gaussian
function, both of which are effective in adjusting for bias. Another promising direction
for research is to optimize the feature representation through additional training on aux-
iliary tasks, aiming to refine the predictions of the classifier. For instance, SimMatch [8]
and CoMatch [6] enhance pseudo-labels by performing instance similarity matching and
graph-based contrastive learning, respectively. Different from existing methods, we pro-
pose a neighbor-enhanced pseudo-labeling approach, which enhances confidence-based
pseudo-labels by leveraging aggregated predictions generated through label propagation
on a carefully constructed neighbor graph.

2.2. Contrastive Learning-Based SSL

Recently, some studies have achieved state-of-the-art performance by effectively inte-
grating contrastive learning [10–12] and SSL techniques [1,2,6–8]. Among these methods,
naive self-supervised contrastive learning [10], which employs category-agnostic feature
learning, may result in the dispersion of sample features within the same class, thereby
contradicting the clustering property of semi-supervised learning [1,6]. To address this
contradiction, researchers have naturally proposed leveraging the category-relevant prior
information provided by pseudo-labels to enhance contrastive learning. For example,
FixMatch [2] employs pseudo-labels exceeding a high confidence threshold for super-
vised contrastive learning, while CoMatch [6] utilizes memory-smoothed pseudo-labels
for graph-based contrastive learning. Similarly, ConMatch [7] introduces pseudo-labels as
the supervisory information for its contrastive loss. SimMatch [8] enhances FixMatch [2]
by combining the semantic consistency loss guided by pseudo-labeling with the sample
similarity loss. The most relevant to our work, CCSSL [1], improves contrastive learning
through weighted clustering of samples guided by pseudo-labels. Despite the impressive
results of these studies, their performance is constrained by a few issues, mainly including
instance pair mismatches due to incorrect pseudo-labeling, and underutilization of label
supervision information. To address these issues, this study proposes label-enhanced
contrastive learning, which guides and optimizes feature representation by combining
enhanced pseudo-labels from unlabeled data and label supervision to construct reliable
adjacency graphs.
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3. Generalized Bias-Variance Decomposition

Bias-variance decomposition is a key method for studying the generalization perfor-
mance of machine learning models, and therefore serves as the theoretical cornerstone of
this research. Following the assumptions and definitions of [19], let us consider a classifica-
tion model f on a given dataset D with c classes. Let y ∈ Rc be the one-hot encoding of the
ground-truth label, and ŷ = f̂ (x, D) ∈ Rc be the model’s output prediction. The expression
ȳ = f̄ (x, D) is defined as the average of the normalized logarithmic probabilities ŷ.

ȳ =
1
Z

exp[ED log ŷ] (1)

where Z is the normalization constant. In other words, ȳ represents the expectation of the
model. We directly delve into the generalized bias-variance decomposition framework of
cross-entropy proposed by [19,20] for the classification model f .

Lgeneral = Ex,D[−y log ŷ]

= δ2 + DKL(y∥ȳ) + ED[DKL(ȳ∥ŷ)]
= H(y) + H(y, E[ f̄ (x, D)])− H(y)

+ DKL(E[ f̄ (x, D)]∥ f̂ (x, D))

= H(y, f̄ (x, D))︸ ︷︷ ︸
bias

+ DKL( f̄ (x)∥ f̂ (x, D))︸ ︷︷ ︸
variance

≤ H(y, f̂ (x, D)) + DKL( f̄ (x, D)∥ f̂ (x, D))

(2)

where δ2, DKL(y∥ȳ), ED[DKL(ȳ∥ŷ)] are the noise, bias, and variance terms defined by [19,20],
respectively. DKL represents the Kullback–Leibler divergence. We keep the variance term
unchanged while gradually simplifying the bias to H(y, f̄ (x, D)). To ensure the gener-
alization performance of model f , it is crucial to simultaneously minimize both the bias
and variance in Equation (2). A significant challenge lies in providing a solution for the
unknown expectation function f̄ (x, D).

3.1. Analysis and Implementation Scheme for Minimizing the Bias H(y, f̄ (x, D))

According to Equation (2), we understand that existing SSL methods employ the stan-
dard cross-entropy loss H(y, f̄ (x, D)) as the supervised loss for labeled data and the pseudo-
labeling loss for unlabeled data, primarily to minimize model bias. Equation (2) indicates
that H(y, f̄ (x, D)) is a lower bound on H(y, f̂ (x, D)); thus, minimizing H(y, f̄ (x, D)) theo-
retically enables more effective reduction of generalization error. In other words, the output
expectation f̄ (x, D) is closer to the ground-truth label y than the prediction f̂ (x, D) in prac-
tice, thereby enhancing prediction accuracy. This bias analysis inspires us to incorporate
the output expectation of samples to enhance the accuracy of pseudo-labeling in SSL. To
introduce the implementation scheme of bias, we define the bias of an arbitrary sample
point (xi, yi) as follows:

H
(
yi, f̄ (xi, D)

)
= H

(
ym,

1
n

n

∑
i=1

c

∑
k=1

pk
i · yk

)
(3)

where n and c denote the number of samples and classes in dataset D, respectively. Assume
the label yi of sample xi belongs to the mth class, and ym represents the one-hot encoding
of the mth class. Here, we first assume that the expectation f̄ (xi, D) = 1

n ∑n
j=1 ŷj, ŷj is

the model’s prediction for xj, and pk
j is the assignment probability of xj on the kth class

one-hot vector yk, ŷj = ∑c
k=1 pk

j · yk. The minimization of Equation (3) is equivalent to

maximize the consistency between 1
n ∑n

j=1 pm
j · ym and ym. Ideally, if sample xj belongs to

the mth class, then pm
j should approach 1, and it should contribute to the calculation of the
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expectation of xj. If xj does not belong to the mth class, pm
j should approach 0, and such

samples should be excluded from Equation (3). Therefore, we further define the output
expectation f̄ (xi, D) of sample xi as the average of the output predictions ŷj of all samples
xj belonging to the same class as xi. The message-passing mechanism of GNNs [21], akin
to this definition, inspires us to calculate the expectation f̄ (xi, D) using its efficient matrix
computation form. The implementation is as follows: We begin by obtaining the feature
matrix F and the prediction matrix Ŷ output by the model f on the dataset D. Then, we
construct the normalized adjacency matrix A based on the features F and predictions Ŷ on
D. Finally, we naturally arrive at the matrix computation form of the expectation:

f̄ (xi, D) = AiŶ (4)

where Ai comprises all the neighbors and their weights that belong to the same class as the
target sample xi. Ensuring accurate estimates of both A and Ŷ is crucial for the quality of
the expectation in Equation (4).

