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Abstract: In recent years, frequent chemical production safety incidents in China have been primarily
attributed to dangerous behaviors by workers. Current monitoring methods predominantly rely on
manual supervision, which is not only inefficient but also prone to errors in complex environments
and with varying target scales, leading to missed or incorrect detections. To address this issue, we pro-
pose a deep learning-based object detection model, YOLO-GP. First, we utilize a grouped pointwise
convolutional (GPConv) module of symmetric structure to facilitate information exchange and feature
fusion in the channel dimension, thereby extracting more accurate feature representations. Building
upon the YOLOv8n model, we integrate the symmetric structure convolutional GPConv module and
design the dual-branch aggregation module (DAM) and Efficient Spatial Pyramid Pooling (ESPP)
module to enhance the richness of gradient flow information and the capture of multi-scale features,
respectively. Finally, we develop a channel feature enhancement network (CFE-Net) to strengthen
inter-channel interactions, improving the model’s performance in complex scenarios. Experimental
results demonstrate that YOLO-GP achieves a 1.56% and 11.46% improvement in the mAP@.5:.95
metric on a custom dangerous behavior dataset and a public Construction Site Safety Image Dataset,
respectively, compared to the baseline model. This highlights its superiority in dangerous behavior
object detection tasks. Furthermore, the enhancement in model performance provides an effective
solution for improving accuracy and robustness, promising significant practical applications.

Keywords: dangerous behavior detection; multi-scale features; gradient information enhancement;
complex scene detection

1. Introduction

In recent years, with the rapid development of the economy, chemical enterprises
have become an integral part of modern society. However, along with the rapid growth
of chemical enterprises, significant safety hazards have been brought to people’s social
lives [1]. These enterprises produce a wide range of chemicals used in daily life. How-
ever, the production process of these chemicals often involves high temperatures, high
pressures, and flammable or explosive materials, which could lead to serious casualties
and environmental pollution in the event of accidents. Ensuring the safety of chemical
enterprises and preventing accidents is crucial. In chemical production, various dangerous
behaviors such as failure to wear personal protective equipment, violation of regulations,
and non-compliance with prescribed procedures are often among the main causes of ac-
cidents. Therefore, the accurate monitoring and identification of dangerous behaviors in
chemical enterprises have become an urgent need. By accurately identifying and moni-
toring dangerous behaviors of chemical workers during the production process, timely
warnings can be issued, and measures can be taken to effectively reduce the probability of
accidents, ensuring the safety of personnel and the integrity of production facilities.
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The monitoring of dangerous behaviors is of great significance in the safety domain.
For example, behaviors such as operating without wearing helmets, smoking, or using
phones during operations by workers may pose serious safety risks. These behaviors not
only endanger personal safety but may also affect the safety and stability of the surrounding
personnel and work environments.

However, traditional methods of monitoring dangerous behaviors often rely on man-
ual inspection, which is inefficient, costly, and subjective. Given this issue, technologies
in computer vision and deep learning offer new opportunities to address this challenge.
In recent years, significant progress has been made in target detection technology, par-
ticularly with the application of deep learning models. Both two-stage target detection
algorithms like Region-based Convolutional Neural Network (R-CNN), Fast Region-based
Convolutional Neural Network (Fast-RCNN), and Faster Region-based Convolutional Neu-
ral Network (Faster-RCNN) [2–4], and one-stage target detection algorithms such as You
Only Look Once (YOLO) and Single-Shot Multi-Box Detector (SSD) [5,6] have been widely
applied in dangerous behavior detection. Many studies have optimized both two-stage and
one-stage object detection models. In two-stage approaches, Mask R-CNN, by introducing
segmentation branches into the detection framework, not only detects objects but also
performs instance segmentation, significantly improving detection accuracy [7]. Cascade
R-CNN introduces multi-stage regression and classification modules to progressively refine
detection results, particularly excelling in handling high-quality detection frameworks [8].
Although two-stage object detection methods have advantages in accuracy, they exhibit
lower detection efficiency compared to one-stage methods. Therefore, one-stage object
detection methods are more suitable for domains requiring timely responses, such as
hazardous behavior detection. However, the accuracy of one-stage methods is slightly
lower. Consequently, many current studies are focused on optimizing one-stage object
detection methods to enhance their accuracy. For instance, by introducing multi-scale
feature fusion networks [9,10] and attention mechanisms [11–14] into the YOLO model,
detection accuracy and speed can be significantly improved. Additionally, EfficientDet [15],
through optimized network architectures and scaling strategies, achieves higher accuracy
while maintaining high efficiency. These advancements not only enhance the detection
capabilities of the models but also strengthen their performance in handling complex
backgrounds and multi-scale targets. Nevertheless, one-stage detection models still tend to
suffer from false positives and misses, especially when facing scenes with high complexity
and multiple objects of different scales. These issues are particularly prominent in models
not specifically designed for hazardous behavior detection tasks.

To address these challenges, this study adopts the current state-of-the-art, highly
accurate single-stage object detection algorithm YOLOv8n as the baseline model for further
improvements. YOLOv8n, a specific variant of YOLOv8, is characterized by its lightweight
nature, making it suitable for resource-constrained applications. This research focuses on
detecting whether workers wear safety helmets, use mobile phones, and smoke. The choice
of YOLOv8n aims to enhance detection accuracy and provide a more reliable solution
for real-world safety surveillance applications. Consequently, this study proposes the
YOLO-GP algorithm, an improved version of YOLOv8n, and successfully applies it to
dangerous behavior detection. The network architecture proposed in this study makes the
following four contributions:

• In this study, an innovative symmetric structure of grouped pointwise convolutional
(GPConv) is designed, which enhances the model’s feature representation and ex-
pressiveness by integrating feature fusion in the channel dimension and combining
various feature extraction methods.

• A dual-branch aggregation module (DAM) is designed to replace the C2f module of
the original model to obtain richer gradient flow information, to solve the problem of
the baseline model’s poor accuracy in locating dangerous behavioral targets and its
poor ability to discriminate between small targets such as smoking and phone usage.
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• By fusing the innovative efficient spatial pyramid pooling (ESPP) module to the neck
of the model, we can effectively improve the recognition ability of dangerous behaviors
through multi-scale feature capture and feature fusion so that the model can accurately
understand and differentiate dangerous behavior targets involving different scales.

• To solve the problem of insufficient channel correlation, which leads to the poor per-
formance of the model in detecting dangerous behaviors in complex scenes, a channel
feature enhancement network (CFE-Net) is designed to enable the model to better un-
derstand the interactions between different channels, to achieve the purpose of improv-
ing the accuracy of the model in detecting dangerous behaviors in complex scenes.

2. Related Work

In recent years, the field of dangerous behavior detection has been devoted to explor-
ing various technological approaches to comprehensively enhance workplace safety. These
approaches encompass a range of methods, including traditional algorithms and deep
learning algorithms. The core focus of research typically revolves around utilizing surveil-
lance data to identify workers’ dangerous behaviors, such as the absence of safety helmets,
smoking, and mobile phone usage during work in chemical enterprises. However, existing
studies tend to lean towards specific types of dangerous behaviors, posing challenges in
addressing the diverse requirements of actual workplace scenarios.