For existing pseudo-labeling methods [2,6,17] in semi-supervised learning, pseudo-
labels are selected from high-confidence predictions of individual target samples, but
their accuracy needs improvement. Additionally, this “hard” labeling approach discards
a considerable number of uncertain yet correct pseudo-labels, resulting in low utilization
of unlabeled data. The bias analysis motivates us to propose neighbor-enhanced pseudo-
labeling, which fully leverages the expected predictions of reliable neighbors (potential
samples of the same class) to generate high-quality pseudo-labels for unlabeled data. For
the neighbors in A, we should prioritize labeled samples with high feature similarity, and
then select unlabeled samples with high-confidence predictions and high feature similarity,
and Ŷ should consist of high-confidence predictions on unlabeled samples and ground-
truth labels on labeled samples. Furthermore, transductive inference [22] motivates us
to further generalize the Equation (4) to multiple rounds of label propagation for Ŷ on
A, aiming to achieve accurate predictions that tend to converge. On the other hand, we
reasonably assume that as the model training progresses, the sharpened low-confidence
predictions gradually converge towards the true labels. Therefore, we utilize them as “soft”
pseudo-labels for pseudo-labeling loss, aiming to enhance the utilization of unlabeled data
and reduce prediction bias on low-confidence unlabeled data.

3.2. Analysis and Implementation Scheme for Minimizing the Variance DKL( f̄ (x, D)∥ f̂ (x, D))

This study directly converts the complex DKL( f̄ (x, D)∥ f̂ (x, D)) into the problem∣∣∣ f̄ (x, D)− f̂ (x, D)
∣∣∣2 of minimizing redundancy loss, as they both aim to minimize the

difference between f̄ (x, D) and f̂ (x, D). Notably, we redefine the expectation as the sum of
the probability distributions predicted by the model across all classes.

f̄ (xi, D) = Ey

[
f̂ (xi, D)

]
=

c

∑
k=1

pk
i · yk (5)

We reasonably assume that the output prediction corresponds to the probability output
of model f on the true class of xi, as it typically represents the maximum probability output.

f̂ (xi, D) = pt
i · yt (6)

where yt represents the one-hot encoding of the true label for xi, while pt
i is the output

probability of the model for sample xi on the label yt. This definition and assumption
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constitute the pivotal conditions for addressing the redundancy minimization problem at
hand. Thus, the redundancy loss over the entire dataset D is as follows:

LV1
redundancy = EDEx

[∣∣∣ f̂ (x, D)− Ey[ f̂ (x, D)]
∣∣∣2]

=
n

∑
i

( c

∑
k=1

1
[
yk ̸= yt

i

]
pk

i · yk

)T( c

∑
k=1

1
[
yk ̸= yt

i

]
pk

i · yk

) (7)

The redundancy minimization represented by Equation (7) aims to minimize the
correlation among features from different classes. This aligns with the concepts explored in
the related study of Barlow Twins [23] and warrants further discussion in future research.
We transpose the dimensions n and c in Equation (7), resulting in an alternative redundancy
minimization paradigm represented by Equation (8). This section will delve into the
analysis of Equation (8), as it introduces a variance minimization scheme closely related to
the contrastive learning technique emphasized in this study.

LV2
reaundancy =

c

∑
k=1

( n

∑
i=1

1
[
yk ̸= yt

i

]
pk

i · yk

)T( n

∑
i=1

1
[
yk ̸= yt

i

]
pk

i · yk

) (8)

We take the sample set D = [(x1
2, y1

2), (x1
5, y1

5)], [(x2
1, y2

1), (x2
4, y2

4)], [(x3
3, y3

3), (x3
6, y3

6)] as
an example and plot V2 in Figure 1 to visualize Equation (8). Specifically, D consists of
n = 6 samples, divided into c = 3 categories, where (xj

i , yj
i) ∈ D represents the ith sample

and its jth class label. V2 has a shape of Rc×n×n and symmetrically contains elements of four
colors: red, green, pink, and dark blue. Equation (8) excludes the calculations of red pt

i ∗ pt
i

and pink pt
i ∗ pt

j elements using the indicator 1[yk ̸= yt
i ], aiming to minimize the green

pk
i ∗ pk

i and dark blue pk
i ∗ pk

j elements. Since minimizing the cross-entropy H(y, f̂ (x, D))

will maximize pt
i and pt

j, the red pt
i ∗ pt

i and pink pt
i ∗ pt

j elements should be maximized.
Numerical analysis of the four aforementioned elements suggests that to ensure the output
predictions of f̂ (x, D) for any sample xi are consistent with its label yt

i , the red pt
i ∗ pt

i should
be maximized; to ensure the output predictions of f̂ (x, D) are consistent within the same
class of samples, where yt

i and yt
j represent the samples xi and xj belonging to the same

category, the pink pt
i ∗ pt

j should be maximized. On the other hand, to minimize the output

probability pk
i of the non-true label yk

i for sample xi by f̂ (x, D), the green pk
i ∗ pk

i should
be minimized. Additionally, to ensure that f̂ (x, D) effectively distinguishes samples from
different categories and provides distinct predictions, where yk

i and yk
j denote the labels

of samples xi and xj not belonging to the same category, the dark blue pk
i ∗ pk

j should be
minimized. For a more detailed analysis, please refer to our published GCL [24] model.
Note that ∗ represents the multiplication sign.

When extending the output prediction f̂ (xi, D) to the feature representation zi in
the embedding space, the redundancy minimization paradigm described by Equation (8)
aims to maximize the similarity among intra-class sample features and minimize the
similarity among inter-class sample features. Essentially, it ensures consistency between the
similarity matrix and the adjacency matrix of dataset D. We can achieve this objective by
directly minimizing the cross-entropy H(A, S), where A represents the accurate adjacency

matrix and S represents the normalized similarity matrix, e.g., Sij =
exp(zi ·zj)

∑j∈A(i) exp(zi ·zj)
. This

approach is actually a contrastive learning method based on an adjacency graph. We
naturally conclude that contrastive learning achieves excellent generalization performance
by effectively reducing the model’s variance.
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Figure 1. The symmetric V2 is used to visualize Equation (8). Minimizing the elements represented
by the green pk

i ∗ pk
i and the dark blue pk

i ∗ pk
j in tensor V2 is equivalent to achieving the minimum

variance as described in Equation (8) across the dataset D.

In semi-supervised learning, S can be easily computed from the features matrix F,
with the primary challenge being the unknown A. Currently, contrastive learning in SSL
primarily leverages high-confidence pseudo-labels to construct the adjacency matrix A,
which guides the representation learning of unlabeled data and thereby achieves some
performance improvement. These works strongly support variance analysis, but they
struggle to ensure the reliability of pseudo-labels and are susceptible to confirmation bias.
Furthermore, our variance analysis is conducted on the entire dataset, so the contrastive
learning represented by H(A, S) should encompass both labeled and unlabeled data,
whereas existing contrastive learning methods are primarily utilized for unlabeled data,
without considering reliable labeled data, resulting in the incompleteness of A.

This variance analysis prompts us to propose label-enhanced contrastive learning,
which reuses aggregated predictions to obtain more accurate pseudo-labels, and then com-
bines the enhanced pseudo-labels with the ground-truth labels to construct a reliable and
complete adjacency matrix A. Label-enhanced contrastive learning enhances the feature
representation of both labeled and unlabeled data by incorporating A as a contrastive
constraint for feature learning, thereby addressing the limitations of existing SSL-based
contrastive learning methods.

In conclusion, we understand that pseudo-labeling and contrastive learning corre-
spond to the minimization of bias and variance, respectively. They can be unified into a
generalized bias-variance loss function to jointly reduce the model’s generalization error.

4. The Proposed GBVSSL Method
4.1. Problem Formulation

A semi-supervised classification task is typically set up with X and U, where X =
{(xi, yi) : i ∈ (1, . . . , B)} denotes a batch of labeled image data, xi denotes the ith labeled
sample, and yi represents the one-hot label for xi. While U = {ui : i ∈ (1, . . . , µB)} repre-
sents the same batch of unlabeled data, the coefficient µ determines the ratio of unlabeled
data to labeled data. The semi-supervised classification model learns simultaneously on
both labeled data X and unlabeled data U, but only has access to a small number of labels
from X for classification training. The objective is to achieve accurate predictions for the
labels of U.

4.2. Framework

Inspired by the research findings of the general bias-variance decomposition, this study
proposes a new SSL method called GBVSSL. GBVSSL mainly consists of three modules:
conventional cross-entropy on labeled data, neighbor-enhanced pseudo-labeling, and label-
enhanced contrastive learning, with the latter two primarily applied to unlabeled data. We
describe the various modules of GBVSSL depicted in Figure 2 in a left-to-right sequential
order, elucidating the process from input to output in detail.
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Figure 2. The framework and pipeline of GBVSSL. The weakly augmented views with labels are
directly used for supervised learning; The weakly augmented views of unlabeled data are used
together with their reliable Top-K neighbors found in the memory bank for label propagation, thereby
obtaining aggregated predictions and their confidence-based pseudo-labels, which are then used
for pseudo-labeling along with the corresponding predictions from strongly augmented views;
Combining the aggregated predictions of weakly augmented views from unlabeled views with
the ground-truth labels from labeled views, a target adjacency matrix is constructed to guide the
contrastive learning of features from strongly augmented views of both labeled and unlabeled data
in the same batch.

For all input images, we use a weak augmentation Augw(·) and two types of strong
augmentation Augs(·) to generate multiple views for them. For labeled sample xi, we
use its weak augmentation for supervised learning. For unlabeled sample ui, a weak aug-
mentation used for estimating pseudo-labels and a strong augmentation used for training
predictions are simultaneously fed into neighbor-enhanced pseudo-labeling. Meanwhile,
two types of strong augmentations for xi and ui are employed for label-enhanced con-
trastive learning. Weak augmentation with slight variations leads to less loss of information,
enabling more accurate predictions and making them suitable as pseudo-labels, thereby aid-
ing the model in capturing the inherent structure of the data more accurately. Conversely,
strong augmentation enhances the model’s adaptability to significant variations, thereby
improving the model’s feature representation capability and generalization performance.

For the input augmented views, we utilize the image encoder E(·) to extract their
feature representations r = E(Aug(x)), with the choice of encoder being independent.

The label-enhanced contrastive learning module maps the high-dimensional feature
r of the image to the low-dimensional feature space z using the projection head proj(·)
for contrastive learning. The implementation ensures the desired feature distribution by
minimizing the cross-entropy between the feature affinity matrix and the target adjacency
matrix. It should be emphasized that both matrices, similar to V2, possess symmetry. By
leveraging this consistent symmetry, these two matrices effectively enhance the model’s
adaptability to significant variations in different augmented views of the same sample,
thereby improving the model’s generalization performance.

The standard cross-entropy trains the classifier Pcls(·) to output classification pre-
dictions during inference. The neighbor-enhanced pseudo-labeling minimizes the cross-
entropy between the predictions of unlabeled strong augmentations and their pseudo-labels
derived from the aggregated predictions of the corresponding weak augmentations.

Next, we will sequentially detail the three loss modules of GBVSSL under the general-
ized bias-variance decomposition framework.

4.3. Bias Minimization
4.3.1. Labeled Cross-Entropy

To reduce the prediction bias of the model on each labeled image xi, we perform
supervised learning by minimizing the standard cross-entropy [2] between the one-hot
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ground-truth label yi and the prediction ŷw
i of weak augmentation, as illustrated in

Equation (9):

Lx =
1
B

B

∑
i=1

yi log ŷw
i (9)

where the coefficient B denotes the batch size.

4.3.2. Neighbor-Enhanced Pseudo-Labeling

To reduce the prediction bias of the model on unlabeled data, the neighbor-enhanced
pseudo-labeling loss Lu still follows the standard cross-entropy form [25] based on the
confidence threshold.

Lu =
1

µB

µB

∑
i=1

(
1
(

max(ŷw
i ) ≥ τ

)
H
(
yw

i , Pcls(Augs(ui))
)

+ 1
(

max(ŷw
i ) < τ

)
H
(
ỹw

i , Pcls(Augs(ui))
)) (10)

Lu consists of two parts: the first part is the cross-entropy loss between the enhanced
pseudo-labels based on aggregated predictions and the strongly augmented predictions;
the second part is the cross-entropy loss between the sharpened predictions of weak
augmentation and the strongly augmented predictions. Where H still represents the
standard cross-entropy, ŷw

i = Pcls(Augw(ui)) represents the model’s predictions for the
weak augmentations of unlabeled samples ui, τ denotes the confidence threshold, and
the pseudo-labels yw

i must satisfy the high confidence threshold max(ŷw
i ) > τ. ỹw

i =
exp(ŷw

i /δ)

∑k exp(ŷw
k /δ)

represents the sharpened predictions, and δ is the sharpening coefficient. The

model selects pseudo-labels yw
i from weakly augmented samples with less information loss

and more accurate predictions. Meanwhile, the model utilizes the classification predictions
of strongly augmented samples ŷs

i = Pcls(Augs(ui)) to improve generalization.
Notably, bias analysis inspires us to improve the accuracy of pseudo-labels yw

i by
utilizing aggregated predictions yw

i from reliable neighbors (potential samples of the same
class) of ui. We initially employ the model to acquire the weakly augmented feature
representation zw

i and the prediction ŷw
i , then retrieve the weakly augmented neighbors

of zi and their labels. The candidate neighbors primarily come from two categories: all
weakly augmented labeled samples and weakly augmented pseudo-labeled samples with
predictions exceeding the confidence threshold (0.99 in this paper). Drawing on [6,8,12],
these two types of data are maintained in reality by four memory banks: the labeled feature
bank Zl , the label bank Yl , the pseudo-labeled feature stack Zu, and the pseudo-label stack
Yu. With the exception of the label Yl , the features and pseudo-labels are dynamically
updated as the model undergoes training, and their quality is enhanced as the model
performance improves. To exclude the interference from different classes of samples with
low similarity, we select the top Kl labeled samples and the top Ku pseudo-labeled samples
that are most similar to the sample zw

i , and concatenate these samples to obtain the feature
queue Z = [zw

i , zw
1 , zw

2 ..., zw
K ] and the labeled queue Y = [ŷw

i , y1, y2..., yK], where K = Kl +Ku
and Kl equals Ku here. Next, we calculate the similarity matrix A on the K-nearest neighbor
features Z as follows:

Aij =
exp(zw

i · zj/t)

∑K
k=1 exp(zw

i · zk/t)
(11)

where t represents the temperature coefficient. The shape of matrix A is R((1+K)(1+K)).
Before applying softmax normalization to matrix A, we set all diagonal elements to zero
(i.e., Aij = 0 when i == j) to eliminate the impact of self-loops. Lastly, we calculate the
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label propagation of the label queue Y on the K-nearest neighbor graph represented by
matrix A.