To gain a more comprehensive understanding of the application of dangerous behavior
detection technology in different work settings, this study focuses on summarizing the
latest research findings in the field of safety helmet wearing, smoking, and mobile phone
usage detection both domestically and internationally. The aim is to elucidate the overall
development trends in this field and provide valuable insights into the comprehensive
application of dangerous behavior detection technology in practical workplace settings
through an in-depth exploration of various technological approaches. This endeavor
not only holds the potential to improve the overall safety of workplaces but also aids in
effectively reducing the potential risks faced by chemical enterprises.

2.1. Traditional Methods for Dangerous Behavior Detection Algorithm

In the field of dangerous behavior detection, traditional methods primarily focus
on utilizing computer vision and image processing techniques, as well as conventional
feature engineering methods. For instance, Abu H. et al. proposed a detection method
for automatically detecting helmets to ensure construction safety. They first combined the
frequency domain information of images with Histograms of Oriented Gradients (HOGs)
for detecting construction workers and then applied a combination of color-based and
Circular Hough Transform (CHT) feature extraction techniques to detect the usage of
helmets by construction workers [16]. Seshadri et al. introduced a computer vision-based
driver mobile phone usage detection system. By employing facial landmark tracking
algorithms, the system can automatically identify whether the driver brings the phone
close to the ear. The research validated the system using challenging Strategic Highway
Research Program (SHRP2) facial view videos, demonstrating its effectiveness under
natural driving conditions. By combining direct methods and various features, the system
achieved satisfactory performance on facial pose verification data, providing new insights
into understanding driver behavior [17]. Wang et al. proposed a method for phone behavior
detection using semi-supervised Support Vector Machine (SVM) models. Although the
method involves a large iteration amount during the detection process, leading to slow data
processing speed and real-time issues, it offers a unique approach to determining phone
usage behavior [18]. Pan et al. proposed a method combining Gaussian Mixture Models
(GMMs) and frame differencing for extracting features of regions of interest and analyzing
smoking behavior through RGB color features. However, this method is influenced by
factors such as movement speed and weather in smoking behavior detection and suffers
from low real-time performance and accuracy issues [19]. Ai Bo utilized a combination
of Gaussian Mixture Models with background subtraction to extract foreground object



Symmetry 2024, 16, 730 4 of 24

information, then performed HOG feature extraction on regions of interest, and determined
the presence of smoking behavior in the current frame through a classifier. However, this
traditional method is prone to be affected by factors such as weather and pedestrian speed
in smoking behavior detection, limiting its accuracy and real-time performance [20].

In summary, traditional methods are often constrained by manually designed features
and rules, which may limit their performance in addressing complex scenes and diverse
dangerous behaviors. However, with the rise in deep learning, methods based on deep
learning have gradually achieved significant breakthroughs in the field of dangerous
behavior detection.

2.2. Dangerous Behavior Detection Based on Deep Learning

Currently, both domestically and internationally, there is active exploration of the ap-
plication of deep learning technology in safety behavior detection in the chemical industry,
especially in detecting dangerous behaviors during chemical workers’ operations. Deep
learning technology has been widely proven to have tremendous potential in reducing
workplace accident risks and improving work efficiency. In the field of dangerous behavior
detection, object detection techniques based on deep learning play a crucial role. Object
detection methods are mainly divided into single-stage and two-stage approaches, each
with its unique characteristics and advantages when it comes to performing dangerous
behavior detection tasks [21].

First, the two-stage target detection method accomplishes the target detection task
through two stages. It first generates a series of candidate regions through a region
proposal network and then performs target detection on these regions. The two-stage target
detection algorithm usually has an advantage in accuracy and is suitable for dangerous
behavior detection scenarios that require high detection accuracy. In the field of dangerous
behavior detection, many domestic and foreign researchers are committed to using two-
stage target detection algorithms to achieve the purpose of detecting whether there are
potential dangerous behaviors in the work of workers through the in-depth analysis of
picture data.

For example, Dey et al. proposed a context-driven detection method for distracted
driving using in-vehicle cameras. This method employs a novel computer vision tech-
nique to detect distracted driving by identifying and analyzing objects like hands and
smartphones inside the vehicle. By its unique context-driven approach, it provides real-
time feedback regarding the specific reasons for distraction, thereby enhancing driving
safety [22]. Senyurek et al. introduced a deep learning algorithm utilizing a convolutional
neural network (CNN) and long short-term memory network (LSTM) architecture to de-
tect smoking behavior from respiratory signals. Compared to traditional feature-based
classification frameworks, the advantage of the CNN-LSTM model lies in learning appro-
priate features from respiratory inductive plethysmography (RIP) sensor signals through
the CNN layer, providing superior performance for smoking detection [23]. Han et al.
proposed a method for fast smoking behavior detection. Firstly, the face area is taken as
the scope of smoking detection, effectively reducing the detection area of smoking targets
by utilizing the characteristic that human body targets are relatively large compared to
the face area. Then, the Faster R-CNN model is used to determine whether smoking
behavior exists [24]. Wang et al. proposed a method for identifying unsafe behaviors of
construction workers based on text mining and image recognition technology, divided into
three stages. Firstly, a deep learning algorithm is used to identify the safety equipment of
construction workers. Secondly, the classification and detection of unsafe behaviors are
completed through Faster R-CNN. Finally, in the third stage, the identification and tracking
of personnel in dangerous areas are conducted, achieving comprehensive recognition of
unsafe behaviors of construction workers on construction sites [25]. Chen et al. presented a
real-time automatic detection system for safety helmet-wearing based on the Faster R-CNN
algorithm. The improved algorithm introduces Retinex image enhancement technology,
effectively overcoming interference from factors such as light and distance. This technology
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improves the quality of images in complex outdoor scenes of substations, enabling timely
and effective detection of individuals not wearing safety helmets, and providing reliable
safety monitoring for substation construction [26].

Second, single-stage target detection methods directly predict the location and category
of targets in the input image without explicitly generating candidate regions. Typical
single-stage target detection algorithms include YOLO, SSD, etc. These algorithms are
characterized by high real-time performance, simplicity, and high efficiency, which are
especially suitable for scenarios with high real-time requirements in dangerous behavior
detection. In the field of dangerous behavior detection, many scholars at home and abroad
also widely apply single-stage target detection methods to achieve timely and efficient
detection of dangerous behavior.