Yφ = (α · A)φ−1Y + (1 − α)
φ−1

∑
k=1

(α · A)kY (12)

where Y represents the initial state [ŷw
i , y1, y2, . . . , yK], α is a parameter ranging from 0 to

1 that assigns weight to the initial labels and aggregated labels, while φ represents the
iterations of label propagation, and multiple iterations of label propagation tend to converge.
Finally, the aggregated prediction ỹw

i of the unlabeled sample ui can be directly obtained
from the first row vector of Yφ (i.e., Yφ[0]), and then used for confidence-based pseudo-label
yw

i . Finally, the cross-entropy between the pseudo-label yw
i and the strong augmentation

prediction ŷs
i = Pcls(Augs(ui)) is minimized to improve the model performance, as shown

in Equation (10).
It is worth emphasizing that if α = 1 and φ = 1, then Y1 = AY. Assuming A

includes self-loops, Y1 is equivalent to the Equation (4) provided in the previous bias
minimization analysis. In other words, Equation (4) corresponds to the special case where
Yφ propagates only once. However, label propagation Yφ offers greater flexibility and
scalability, and achieves more accurate and stable pseudo-labels through multiple iterations
of label propagation. Differing from existing pseudo-labeling methods, neighbor-enhanced
pseudo-labeling aggregates the labels of reliable labeled neighbors and the high-confidence
pseudo-labels of unlabeled neighbors through a limited number of label propagation
iterations to enhance the predictions of current samples.

4.4. Variance Minimization

The label-enhanced contrastive loss is inspired by variance analysis, aiming to mini-
mize the cross-entropy H(A, S) between the similarity matrix S and the reliable, complete
adjacency matrix A on the same batch of labeled and unlabeled samples.

4.4.1. Similarity Matrix S

Similar to [1,12], we randomly sample from the same batch of labeled images of
size B and unlabeled images of size µB, respectively. Figure 2 illustrates the pipeline by
which we obtain labeled feature views zs1

x and zs2
x , as well as unlabeled feature views

zs1
u and zs2

u , from two types of strong augmentation, Augs(·). Subsequently, we apply
the following metric method to measure pairwise sample similarity in the feature matrix
Z = {zi : i = 1, ..., 2(1 + µ)B}:

Sij =
exp(zi · zj/t)

∑
2(1+µ)B
j=1 exp(zi · zj/t)

(13)

The similarity matrix S has a shape of R(2B+2µB)×(2B+2µB), where t is the temperature
factor. Unlike existing studies, Z consists of both labeled and unlabeled features.

4.4.2. Target Adjacency Matrix A

The adjacency matrix A faces challenges in two aspects: data organization and numer-
ical computation.

For the data organization of A, variance analysis inspires us to once again employ
the label propagation algorithm from Section 4.3.2 to obtain aggregated predictions from
high-quality neighbors, thereby enhancing the accuracy of pseudo-labels Yu compared to
existing pseudo-labeling methods based on individual predictions. Its advantage lies in
effectively integrating the similarity and label information of high-quality neighbors to
enhance the adjacency matrix A. In addition, we combine the enhanced pseudo-labels Yu
with the ground-truth labels Yl from the same batch to jointly compute A. The computed
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A is more comprehensive and reliable compared to existing contrastive learning methods
that rely solely on pseudo-labels.

For the numerical computation of A, it provides two key pieces of information: first,
whether paired samples i and j belong to the same class (Aij > 0) or different classes
(Aij = 0); second, the intimacy of the same-class relationship (i.e., the magnitude of the
weight Aij). Therefore, A primarily consists of two major computational steps: clustering
assignment and weight estimation. Take the example of estimating Aij for any two samples
zi, zj, their corresponding labels or predictions can be indexed from Yl , Yu. Firstly, we
compute the maximum assignment probabilities pi and pj, along with their corresponding
one-hot labels yi and yj. Subsequently, we utilize this information to calculate the clustering
relationship cij and the correlation weight wij for zi and zj, respectively. Since the label Yl
itself represents a list of one-hot encoding labels, the assignment probability pl can take a
value within the range of [Yα, 1].

In the clustering assignment step, we determine the clustering relationship cij between
zi and zj by computing cij = yT

i · yj, where cij is assigned a value of either 0 or 1.
In the weight estimation step, we further prioritize training on high-confidence posi-

tive pairs based on assignment probabilities, while mitigating the potential bias introduced
by false positive pairs. The correlation weight wij between zi and zj is computed as
wij = pi · pj, and wij takes values from 0 to 1.

At this point, Aij = cij · wij can satisfy the aforementioned objective. However, we also
draw on CCSSL [1] to supervise the quality of the pseudo-label, aiming to exclude samples
with assignment probability pi below a confidence threshold Yα from the training of positive
pairs, so as to focus learning on clean data with high confidence. The specific approach
involves appending an additional step of mask computation after the preceding two steps.
For example, the mask calculation between zi and zj is given by mij = 1[pi ≥ Yα] · 1[pj ≥ Yα].
Combining the aforementioned three steps, we compute Aij = cij · wij · mij. It is worth
emphasizing that we set cii = 0 to avoid self-loop, while we set the clustering relationship
between different views of the same sample as cij = 1. Intuitively, Aij is a sparse matrix
with the following numerical distribution.

Aij =


pi · pj, if i ̸= j and the one-hot labels yi and yj

are the same, with both probabilities pi

and pj higher than the threshold Yα.
0, otherwise

(14)

When dealing with batch data in practice, the aforementioned steps yield the clustering
relationship matrix C, the correlation weight matrix W, and the mask matrix M, respectively.
Therefore, the overall A is calculated as:

A = C · W · M (15)

As the target adjacency matrix in Figure 2, A provides reliable neighbor information
to effectively guide contrastive learning in bringing similar features closer while pushing
dissimilar features farther apart, thereby achieving desirable feature representations.

4.4.3. Label-Enhanced Contrastive Loss

The proposed label-enhanced contrastive learning aims to minimize the cross-entropy
between the similarity matrix S and the adjacency matrix A.

Lc = H(A, S) =
2(1+µ)B

∑
i=1

1
|P(i)| Lc,i (16)
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Whereas H still represents the cross-entropy, P(i) denotes the indices of views belong-
ing to the same class as sample i, and the cardinality |P(i)| represents the total number of
positive sample pairs. The specific form of Lc,i is as follows:

Lc,i = − ∑
p∈P(i)

Aip · log

 exp(zi · zp/τ)

∑
2(1+µ)B
j=1 exp(zi · zj/τ)

 (17)

Unlike existing work, Lc incorporates ground-truth labels with enhanced pseudo-
labels to compute a relatively accurate and complete adjacency matrix A for enhancing
feature representation.

4.5. Overall Loss Function

The total loss L is the weighted sum of the supervised loss Lx, the neighbor-
enhanced pseudo-labeling loss Lu, and the label-enhanced contrastive loss Lc, as shown in
Equation (18).

L = Lx + λuLu + λcLc (18)

Similar to CCSSL [1], the weight coefficients λu and λc are used to balance the bias
term represented by Lu and the variance term represented by Lc, respectively.

5. Experimental Results
5.1. Experimental Setup
5.1.1. Common SSL Datasets

We experimentally evaluate our GBVSSL on mainstream SSL datasets: CIFAR-10/100 [26],
SVHN [27], STL-10 [28]. The various numbers of labeled data settings for each dataset are
presented in Table 1.

5.1.2. Implementation Details

For a fair comparison, our model architecture employs WideResNet (WRN)-28-2 [29]
for CIFAR-10, WRN-28-8 for CIFAR-100 and SVHN, and ResNet-18 network [30] for STL-10,
in accordance with [6]. Meanwhile, we incorporate a 2-layer MLP projection head after
the backbone network for contrastive learning in a 64-dimensional embedding space [31].
We utilize an SGD optimizer with momentum 0.9 and Nesterov momentum [32] for all
experiments, along with a scheduler that implements cosine learning rate decay [33]. We set
the initial learning rate to 0.03 and adjust the training epoch to 512 instead of the 1024 epoch
used in [34] to showcase our faster convergence efficiency. All experiments are conducted
on a single GPU. The weak and strong data augmentations utilized in the experiments are
primarily inherited from the USB [35] codebase. Regarding hyperparameters, we set the
default values as follows: λu = 1, batch size B = 64, the ratio of unlabeled data µ = 7,
label propagation coefficient φ = 3, α = 0.1, temperature coefficient t = 0.07, confidence
threshold τ = 0.95, and the number of neighbors K = 128. Regarding specific parameters,
we assign λc = 0.2 and Yα = 0 for the simple CIFAR-10 and set λc = 1.0 and Yα = 0 for the
relatively complex STL-10, CIFAR-100, and SVHN. In addition, we maintain four memory
banks that store labeled sample features, ground-truth labels, pseudo-labeled sample
features, and pseudo-labels, providing high-quality neighbors for pseudo-label estimation.

5.1.3. Baseline Methods

We explore the state-of-the-art semi-supervised learning methods, including main-
stream methods based on consistency regularization, such as MixMatch [36], FixMatch [2],
and FlexMatch [3]. To validate the performance improvements of the proposed GBVSSL
method, we also compare it with previous SSL methods based on contrastive learning,
including CoMatch [6], CCSSL [1], and SimMatch [8], etc. Since CCSSL is the most similar
to our GBVSSL, it is used as the benchmark for comparison in nearly all experiments.
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Table 1. Error rate for CIFAR-10/100, SVHN, and STL-10 datasets on 3 different labeled data settings. Bold highlights optimal outcome and underline denotes the
second-best performance.

Dataset CIFAR-10 CIFAR-100 SVHN STL-10

Label Amount 40 250 4000 400 2500 10,000 40 250 1000 40 250 1000

Π Model [37] 74.34 ± 1.76 46.24 ± 1.29 13.13 ± 0.59 86.96 ± 0.80 58.80 ± 0.66 36.65 ± 0.00 67.48 ± 0.95 13.30 ± 1.12 7.16 ± 0.11 74.31 ± 0.85 55.13 ± 1.50 32.78 ± 0.40
Pseudo Label [9] 74.61 ± 0.26 46.49 ± 2.20 15.08 ± 0.19 87.45 ± 0.85 57.74 ± 0.28 36.55 ± 0.24 64.61 ± 5.60 15.59 ± 0.95 9.40 ± 0.32 74.68 ± 0.99 55.45 ± 2.43 32.64 ± 0.71
VAT [38] 74.66 ± 2.12 41.03 ± 1.79 10.51 ± 0.12 85.20 ± 1.40 46.84 ± 0.79 32.14 ± 0.19 74.75 ± 3.38 4.33 ± 0.12 4.11 ± 0.20 74.74 ± 0.38 56.42 ± 1.97 37.95 ± 1.12
Mean Teacher [39] 70.09 ± 1.60 37.46 ± 3.30 8.10 ± 0.21 81.11 ± 1.44 45.17 ± 1.06 31.75 ± 0.23 36.09 ± 3.98 3.45 ± 0.03 3.27 ± 0.05 71.72 ± 1.45 56.49 ± 2.75 33.90 ± 1.37
MixMatch [36] 38.84 ± 8.36 20.96 ± 2.45 10.25 ± 0.01 80.58 ± 3.38 47.88 ± 0.21 33.22 ± 0.06 26.61 ± 13.10 4.48 ± 0.35 5.01 ± 0.12 52.32 ± 0.91 36.34 ± 0.84 25.01 ± 0.43
ReMixMatch [4] 8.13 ± 0.58 6.34 ± 0.22 4.65 ± 0.09 41.60 ± 1.48 25.72 ± 0.07 20.04 ± 0.13 16.43 ± 13.77 5.65 ± 0.35 5.36 ± 0.58 27.87 ± 3.85 11.14 ± 0.52 6.44 ± 0.15
FixMatch [2] 12.66 ± 4.49 4.95 ± 0.10 4.26 ± 0.01 45.38 ± 2.07 27.71 ± 0.42 22.06 ± 0.10 3.37 ± 1.01 1.97 ± 0.01 2.02 ± 0.03 38.19 ± 4.76 8.64 ± 0.84 5.82 ± 0.06
FlexMatch [3] 5.29 ± 0.29 4.97 ± 0.07 4.24 ± 0.06 40.73 ± 1.44 26.17 ± 0.18 21.75 ± 0.15 8.19 ± 3.20 6.59 ± 2.29 6.72 ± 0.30 29.12 ± 5.04 9.85 ± 1.35 6.08 ± 0.34
Dash [14] 9.29 ± 3.28 5.16 ± 0.28 4.36 ± 0.10 47.49 ± 1.05 27.47 ± 0.38 21.89 ± 0.16 5.26 ± 2.02 2.01 ± 0.01 2.08 ± 0.09 42.00 ± 4.94 10.50 ± 1.37 6.30 ± 0.49
MPL [40] 6.93 ± 0.17 5.76 ± 0.24 4.55 ± 0.04 46.26 ± 1.84 27.71 ± 0.19 21.74 ± 0.09 - - - 35.76 ± 4.83 9.90 ± 0.96 6.66 ± 0.00
RelationMatch [41] 6.87 ± 0.12 4.85 ± 0.04 4.22 ± 0.06 45.79 ± 0.59 27.90 ± 0.15 22.18 ± 0.13 - - - 33.42 ± 3.92 9.55 ± 0.87 6.08 ± 0.29
CoMatch [6] 6.51 ± 1.18 5.35 ± 0.14 4.27 ± 0.12 53.41 ± 2.36 29.78 ± 0.11 22.11 ± 0.22 8.20 ± 5.32 2.16 ± 0.04 2.01 ± 0.04 13.74 ± 4.20 7.63 ± 0.94 5.71 ± 0.08
CCSSL [1] 9.71 ± 2.78 5.14 ± 0.55 4.46 ± 0.20 38.81 ± 1.65 24.30 ± 0.63 19.32 ± 0.16 7.85 ± 3.6 2.12 ± 0.04 2.03 ± 0.03 17.55 ± 4.2 8.43 ± 1.1 5.77 ± 0.82
SimMatch [8] 5.38 ± 0.01 5.36 ± 0.08 4.41 ± 0.07 39.32 ± 0.72 26.21 ± 0.37 21.50 ± 0.11 7.60 ± 2.11 2.48 ± 0.61 2.05 ± 0.05 16.98 ± 4.24 8.27 ± 0.40 5.74 ± 0.31
AdaMatch [15] 5.09 ± 0.21 5.13 ± 0.05 4.36 ± 0.05 38.08 ± 1.35 26.66 ± 0.33 21.99 ± 0.15 6.14 ± 5.35 2.13 ± 0.04 2.02 ± 0.05 19.95 ± 5.17 8.59 ± 0.43 6.01 ± 0.02
FreeMatch [18] 4.90 ± 0.12 4.88 ± 0.09 4.16 ± 0.06 39.52 ± 0.01 26.22 ± 0.08 21.81 ± 0.17 10.43 ± 0.82 8.23 ± 3.22 7.56 ± 0.25 28.50 ± 5.41 9.29 ± 1.24 5.81 ± 0.32
SoftMatch [5] 5.11 ± 0.14 4.96 ± 0.09 4.27 ± 0.05 37.60 ± 0.24 26.39 ± 0.38 21.86 ± 0.16 2.46 ± 0.24 2.15 ± 0.07 2.09 ± 0.06 22.23 ± 3.82 9.18 ± 0.68 5.79 ± 0.15
GBVSSL 6.15 ± 0.25 4.92 ± 0.05 3.98 ± 0.10 37.27 ± 0.28 23.25 ± 0.33 18.86 ± 0.24 5.21 ± 1.05 1.99 ± 0.31 1.89 ± 0.04 15.74 ± 3.90 7.37 ± 0.86 5.63 ± 0.35