For instance, Aboah et al. proposed a real-time multi-class helmet violation detection
method using few-shot data sampling techniques and YOLOv8. They extracted frames
with partially different backgrounds from a large number of video frames and applied data
augmentation operations to these extracted frames using test-time augmentation strategies.
Finally, they trained and tested the YOLOv8 model, achieving real-time detection goals [27].
Fan et al. introduced a helmet-wearing detection method based on the EfficientDet algo-
rithm. They first optimized the initial clustering centers using the K-Means++ clustering
algorithm, then introduced the SeparableConv2D network. They combined the Simple and
Efficient Bi-directional Feature Pyramid Network (BiFPN) proposed in the EfficientDet algo-
rithm to extract image feature maps. They utilized the Channel Correlation Loss (CC-Loss)
function as the classification loss function to constrain specific relationships between classes
and channels, maintaining separability within and between classes, thereby improving
the accuracy of the model detection [28]. Yang et al. proposed a deep learning-based SSD
algorithm for detecting illegal driving behaviors. The detection of driver-driving behaviors
mainly includes using mobile phones, smoking, and not wearing seat belts. Utilizing
the SSD algorithm can effectively address the issue of whether the driver is violating
driving regulations during the driving process, significantly reducing the occurrence of
traffic accidents [29]. Zhao et al. presented a smoking behavior detection method for
drivers based on the Feature Pyramid Network (FPN). By combining the FPN and dilated
convolution technology, they detected small objects in driver images and identified their
smoking behavior [30]. She et al. proposed an improved YOLOx-based algorithm for small
target smoking detection. By adding an attention mechanism module to focus on global
information in the feature extraction network and concentrating attention within the target
area through scale addition, they increased the use of deep networks. They also optimized
the loss function by replacing it with the Generalized Intersection over Union (GIoU) loss
function, addressing the shortcomings of IoU [31].

Although deep learning has made some progress in dangerous behavior detection,
challenges remain, such as insufficient detection effectiveness and relatively low accuracy.
These issues also exist in the job safety and security scenes addressed in this study, espe-
cially in situations involving multiple target occlusions and environmental interference,
rendering existing methods impractical. Compared to existing research, this study pays
full attention to the characteristics of job safety and security scenes, addressing the issue
of low detection accuracy of multi-scale targets in complex scenes in dangerous behavior
target detection tasks.

3. Material and Methods
3.1. YOLO-GP Algorithm Overview

In 2023, Ultralytics released the YOLOv8 algorithm, which significantly improved de-
tection accuracy and real-time performance while reducing network parameters compared
to previous versions [32]. When facing practical scenarios such as chemical plant produc-
tion workshops, this study chose the lightweight version of YOLOv8n as the base network
and made improvements to it. It is noteworthy that YOLOv8 retains the Cross-Stage Partial
Network (CSP) concept, Path Aggregation Network (PANet), and Spatial Pyramid Pooling
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Fast (SPPF) module from YOLOv5 while integrating many excellent techniques from the
real-time object detection field.

The network architecture depicted in Figure 1 is the enhanced network based on the
baseline model: YOLO-GP. The YOLO-GP detector comprises three main components:
Backbone, Neck, and Head. The Backbone serves as the foundational component of the
model, employing a lightweight structure to enhance efficiency when handling large-
scale data. Additionally, it incorporates the DAM to enrich gradient flow information,
addressing the challenges of target localization and small target identification faced by
the original model. Furthermore, it employs the innovative ESPP module to improve
the recognition capability of dangerous behaviors. The Neck component further refines
the model by enhancing channel correlation modeling through the CFE-Net network,
effectively improving dangerous behavior detection performance in complex scenarios.
Finally, the Head section is responsible for generating detection results, including object
categories and positional information.

Figure 1. YOLO-GP algorithmic framework. The original image is input from the Input part, while
it is detected by the Dangerous Behavior Detection Model, and finally the targets under Big Target,
Small Target and Complex Background are output from the Output part.

3.2. Improvement Strategies
3.2.1. Grouped Pointwise Convolutional

The GPConv module, primarily composed of group convolution [33] and pointwise
convolution [34], is a convolutional module with a symmetric structure. Specifically, group
convolution is a variant of the convolution operation that divides input channels into
several groups, with each group’s channels convolving only with channels from the same
group. This partitioning of convolution kernel parameters into multiple groups allows
each group to convolve only with a subset of input channels. More precisely, if the number
of input channels is C and they are divided into G groups, then each group contains C/G
channels. This method of combining results from different groups according to certain
rules effectively reduces the model’s parameters and computational complexity while also
enhancing the network’s representational capacity. By grouping input channels, channels
within each group only convolve with other channels in the same group, facilitating
interaction between different channels and aiding in the extraction of richer and more
diverse features.

Pointwise convolution is a convolution operation with a kernel size of 1 × 1, where
it considers only the value of a single pixel at each position of the input. It is primarily
used for linear combinations across the channel dimension. Although it does not have
a spatial receptive field, it enhances the network’s representational capacity and perfor-
mance by performing linear transformations and feature fusion along the channel dimen-
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sion. A comparison between group convolution and pointwise convolution is illustrated
in Figure 2.

Figure 2. Comparison between group convolution and pointwise convolution. (a) Schematic diagram
of group convolution: shows the basic principle and the way of action of group convolution operation.
(b) Schematic diagram of pointwise convolution: shows the basic principle and the way of action of
the pointwise convolution operation.

By leveraging the combination of group convolution and pointwise convolution,
the GPConv module can fully exploit different feature extraction approaches, thus enhanc-
ing the diversity and richness of features. Moreover, by integrating the advantages of group
convolution and pointwise convolution, the GPConv module can better utilize features at
different levels. Through feature fusion in the channel dimension and combining different
feature extraction methods, the GPConv module possesses richer feature representation
and higher expressive power.

Furthermore, Leaky-ReLU is introduced as the activation function, combined with
batch normalization for normalization, to accelerate training convergence and improve
model stability. The structure diagram of the GPConv module is illustrated in Figure 3.

Figure 3. Diagram illustrating the structure of the GPConv module. ReLU denotes Leaky-ReLU
activation function, BN denotes batch normalization.

The GPConv module processes the input features through two branches separately.
Specifically, for the input X ∈ RN×Cin×Hin×Win , N is the batch size, Cin is the number of
input channels, and Hin and Win are the height and width of the input. After the group
convolution and pointwise convolution operations, the convolution operation between the
input tensor X and the group convolution kernel tensor Wgc and the pointwise convolution
kernel tensor Wpwc is performed:

Zgc = ∑
g
i=1

(
Xi ∗ Wgci

)
, (1)

Zpwc = X ∗ Wpwc, (2)

where Wgci represents the weight tensor of the group convolution kernel, Xi represents
the i-th group of the input tensor, and Wpwc represents the weight tensor of the pointwise
convolution kernel. Then, the two tensors Zgc and Zpwc are elementwise added to obtain
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the sum feature map tensor Zsum. Subsequently, the resulting tensor is passed through an
activation function and normalization to obtain the final output Y. The specific formulas
are as follows:

Zsum = Zgc + Zpwc, (3)

ALR = LeakyRelu(Zsum, α), (4)

Y(ALR) = γ ∗ ALR − µ√
δ2 + ε

+ β, (5)

where, α represents the negative slope of the activation function, γ and β are learnable
parameters, µ and δ2 represent the mean and variance of the feature map Z, and ε prevents
division by zero error.

3.2.2. Dual-Branch Aggregation Module

The YOLOv8 algorithm model retains the Cross-Stage Partial concept introduced in
YOLOv5 [35]. It splits the feature map of the forward propagation into two parts, divides
them along the channel dimension, and introduces cross-stage connections between the
two divided parts, enabling the interaction and partial fusion of forward and backward
feature maps. This structure maintains detection accuracy while accelerating convergence
speed and reducing computational complexity.

Although the CSP structure introduces cross-stage connections to facilitate interaction
between forward and backward feature maps, the transmission of connected information
may be limited. Especially when spanning multiple stages, the gradient propagation may
be hindered, resulting in insufficient gradient flow information, which affects the accurate
localization of targets, especially smaller targets (such as smoking and phone usage) in the
dangerous behavior dataset. At the same time, the design of the CSP structure pursues
simplicity and effectiveness but may sacrifice certain information processing capabilities.

To solve the above problems, we propose a DAM module. This module combines the
advantages of feature segmentation and cross-stage connection in the CSP structure and
realizes more comprehensive feature extraction and information interaction by adopting the
method of dual-branch aggregation. At the same time, the structural features of GPConv
are utilized to provide the module with richer feature characterization capability and higher
expressive power. The structure of DAM is shown in Figure 4.

Figure 4. Schematic diagram of DAM structure.
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The DAM consists of GPConv and multiple Bottleneck modules, with each Bottleneck
module being composed of two GPConv modules in series. The overall structure of DAM
involves processing the input through a GPConv module once, and then splitting the
output features into two parts. One part undergoes a direct cross-stage connection, while
the other part is processed through multiple repeated Bottleneck modules. This stacking
approach enables the network to become deeper and extract richer feature representations,
thus making the network more effective in handling complex tasks.

Finally, the output features from both parts are concatenated and further processed
through a GPConv module, thereby enhancing the model’s representational power. This
design fully leverages the advantages of the GPConv module and Bottleneck module to
better extract feature information, allowing the model to more accurately locate dangerous
behavior targets and improve its ability to locate small targets such as smoking or phone
usage. The design of the DAM module enables the model to obtain richer gradient flow
information, effectively addressing the issue of the poor localization accuracy of dangerous
behavior targets in the baseline model.

3.2.3. Efficient Spatial Pyramid Pooling

The traditional Spatial Pyramid Pooling (SPP) structure is a pooling method designed
to address the issue of varying input sizes. In conventional convolutional neural networks,
fully connected layers typically require inputs of fixed sizes, which is inconvenient for
handling images of different sizes. The SPP structure introduces multi-scale pooling
operations, allowing the network to accept images of any size and generate fixed-length
feature vectors [36]. The design of SPPF aims to improve the efficiency and speed of spatial
pyramid pooling, thereby accelerating the inference process of object detection models. This
enhanced spatial pyramid pooling technique helps improve the detection performance of
models on objects of different scales while maintaining accuracy and speeding up inference.

Although the SPPF structure has achieved good results in speeding up inference,
it may have limitations when dealing with images containing rich spatial information.
Particularly when handling objects with multiscale and complex structures, the SPPF
structure may not fully utilize both local and global information of features, resulting in
less rich and accurate feature representations.

To overcome this limitation, we propose an ESPP module to further optimize the
feature extraction process. Compared to the traditional SPP structure, the ESPP module
combines spatial pyramid pooling with group pointwise convolution modules. It conducts
local feature extraction on the feature maps at different scales and performs group pointwise
convolution operations in the channel dimension, thereby obtaining more representative
feature representations. The structure diagram of the ESPP module is shown in Figure 5.

In the YOLO-GP network model, the features extracted from the Backbone part are
fused through the ESPP module to integrate features from different levels. Firstly, the input
data undergo feature extraction and transformation through 1 × 1 and 3 × 3 convolutional
layers, followed by a GPConv module. This module internally includes group convolution,
pointwise convolution, and batch normalization, effectively enhancing the feature represen-
tation capability. Subsequently, the extracted features are fed into multiple sizes (5 × 5, 9 × 9,
and 13 × 13) of max-pooling layers to capture diversified feature information at different
scales. Then, a series of convolution operations further process and fuse these features to
enhance their representation capability. Simultaneously, another input branch undergoes
feature processing through the GPConv module. Finally, the features extracted from these
two branches are merged and comprehensively processed through the final convolutional
layer to generate the ultimate output for object detection. This network structure has the
capability of multi-scale feature capture and feature fusion. By employing multi-scale
max-pooling layers, feature fusion, and multi-path feature information processing, this
module helps extract multi-scale semantic information, enhancing the model’s perception
of objects at different scales. Particularly in cases where the size of objects varies greatly or
local information is highly important for determining object significance, the ESPP module
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can provide richer feature representations, thus enhancing the detection performance of
multi-scale objects.

Figure 5. ESPP module structure diagram.

In summary, the ESPP module combines the advantages of spatial pyramid pooling
and group pointwise convolution, enabling better adaptation to features of different scales
and complexities, thereby improving the model’s detection effectiveness of target objects.
Its capabilities in multi-scale feature capture and feature fusion are expected to yield good
results in practical applications.

3.2.4. Channel Feature Enhancement Network

In the task of detecting dangerous behaviors, a single frame image may contain
multiple different dangerous behaviors simultaneously. This situation can lead to occlusion,
resulting in missed detections and false alarms. To address this issue, our study integrates
the CFE-Net into the neck of the baseline model to enhance the model’s focus on the
importance of channels and thus improve its performance.

The CFE-Net is an innovative convolutional neural network structure designed to
enhance object detection performance and improve the model’s perception of key fea-
tures. The core of the CFE-Net lies in the fusion of GPConv with squeeze-and-excitation
operations. The GPConv module emphasizes the modeling of branch–channel relation-
ships through dual-branch convolution operations, allowing the network to capture image
structure information more finely. Additionally, to further enhance the model’s focus on
crucial information, we introduce squeeze-and-excitation operations to adaptively adjust
the weights of each channel [37]. Through global average pooling and a series of fully
connected layers, dynamic attention weights are generated for each channel, enabling the
network to focus more on the most informative channels in the image. Figure 6 shows the
schematic diagram of CFE-Net.

Specifically, for a given input tensor X ∈ RH×W×C, the convolution results of group
convolution and pointwise convolution are separately processed by activation functions
to obtain the activation tensors Agc

′ = σ(Zgc
′) and Awpc

′ = σ(Zwpc
′) for this part. Then,

the two tensors are summed and normalized to obtain the output Yc
′ for this part. Subse-

quently, a squeeze operation is performed to average pool the feature map, resulting in a
1 ∗ 1 ∗ C vector, denoted as:
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Zc = Γsq(Yc
′) =

1
H × W

H

∑
i=1

W

∑
j=1

Yc
′(i, j) (6)

where Zgc
′ and Zwpc

′ represent the tensor representations of the group convolution branch
and pointwise convolution branch, respectively, Agc

′ and Awpc
′ denote the tensors of the

group convolution branch and pointwise convolution branch after activation function
processing. Yc

′ indicates the output after batch normalization processing.
Following that, the vector Zc obtained in the previous step is subjected to the excitation

operation through fully connected layers F1 and F2, resulting in the target channel weight
values W. After passing through two fully connected layers, different values in W represent
the weight information for different channels, assigning different weights to each channel.