Fully-Supervised 4.62 ± 0.05 19.30 ± 0.09 2.13 ± 0.02 None
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5.1.4. Data Augmentation

For the data augmentation strategy for all experiments, we follow CCSSL [1] and
employ one “weak” augmentation Augw and two “strong” augmentations Augs1 and
Augs2. For the “weak” augmentation Augw, we follow FixMatch’s standard cropping and
flipping methods. As for the “strong” augmentation methods Augs1 and Augs2, we adopt
the augmentation strategies from RandAugment [11] and MoCo [12] (random color jittering
and grayscale transformation) to ensure fairness in the comparison.

5.2. Performance on Common SSL Datasets

We compare GBVSSL with 17 state-of-the-art semi-supervised learning methods, and
the results are shown in Table 1. Overall, GBVSSL exhibits the best performance for
most settings across all datasets. Specifically, GBVSSL first demonstrates comparable
performance to other methods on CIFAR-10. Despite the performance increase being only
−1.25%/−0.07%/0.18% compared to the best SSL methods, GBVSSL achieves performance
improvements of 3.56%, 0.22%, and 0.48% over CCSSL, significantly enhancing performance
in the few-shot sample setting. For the relatively complex CIFAR-100 dataset, GBVSSL
achieves the best performance in settings with 400, 2500, and 10,000 labels, exhibiting
performance improvements of 1.54%, 0.85%, and 0.46% over CCSSL, respectively. GBVSSL
exhibits a substantial performance enhancement in settings with fewer labeled samples,
primarily attributed to the enhanced reliability of its pseudo-labels. For the imbalanced
dataset SVHN, it is worth noting that FlexMatch performs poorly. This is because it
registers too many incorrect pseudo-labels during the initial stages of training, which
misleads the subsequent learning process. Nonetheless, GBVSSL still performs well on
SVHN, demonstrating its ability to effectively utilize pseudo-labels, which helps alleviate
overfitting issues on small-scale and imbalanced datasets. Lastly, the STL-10 dataset poses
greater practical challenges due to the significant disparity in distribution between the
unlabeled and labeled data. GBVSSL ranks second with 40 labeled samples, but achieves
the best performance with 250 and 1000 labeled samples. Compared to CCSSL, GBVSSL
demonstrates strong adaptability to the unlabeled data distribution, with performance
gains of 1.81%, 1.06%, and 0.14%. In conclusion, the experimental results demonstrate that
GBVSSL has strong generalization capabilities in semi-supervised learning, particularly
suitable for handling imbalanced datasets prone to overfitting, such as SVHN and STL-10.

5.3. Results on Semi-iNat 2021 [42]

Additionally, we evaluate the performance of GBVSSL on the Semi-iNat 2021 dataset.
Semi-iNat 2021 is a highly complex real-world dataset, posing challenging obstacles for SSL,
such as imbalanced class distribution, domain mismatch between labeled and unlabeled
data, and the presence of out-of-distribution examples. It comprises 9721 labeled data,
313,248 unlabeled data, and 4050 validation data across 810 different categories. As a
realistic dataset benchmark, Semi-iNat 2021 can objectively reflect the performance of
various methods. The experiment follows the settings of CCSSL [1], resizes images to
224 × 224, employs a ResNet-50 backbone network, and is equipped with a projection head
consisting of two layers and outputting 64 dimensions. To ensure fairness in comparison,
we adopt the same parameter settings as CCSSL and HyperMatch [31], including τ = 0.6,
B = 64, µ = 7, λu = 1, λc = 2, and t = 0.07. For the specific parameters of GBVSSL,
we maintain φ = 3, α = 0.1, K = 128, and Yα = 0.9. It is worth emphasizing that we
follow CCSSL [1] and report the performance of GBVSSL under two experimental settings:
training from scratch and training from a pre-trained MoCo [12] model.

The results are shown in Table 2. In the setting of training from scratch, GBVSSL
achieves a Top-1 accuracy of 35.59%, surpassing the previous state-of-the-art method Hy-
perMatch, with a Top-1 performance improvement of +4.38% compared to the optimal
CCSSL setup (FixMatch + CCSSL). In the setting based on the MoCo pre-trained model,
GBVSSL outperforms the HyperMatch approach with a Top-1 accuracy of 44.52%, showcas-
ing an impressive improvement of +8.93% compared to the training-from-scratch setting.
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GBVSSL outperforms CCSSL(FixMatch) with a Top-1 accuracy improvement of +3.24%,
further highlighting its superiority in handling out-of-distribution data.

Table 2. Comparison of Top-1 and Top-5 accuracy for Semi-iNat 2021 dataset.

Method
Semi-iNat 2021

From Scratch MoCo Pretrain

Top1 Top5 Top1 Top5

Supervised 19.09 35.85 34.96 57.11

MixMatch [36] 16.89 30.83 - -

CoMatch [6] 20.94 38.96 38.94 61.85

FixMatch [2] 21.41 37.65 40.3 60.05

CCSSL(MixMatch) [1] 19.65 35.09 - -

CCSSL(CoMatch) [1] 24.12 43.23 39.85 63.68

CCSSL(FixMatch) [1] 31.21 52.25 41.28 64.3

HyperMatch [31] 33.47 - 41.57 -

GBVSSL 34.12 55.67 43.65 66.83

5.4. Qualitative Studies

We conduct qualitative analysis on GBVSSL and compare it with representative bench-
mark methods such as FixMatch, FlexMatch, and CCSSL to gain a deeper understanding of
GBVSSL’s distinctions and advantages relative to existing approaches.

5.4.1. Convergence Speed

Figure 3 illustrates the fluctuation in GBVSSL’s Top-1 accuracy on the CIFAR-100
and SVHN datasets throughout the training process, and compared to that of FixMatch,
FlexMatch, and CCSSL. In comparison to FixMatch and FlexMatch, we observe that CCSSL
and GBVSSL converge to higher performance levels at significantly faster rates. Compared
to CCSSL, GBVSSL further accelerates the convergence speed. Additionally, GBVSSL out-
performs CCSSL on CIFAR-100 with 2500 labels, while it performs comparably to FixMatch
on SVHN with 40 labels. This is mainly attributed to the enhanced accuracy and robustness
of pseudo-labels achieved through the utilization of aggregated predictions. Higher-quality
pseudo-labels can effectively guide the model’s training process and improve the learning
quality, thereby resulting in faster convergence speed and superior performance.

Figure 3. The Top-1 accuracy trends on CIFAR-100 with 2500 labels and SVHN with 40 labels
demonstrate that GBVSSL surpasses other baselines with fewer training epochs.

5.4.2. Mask Ratio, Data Utilization, and Pseudo-Label Accuracy

We compare the mask ratio, utilization rate, and pseudo-label accuracy of GBVSSL
with those of FixMatch, FlexMatch, and CCSSL on the CIFAR-100 dataset with 400 labels, as
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shown in Figure 4. It is worth emphasizing that the mask rate is defined as the proportion
of pseudo-labeled samples that do not participate in model training at epoch t due to
confidence masking, pseudo-boundary masking, or both. The utilization rate is defined
as the proportion of unlabeled data effectively utilized by the model in epoch t. Pseudo-
label accuracy is defined as the accuracy of pseudo-labels generated from unlabeled data
during training. Typically, effective semi-supervised learning models are expected to fully
leverage unlabeled data to enhance performance, demonstrating lower mask ratio and
higher data utilization. Indeed, Figure 4a illustrates that GBVSSL significantly reduces
the masked data ratio, while Figure 4b demonstrates that the data utilization of GBVSSL
surpasses that of FixMatch, FlexMatch, and CCSSL. Moreover, we observe that GBVSSL
demonstrates significantly higher pseudo-label accuracy on unlabeled data compared
to FixMatch, FlexMatch, and CCSSL, as shown in Figure 4c. Experiments demonstrate
that GBVSSL not only guarantees lower mask ratio and higher data utilization, but also
maintains higher pseudo-label accuracy, effectively showcasing the superiority of our
neighbor-enhanced pseudo-labeling approach.

Figure 4. The (a) mask ratio, (b) utilization ratio, (c) pseudo-label accuracy of unlabeled data on
CIFAR-100 dataset with 400 labels.

5.4.3. Confusion Matrix

The rows and columns of the confusion matrix represent the true and predicted labels,
respectively, illustrating the model’s classification of the samples. As shown in Figure 5, we
compare the confusion matrices of FixMatch, CCSSL, and GBVSSL on the STL-10 dataset
with 40 labels. Among them, FixMatch overfits to minority classes and fails to recognize
the 4th, 6th, and 8th classes. Compared to FixMatch, both CCSSL and GBVSSL effectively
reduce confusion among similar classes and correctly identify the 4th class. GBVSSL
performs comparably to CCSSL overall, with only a slight improvement in the recognition
accuracy of the 6th class. The experiment intuitively demonstrates that GBVSSL possesses
strong class discrimination capabilities, thereby enhancing the accuracy of pseudo-labels
and improving classification performance.
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Figure 5. Confusion matrices for FixMatch, CCSSL, and GBVSSL on STL-10 dataset with 40 labels.

5.4.4. T-SNE Visualization

The label-enhanced contrastive module is essentially a graph contrastive module based
on an adjacency matrix. It facilitates the model learn discriminative feature distributions,
where the features of samples within the same class are encouraged to be as close as possible,
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while the features of samples from different classes are encouraged to be as far apart as
possible. To validate this claim, we present t-SNE visualizations of the features extracted
by GBVSSL on the STL-10 dataset with 40 labels, and compare them with FixMatch and
CCSSL, as shown in Figure 6. Certainly, the intra-class features of GBVSSL are tightly
clustered together, while the inter-class boundaries are clearer and easier to separate.
Compared to FixMatch and CCSSL, GBVSSL achieves a superior clustering distribution,
thereby yielding more precise predictions and pseudo-labels, consequently enhancing the
model’s generalization performance. Furthermore, the strong cohesion of features within
each cluster in GBVSSL suggests reduced bias and intra-class variance in classification
predictions, thus validating to some extent the correctness and effectiveness of the bias and
variance minimization scheme proposed in this study.

Figure 6. T-SNEvisualization of features for FixMatch, CCSSL, and GBVSSL on the STL-10 dataset.

5.5. Ablation Experiments
5.5.1. Contrastive & Class-Aware & Re-Weighting & Combination of Label and
Pseudo-Label & Label Propagation

We investigate each technique for label-enhanced contrastive loss, with results de-
picted in Table 3. The label-enhanced contrastive loss inherits three foundational techniques:
self-supervised contrastive loss, class-aware contrastive loss, and reweighting from Fix-
Match. It also introduces a hybrid contrastive strategy for labeled and unlabeled data,
along with a refinement technique that enhances pseudo-labels using label propagation.
For convenience, these five techniques are respectively referred to as ss-cl, ca-cl, re-weight,
label-unlabel, and label prop. The experimental results demonstrate that all technical
components are useful. It is worth noting that using ss-cl alone leads to a performance
degradation on the intra-distribution dataset CIFAR-100. CCSSL successfully integrates
the techniques of ca-cl and re-weight, effectively balancing the advantages of contrast and
clustering, thereby enhancing the performance on these two datasets. GBVSSL effectively
enhances performance by applying the label–unlabel technique to ca-cl, and then slightly
improves performance by combining the re-weighting strategy. In the end, GBVSSL success-
fully improves the accuracy of pseudo-labels by leveraging label propagation (label prop)
to obtain aggregated predictions of true labels or reliable pseudo-labels from high-similarity
neighbors, leading to the best results.