W = Γex(z, F) = µ(F2δ(F1z)) (7)

wherein δ(·) represents the relu activation function, and µ(·) represents the sigmoid ac-
tivation function. After passing through two fully connected layers, a 1 ∗ 1 ∗ C vector is
obtained. Then, through the Scalar Multiplication operation, which involves performing
a multiplication operation between the feature map W and the input feature map Yc

′

corresponding to the channel, the output feature map Y is obtained:

Y = Γsc(Yc
′, W) = Yc

′ ∗ W (8)

In summary, CFE-Net emphasizes channel correlations through dual-branch convolu-
tional operations and adaptively adjusts the weights of each channel using squeeze-and-
excitation operations to focus the network on the most informative channels in the image.
This enables the network to better understand the interactions between different channels,
addressing the issue of insufficient channel correlations and thereby improving the model’s
performance in detecting dangerous behaviors in complex scenarios.

Figure 6. CFE-Net module structure diagram.

3.3. Experimental Environment and Parameter Settings

In this study, we utilized a high-performance computing platform based on the Win-
dows 10 operating system. The hardware configuration includes an NVIDIA Tesla V100
SXM2 GPU with 16 GB of memory. To ensure the reliability of experimental data, all experi-
ments were conducted under consistent hardware settings. PyTorch 1.8.0 was employed as
the primary development framework, with CUDA 10.2.89 used for training acceleration.
Python version 3.8 was utilized during training. We employed the stochastic gradient
descent (SGD) optimizer for optimizing model parameters, with specific hyperparameters
listed in Table 1.

During the experimental process, we found that compared to the 300 training epochs
recommended by Ultralytics, optimal results could be achieved with 100 training epochs.
Therefore, we set the training epochs for all models to 100. All experiments were conducted
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in the same simulated environment to ensure the reliability of experimental data and
the reproducibility of results. During training, the training time for each epoch varied
depending on the size of the dataset and the complexity of the model. Smaller datasets and
simpler models required shorter training times, while larger datasets and complex models
required longer training times.

Table 1. Hyperparameter settings.

Hyperparameter Values

Batch size 32
Epoch 100

NMS IoU 0.7
Initial Learning Rate 0.01
Final Learning Rate 0.01

Weight decay 0.0005
Momentum 0.937
Input size 640

3.4. Datasets

For the task of detecting dangerous behaviors among personnel in chemical plants, this
study relies on a self-built dangerous behavior dataset (DBD). This dataset was created by
searching for relevant images related to safety helmets, smoking, and phone usage through
keyword searches and manual screening on the internet. When selecting images, we
rigorously screened scenes and contexts involving dangerous behaviors such as not wearing
a helmet, smoking, and using a phone to ensure the diversity and representativeness of the
dataset. We then meticulously cleaned and filtered the combined collection using advanced
image and video processing techniques, including deep learning, to eliminate noise and
outliers. During the data cleaning process, we focused on the quality and clarity of the
images to ensure the accuracy and reliability of the annotations. The final dataset contains
a total of 5063 images, all annotated in YOLO format using Labelimg. Our detection
tasks specifically focused on four dangerous behaviors: wearing a helmet (“helmet”), bare
head (“head”), using a phone (“phone”), and smoking (“smoke”). During the annotation
process, we strictly adhered to accurate and consistent annotation standards for marking
dangerous behaviors in the images. To enhance the diversity and richness of the dataset,
we employed various data augmentation techniques, including Mosaic augmentation, color
augmentation (hue, saturation, and brightness), image flipping, translation, and scaling.
These data augmentation techniques help improve the model’s generalization ability and
robustness. Finally, we divided the dataset into training, testing, and validation sets in a
6:2:2 ratio, with 3040 images for training and 2023 images for testing and validation. This
dataset serves as a comprehensive resource for research experiments.

To validate the effectiveness of the proposed model, experiments were conducted
on the Construction Site Safety Image Dataset (CSSID) [38]. This dataset consists of
2801 images covering various safety-related scenarios on construction sites. The labels
include “safety helmet”, “mask”, “no safety helmet”, “no mask”, “no safety vest”, “person”,
“safety cone”, “safety vest”, “machinery”, and “vehicle”, providing rich information for
monitoring construction site safety. Due to the complexity of construction site environ-
ments, the dataset contains annotations of targets of different scales and sizes, enabling
researchers to train and evaluate safety-related tasks at different scales and sizes. This
dataset supports safety detection and monitoring tasks comprehensively. Partial image
samples from both datasets are shown in Figure 7, while Figure 8 illustrates the distribution
of categories in both datasets.
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Figure 7. Selected images of the dataset are shown. (a) DBD partial images display. (b) CSSID partial
images display.

Figure 8. Schematic distribution of categories for the DBD and the CSSID. (a) Display of the number
of target instances for the DBD. (b) Display of the number of target instances for the CSSID.

3.5. Evaluation Indicators

In this study, we employ Precision (P), Recall (R), F1-Score [39], and Mean Average
Precision (mAP) [40] as metrics to evaluate the performance of our model. These metrics
allow for a comprehensive assessment of the model’s detection effectiveness and accuracy.

4. Experimental Results and Analysis
4.1. Ablation Experiment

To validate the effectiveness of each module on the model, this study conducted a
series of ablation experiments on the Dangerous Behavior dataset and the Construction Site
Safety Imagery dataset, respectively, and analyzed the results exhaustively. These ablation
experiments were designed to systematically assess the impact of each component of the
model on the overall performance. Consistency of the experimental parameters was main-
tained during the experiments to ensure comparable and reliable results. The performance
evaluation metrics of each ablation experiment and the comparative results are detailed
in Table 2.

In Table 2, we utilize the YOLOv8n model as the baseline model and integrate three
innovative modules to enhance its performance, evaluating seven metrics. Additionally,
we can observe more intuitively by combining the model curve comparison chart (as
shown in Figure 9). Firstly, the DAM module resulted in a 1.68% and 0.9% improvement
in mAP@.5 and mAP@.5:.95 on the DBD dataset, respectively, with a 1.3% increase in
F1-Score. Meanwhile, there was a significant improvement of 5.86% and 11.46% in mAP@.5
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and mAP@.5:.95 on the CSSID dataset. This indicates that DAM effectively enhances the
detection performance by obtaining richer gradient flow information. The ESPP module
led to an increase of 1.56% and 9.55% in mAP@.5:.95 on both datasets, demonstrating the
effectiveness of this module. CFE-Net made additional improvements in the Neck part
of the model, maintaining similar computational costs and parameter quantities on the
DBD dataset while achieving a 1.16% increase in mAP@.5 and a 0.5% increase in F1-Score.
Overall, the integration of these three modules constitutes the complete YOLO-GP model.
Despite the increased computational costs of this model, there were improvements of 2.06%,
1.56%, 1.30%, 7.98%, 11.46%, and 3.8% in mAP@.5, mAP@.5:.95, and F1-Score on both
datasets, respectively. These enhancements validate the effectiveness of the improvements
and demonstrate the improvement in the accuracy and robustness of the model.