Table 3. Performance evaluation of different combinations of technical components in label-enhanced
contrastive learning.

ss-cl ca-cl Re-Weight Label-Unlabel Label Prop Semi-iNat 2021 CIFAR-100@2500

21.58 72.69
✓ 27.86 72.45
✓ ✓ 29.66 72.82

✓ 30.62 75.71
✓ ✓ 31.49 76.09
✓ ✓ 32.09 76.32
✓ ✓ ✓ 32.91 76.57
✓ ✓ ✓ ✓ 34.14 76.93
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5.5.2. Ratio µ of Unlabeled Data

Table 4 presents the experimental results of GBVSSL on the CIFAR-100 dataset using
various values of µ. Since µ directly determines the ratio of unlabeled data to labeled data
within a batch, it indirectly influences the size and reliability of the adjacency matrix A
in label-enhanced contrastive learning. Experimental observations indicate that GBVSSL
achieves optimal performance in settings with a small number of unlabeled samples when
label-enhanced contrastive learning fully trusts and utilizes both labels and pseudo-labels
to construct the adjacency matrix. However, when we increase the impact of the confidence
threshold by adjusting Yα to 0.4 (samples with Yα ≤ 0.4 only undergo self-supervised
contrastive learning), GBVSSL achieves better results at a higher ratio µ (µ = 7). Our
analysis suggests that label-enhanced contrastive learning relies on reliable neighborhood
relationships (represented by an adjacency matrix). When more unlabeled data are used, the
size of the adjacency matrix increases, effectively enhancing the smoothness and robustness
of distribution prediction. However, this also introduces additional challenges in dealing
with noise. Therefore, GBVSSL achieves optimal performance at a larger ratio µ by filtering
noise through the threshold condition Yα.

Table 4. Experimenting with various ratios (µ ) of unlabeled data using different confidence threshold
(Yalpha) on the CIFAR-100 dataset with 10,000 labels. When fully trusting the pseudo-labels with
Yalpha = 0, smaller ratios ensure better performance due to noise in unlabeled samples. After setting
Yalpha = 0.4 to filter out noise, larger ratio yields better performance.

Ratio CIFAR-100@10000
(µ) Yα = 0 Yα = 0.4

2 77.25 77.63
4 77.96 79.32
5 79.46 79.84
6 76.86 79.58
7 77.43 81.15

5.5.3. Memory Bank Setup

The memory bank setup directly determines the selection range and quality of neigh-
boring samples, thereby indirectly impacting the reliability of aggregated predictions and
their pseudo-labels. Here, we examine the performance of GBVSSL across three memory
bank settings: pseudo-label memory bank, label memory bank, and a combination of
both. The experimental results are elaborated in Table 5. We observe that Semi-iNat 2021
demonstrates superior performance on the pseudo-label memory bank compared to the
labeled memory bank. We determine that unlabeled data are more beneficial for pseudo-
label estimation in the out-of-distribution dataset Semi-iNat 2021. For the in-distribution
dataset CIFAR-100, GBVSSL outperforms the labeled memory bank when utilizing the
pseudo-labeled memory bank. This indicates that ground-truth labels are more effective in
enhancing the pseudo-labels of the in-distribution dataset. In conclusion, the combination
of both pseudo-labeled and labeled memory banks is more beneficial for GBVSSL to achieve
optimal performance on both datasets compared to using either memory bank alone.

Table 5. Effect of different memory bank settings on performance at K = 128.

Bank Settings Unlabeled Labeled Unlabeled & Labeled

Semi-iNat 2021 33.65 33.08 34.12
CIFAR-100@2500 76.32 76.69 76.93

5.5.4. Top-K Selections

To further enhance the quality of neighbors (reduce noise) and lessen the computa-
tional burden of label propagation, GBVSSL selects only the top K reliable neighbors for
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each pseudo-labeled sample. We test the impact of different values of K on the performance
of GBVSSL. The evidence presented in Table 6 indicates that GBVSSL exhibits robust per-
formance across varying values of K, demonstrating its insensitivity to the parameter K. A
moderate value of K (recommended 128) is preferable, as it exhibits a difference of no more
than 0.57 between its best and worst performance. Notably, Table 6 shows the model’s
accuracy, unlike the error rate presented in Table 1. The relationship between these metrics
is: Error Rate = 1 − Accuracy.

Table 6. Effect of the number of Top-K neighbors. (We use both labeled and unlabeled memory banks).

K 8 16 32 64 128 256

Semi-iNat 2021 33.57 33.85 34.03 34.14 34.12 33.94
CIFAR-100@2500 76.66 76.54 76.86 76.82 76.93 76.75

5.5.5. Label Propagation Iterations φ

We evaluate the impact of label propagation iterations φ on the performance of GB-
VSSL. The results in Table 7 show that GBVSSL achieves better performance with label
propagation (φ > 0) compared to without label propagation (φ = 0). Specifically, for the
out-of-distribution dataset Semi-iNat 2021, label propagation contributes to a performance
gain of +1.22% for the GBVSSL model compared to not using label propagation. Even
for the in-distribution dataset CIFAR-100, label propagation still provides a performance
advantage of +0.63% compared to its absence.

Table 7. Effect of the number of label propagation iterations φ in Equation (12).

ϕ Yϕ=0 Yϕ=1 Yϕ=2 Yϕ=3

Semi-iNat 2021 32.92 33.57 34.14 33.85
CIFAR-100@2500 76.30 76.62 76.70 76.93

6. Limitations

This study is constrained by its inability to investigate stronger augmentation tech-
niques and more advanced pipelines for semi-supervised learning. These limitations
primarily arise from the lack of sufficient experimental resources required to determine the
optimal model configuration.

7. Conclusions

We introduce a generalized bias-variance decomposition framework for delving into
the theoretical mechanisms of mainstream semi-supervised learning techniques, such as
pseudo-labeling and contrastive learning. The framework inspires us to propose neighbor-
enhanced pseudo-labeling and label-enhanced contrastive learning, aiming to address
the shortcomings of related techniques. Finally, we combine these two techniques to
develop a new semi-supervised learning method, GBVSSL, which effectively enhances the
pseudo-labels and feature representations. Extensive experiments validate the state-of-the-
art performance of GBVSSL on multiple SSL benchmarks, as well as the effectiveness of
each module. This work not only contributes to the understanding of semi-supervised
learning but also provides promising directions for incorporating generalized bias-variance
decomposition into future research.
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