Figure 9. Comparison curves and detailed graphs of experiments conducted on the DBD dataset
between the baseline model and the YOLO-GP model. (a) Precision comparison plot of the baseline
model versus the YOLO-GP model; (b) Recall comparison plot of the baseline model versus the
YOLO-GP model; (c) mAP@.5 comparison plot of the baseline model versus the YOLO-GP model;
(d) mAP@.5:.95 comparison plot of the baseline model versus the YOLO-GP model.

Table 2. Ablation experiment.

Dataset Models Precision Recall mAP@.5 mAP@.5:.95 GFLOPs F1-Score Para/M

DBD

Baseline 80.1 73.3 77.6 44.9 8.9 76.5 3.16
Baseline + DAM 84.1 72.4 78.9 45.3 13.7 77.8 5.49
Baseline + ESPP 79.4 74.6 78.4 45.6 10.1 76.9 4.56

Baseline + CFE-Net 80.3 74.0 78.5 45.4 15.1 77.8 3.38
YOLO-GP 82.6 73.6 79.2 45.6 15.1 77.8 7.27
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Table 2. Cont.

Dataset Models Precision Recall mAP@.5 mAP@.5:.95 GFLOPs F1-Score Para/M

CSSID

Baseline 80.6 54.6 61.4 31.4 8.9 65.1 3.16
Baseline + DAM 85.4 57.0 65.0 35.0 13.7 68.4 5.49
Baseline + ESPP 81.1 57.8 64.5 34.4 10.1 67.5 4.56

Baseline + CFE-Net 72.8 53.7 58.6 30.4 10.1 61.8 3.38
YOLO-GP 81.3 59.8 66.3 35.0 15.1 68.9 7.27

In summary, experiments with these two datasets revealed that the YOLO-GP algo-
rithm has the following key advantages:

1. In the DBD dataset, the design of the DAM effectively enhances the Backbone and
Neck structures of the YOLOv8n network, aiding in better gradient flow information
capture. This helps improve the model’s accuracy in localizing dangerous behavior
targets, particularly addressing the challenge of discriminating small targets such as
smoking or phone usage. In the CSSID dataset, this improvement also effectively
addresses localization issues in complex construction site environments with diverse
target scales;

2. On both datasets, the ESPP module enhances the model’s ability to capture and fuse
multi-scale features. This contributes to better recognition of dangerous behaviors,
enabling the model to more accurately understand and differentiate targets involving
various scales.

3. Integrating the CFE-Net enhances the model’s understanding of inter-channel inter-
actions, improving dangerous behavior detection performance in complex scenarios.
In the DBD dataset, this helps address insufficient channel correlations, thereby better
understanding the correlation between different dangerous behaviors. The CSSID
dataset assists the model in handling various safety equipment, personnel, and objects
present in construction site environments, enhancing the model’s robustness and
generalization capability.

By applying these three improvements to practical scenarios in two different datasets,
the model demonstrates enhanced robustness and efficiency in diverse environments,
improving its practicality and adaptability in safety detection and monitoring tasks.

4.2. Convergence Curve

In practical applications, ensuring that the model achieves high accuracy and fast
convergence is crucial for its robustness and stability. Therefore, this study conducted
100 rounds of training and testing on both the baseline model and the YOLO-GP model,
comparing their convergence curves. Figure 10 illustrates the convergence curves of classi-
fication loss (cls_loss) and localization loss (box_loss) for both the baseline model and the
YOLO-GP model. The vertical axis represents the loss values during the network training
process, while the horizontal axis represents the number of iterations of the network.

The experimental results indicate that both models initially exhibit relatively high
loss values during the early stages of training. However, as training progresses, the loss
values of both models gradually decrease and tend to converge, especially within the first
20 epochs. As training continues, the loss values of the networks continue to decrease,
indicating that the networks gradually fit the training data. Overall, the YOLO-GP model
demonstrates superior convergence performance and stability by maintaining lower loss
values while ensuring convergence speed.

In summary, the experimental results validate the effectiveness of the YOLO-GP model
improvements. The model achieves significantly improved detection accuracy, particularly
for multi-scale objects. Furthermore, it exhibits better convergence performance and
stability, making it suitable for various practical applications.
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Figure 10. Comparison curves of classification loss and localization loss between the baseline model
and the YOLO-GP model and their end-detail plots. (a) Cls_loss comparison curves. (b) Box_Loss
Comparison Curves.

4.3. Activation Function Parameter Selection Experiment

In the Leaky ReLU activation function, the negative_slope parameter defines the
slope when the input is negative. Typically, the ReLU activation function outputs zero for
negative inputs, while Leaky ReLU allows negative inputs to pass through by multiplying
them with a small slope instead of completely zeroing them out. Therefore, the negative
slope parameter controls the magnitude of this slope.

For object detection models, the appropriate choice of the negative_slope parameter
can influence the model’s learning capability and convergence speed. A suitable nega-
tive_slope value can enable the model to better learn complex features and patterns, thus
improving its stability and generalization ability. However, excessively large or small
negative slope values may lead to unstable training or performance degradation. Therefore,
selecting the appropriate negative_slope parameter is crucial for the performance of object
detection models.

As shown in Table 3, through extensive experimentation, we found that setting the
negative_slope parameter to 0.4 resulted in the best performance of the object detection
model. Additionally, analyzing the basic principles of Leaky ReLU reveals its primary
function of addressing the gradient vanishing problem associated with standard ReLU.
When the negative slope is too small (e.g., 0.2 or 0.3), the gradient for negative inputs
becomes very small. Although this mitigates part of the gradient vanishing issue, it can
still result in excessively weak gradients, thereby affecting the efficiency of model training.
Conversely, when the negative slope is too large (e.g., 0.5 or 0.6), the gradient for negative
inputs becomes too large, which may lead to gradient explosion and unstable training.
With a negative slope of 0.4, the gradient for negative inputs is neither too small nor too
large, maintaining a balance in gradient propagation. This balance allows the model to train
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stably and efficiently. Therefore, incorporating an appropriate negative slope in the Leaky
ReLU activation function can significantly enhance the detection accuracy and stability of
the model.

Table 3. Experiments on the effect of Negative_slope parameter size on CFE-Net.

Negative_Slope Precision Recall mAP@.5 mAP@.5:.95

0.2 78.3 73.0 77.0 44.5
0.3 77.5 72.5 76.3 44.7
0.4 80.3 74.0 78.5 45.4
0.5 81.0 71.5 77.2 44.6
0.6 78.5 71.8 77.5 44.5

4.4. Validation of the Validity of the ESPP Module

To demonstrate the advantages of ESPP design in scale-aware object detection, this
study conducted comparative experiments between ESPP and a series of popular SPP
modules. The included SPP modules can directly replace the original SPPF method and
include Simplified SPPF (SimSPPF), Spatial Pyramid Pooling Cross-Stage Partial Channel
(SPPCSPC), Atrous Spatial Pyramid Pooling (ASPP), Receptive Field Block (RFB) [41–44],
Spatial Pyramid Pooling Fast Cross-Stage Partial Channel (SPPFCSPC), and ESPP.

All hyperparameters and configurations in this study remained unchanged, and each
module was replaced with SPPF on the baseline YOLOv8n model. Experiments were
conducted on both the DBD and CSSID datasets, comparing six metrics: Precision, Recall,
mAP@.5:.95, mAP@.5, parameter count, and GFLOPs. The performance impact of different
SPP modules on the baseline model on the DBD and CSSID datasets is shown in Table 4.

Table 4. Comparative experimental results of DBD and CSSID datasets using multiple mainstream
SPP modules.

Dataset Method Precision Recall mAP@.5 mAP@.5:.95 GFLOPs Para/M

DBD

Baseline + SPPF 80.1 73.3 77.6 44.9 8.9 3.16
Baseline + SPPCSPC 81.2 73.7 78.1 45.6 10.1 4.72

Baseline + SPPFCSPC 78.2 72.8 77.5 45.2 10.1 4.77
Baseline + SimSPPF 80.9 74.2 77.7 45.1 8.9 3.16

Baseline + ASPP 77.6 75.8 77.9 45.2 10.5 5.22
Baseline + RFB 80.8 72.6 77.3 44.7 9.0 3.32

Baseline + ESPP 79.4 74.6 78.4 45.6 10.1 4.56

CSSID

Baseline + SPPF 80.6 54.6 61.4 31.4 8.9 3.16
Baseline + SPPCSPC 78.8 58.6 64.2 34.6 10.1 4.72

Baseline + SPPFCSPC 80.7 56.5 62.5 32.8 10.1 4.77
Baseline + SimSPPF 72.4 56.2 60.7 30.7 8.9 3.16

Baseline + ASPP 77.2 54.5 61.0 30.8 10.5 5.22
Baseline + RFB 78.8 58.3 63.0 32.6 9.0 3.32

Baseline + ESPP 81.1 57.8 64.5 34.4 10.1 4.56

From Table 4, it can be observed that ESPP outperforms other SPP modules sig-
nificantly on both datasets. For the DBD dataset, compared to SPPF, the ESPP module
improved the baseline model’s mAP@.5 by 1.03 percentage points and mAP@.5:.95 by
1.56 percentage points. Compared to introducing SPPCSPC, SPPFCSPC, and ASPP into
the baseline model, ESPP not only achieves higher detection accuracy but also has a lower
parameter count and computational cost. Similar results are also evident in the training on
the CSSID dataset. Compared to SPPF, DPSPP improved the baseline model’s mAP@.5 and
mAP@.5:.95 by 9.55 and 5.05 percentage points, respectively. Overall, DPSPP proves to be a
more efficient module compared to various mainstream SPP modules.
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The improvement in accuracy can be attributed to two main factors. Firstly, ESPP
enhances the representation capability of feature maps through the structural character-
istics of GPConv, enabling the fusion of information at both spatial and channel levels,
thereby improving the average detection accuracy of the model. Secondly, ESPP utilizes
four different scales of max-pooling operations, providing four different receptive fields,
which helps the model better adapt to the recognition of multi-scale targets.

4.5. Detection Results for Different Categories of Targets

To validate the detection performance of YOLO-GP across different classes of objects,
this study conducted multi-scale object detection experiments on both the dangerous
behavior dataset and the Construction Site Safety Image Dataset. Subsequently, experiments
were performed on different categories of objects within these datasets, and relevant metrics
such as Precision (P) and Recall (R) were obtained. The final experimental results are
presented in Table 5, where arrows in the table indicate the improvement status of the data.

Table 5. Comparison of detection performance between the baseline model and YOLO-GP model
across different categories in the DBD and CSSID datasets.

Baseline YOLO-GP

Dataset Category Precision Recall mAP@.5 mAP@.5:.95 Precision Recall mAP@.5 mAP@.5:.95

DBD

Helmet 89.9 84.6 88.4 44.9 93.5↑ 85.0↑ 89.9↑ 45.6↑
Head 92.3 90.8 94.0 61.2 91.9 91.2↑ 94.4↑ 61.4↑
Phone 77.4 66.5 72.5 36.2 80.5↑ 67.7↑ 74.1↑ 36.9↑
Smoke 61.0 51.5 55.6 21.5 64.4↑ 50.5 58.2↑ 22.1↑

CSSID

Hardhat 96.4 60.8 73.6 42.5 91.7 64.6↑ 74.3↑ 43.0↑
Mask 89.4 80.0 85.6 49.5 92.0↑ 81.0↑ 87.4↑ 51.2↑

No-hardhat 78.9 43.4 49.2 22.2 74.3 49.3↑ 55.5↑ 23.7↑
No-mask 72.2 37.8 47.3 20.0 74.2↑ 44.6↑ 52.1↑ 20.5↑

No-safty vest 74.7 41.5 48.9 24.8 76.7↑ 52.8↑ 61.1↑ 29.8↑
Person 84.2 54.5 63.4 30.6 80.5 62.7↑ 69.6↑ 36.0↑

Safty corn 88.9 70.5 77.0 36.6 74.7 75.0↑ 76.1 38.1↑
Safty vest 83.7 62.5 67.4 37.2 80.9 61.9 67.4 39.2↑
Machinery 65.5 70.9 72.4 33.8 75.1↑ 74.5↑ 77.7↑ 45.1↑

Vehicle 72.7 23.8 29.5 17.2 93.1↑ 32.0↑ 41.4↑ 23.3↑

From Table 5, it can be observed that the YOLO-GP model demonstrates varying
degrees of performance improvement across different categories of objects. We analyze the
reasons behind this phenomenon. Firstly, the DAM model structure effectively extracts
richer gradient information, thereby enhancing the model’s accuracy in object localization
and its ability to discriminate between different targets. Secondly, the utilization of the
ESPP module effectively enhances the model’s feature extraction capability for multi-scale
targets. Lastly, the CFE-Net effectively addresses the issue of insufficient channel correlation
in the model, significantly enhancing the model’s detection capability and accuracy in
complex scenes. All three improvements significantly enhance the detection accuracy of
different categories of objects in the dataset. Moreover, YOLO-GP achieves a certain degree
of improvement across all categories, reflecting the model’s versatility.

4.6. Visualization Results and Analysis

To effectively demonstrate the effectiveness of the algorithms in this study, two dif-
ferent datasets were visualized and analyzed in this study. A tuple assignment was used
in this experiment to assign color values in RGB color space to each of the three variables
detect_color, missing_color, and error_color. These color values are used in the experiment
to represent the colors in different cases, respectively, to improve the accuracy and clarity
of the visualization of the results. Specifically, detect_color represents the color (green)
when a target is detected to identify the presence of the target; missing_color represents
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the color (blue) when a target is not detected to help differentiate between undetected
targets; and error_color represents the color (red) when an error situation occurs, which
helps to quickly identify and locate the problem This helps to quickly identify and locate
the problem. In this way, the state of the target in different situations during the detection
process can be visualized more intuitively, which improves the interpretability of the results.
The visualization of the baseline model and the YOLO-GP model for experiments on both
datasets can be observed in the following figure.

1. Analysis of visualization results under DBD dataset.
From Figure 11, it can be observed that the first and second columns of the visualized
results exhibit characteristics such as high image grayscale and dim environments,
which may adversely affect target detection. Grayscale images can result in blurred
or lost target features and reduced contrast, thereby impacting the accuracy and
stability of the algorithm. Dim environments may cause unclear target details and
increased background noise, making it challenging for the target detection algorithm
to correctly identify targets. The third and fourth columns of images both feature
complex backgrounds and small targets. In such cases, the complex background
may cause confusion between the target and the background, making it difficult for
the algorithm to accurately locate and identify the target. Additionally, the presence
of small targets may obscure the features of the target in the image, increasing the
probability of false positives and false negatives in the detection algorithm. In these
scenarios, the YOLO-GP model in the task of detecting dangerous behaviors among
workers exhibits a significant reduction in the number of red and blue boxes in its
visualizations compared to the baseline model. This reduction indicates a decrease in
the probability of false positives and false negatives, thereby enhancing the reliability
of detection.

Figure 11. Plots of visualization results of the baseline model and the YOLO-GP model under the
DBD dataset. (a) Original image; (b) plot of visualization results of baseline model under DBD
dataset; (c) plot of visualization results of YOLO-GP model under DBD dataset.

2. Analysis of visualization results under the CSSID dataset.
In Figure 12, we observe characteristics such as cluttered backgrounds and significant
differences in target scales. The cluttered background makes it challenging for the
algorithm to distinguish targets from the surrounding environment, increasing the
likelihood of false positives, especially when small targets are present. On the other
hand, significant differences in target scales may lead to an imbalance in how the
algorithm handles targets of different sizes, potentially resulting in detection errors or
missing small targets. While any model has certain limitations, as shown in Figure 12,
the YOLO-GP model also exhibits some false detections (red boxes) and missed targets
(blue boxes). However, compared to the YOLOv8n model, the YOLO-GP model
demonstrates better adaptability and robustness, achieving more accurate target
detection and maintaining stable performance across different scales and background
environments. Therefore, these visualized results further validate the superiority
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of the YOLO-GP model in tackling complex backgrounds and multi-scale target
detection tasks.

Figure 12. Plots of visualization results of baseline model and YOLO-GP model under CSSID
dataset. (a) Original image; (b) visualization result plot of baseline model under CSSID dataset;
(c) visualization result plot of YOLO-GP model under CSSID dataset.

4.7. Multi-Model Comparative Experiments

To validate the effectiveness of the proposed method, this study conducted com-
parative experiments on the dangerous behavior dataset with several mainstream object
detection methods as well as the latest methods specifically designed for individual or
multiple targets in this dataset. The experimental results are presented in Table 6, further
confirming the feasibility and superiority of the improved model.

Table 6. Comparison of experimental results between YOLO-GP model and mainstream algorith-
mic models.

Dataset Method Precision Recall mAP@.5 mAP@.5:.95 GFLOPs Inference
Time/ms Para/M

DBD

YOLOv3-tiny 77.8 71.2 74.5 40.8 19.1 0.7 12.17
YOLOv5 76.8 73.3 74.8 40.0 4.2 9.7 1.78
YOLOv6 75.7 70.8 74.2 43.8 13.1 0.5 4.50

YOLOv7-tiny 76.5 71.8 74.6 39.4 13.2S 7.8 6.02
YOLOv8n 80.1 73.3 77.6 44.9 8.9 9.9 3.16
YOLO-CA 81.8 72.8 76.7 41.6 12.6 13.3 5.88

YOLO-GP (Ours) 82.6 73.6 79.2 45.6 15.1 14.2 7.27

CSSID

YOLOv3-tiny 78.7 55.0 61.1 32.8 19.1 1.1 12.17
YOLOv5 67.5 51.8 55.1 22.6 4.3 9.1 1.78
YOLOv6 82.6 54.9 62.1 32.6 13.1 0.7 4.50

YOLOv7-tiny 69.2 53.9 56.4 23.4 13.2S 7.0 6.02
YOLOv8n 80.6 54.6 61.4 31.4 8.9 8.1 3.16
YOLO-CA 75.8 60.0 65.1 28.8 12.6 11.9 5.88

YOLO-GP (Ours) 81.3 59.8 66.3 35.0 15.1 11.7 7.27

From Table 6, it can be observed that compared to the YOLO-GP model, mainstream
single-stage object detection algorithms such as YOLOv3-tiny [45], YOLOv5n [46], YOLOv6,
YOLOv7-tiny, and YOLOv8n, although having smaller parameter counts and faster in-
ference times, also demonstrate inferior detection performance on the two datasets used
in this study. Specifically, these algorithms exhibit poorer performance in metrics such
as mAP@.5 and mAP@.5:.95, failing to achieve the expected detection accuracy. Mean-
while, experiments comparing the latest helmet detection method, YOLO-CA [47], with the
YOLO-GP detection model on the two datasets in this study show that although the for-
mer has certain computational efficiency compared to YOLO-GP, its detection accuracy
under similar inference times still falls short of that of the YOLO-GP model. Specifically,
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the YOLO-GP model achieves higher mAP@.5 and mAP@.5:.95 scores compared to the
YOLO-CA model by 2.5%, 1.2%, and 4.0%, 6.2%, respectively, on the two datasets. This
indicates the superiority of the YOLO-GP model in terms of detection accuracy, enabling
more accurate detection of dangerous behaviors and effectively reducing the likelihood of
dangerous occurrences.

5. Discussion

This study aims to propose a novel YOLO-GP-based model for dangerous behavior
detection, enhancing the capability to detect dangerous behaviors of targets at various
scales in complex environments, with tiny targets such as cigarettes and mobile phones.
The model is built upon the YOLOv8n architecture and incorporates innovative modules
such as GPConv, DAM, ESPP, and CFE-Net. Specifically, GPConv facilitates information ex-
change and feature fusion in the channel dimension, extracting rich feature representations.
The DAM improves the Backbone and Neck structures, enhancing the richness of gradi-
ent flow information, thus addressing deficiencies in the accuracy of dangerous behavior
target localization and small target recognition. The ESPP module significantly enhances
dangerous behavior recognition by capturing and fusing multi-scale features. The CFE-Net
module aids in better understanding the interactions between channels, improving the
model’s performance in detecting dangerous behaviors in complex scenes. Experimental
results demonstrate that the YOLO-GP model improves the mAP@0.5:0.95 metric by 1.56%
and 11.46% on dangerous behavior datasets and publicly available Construction Site Safety
Image Datasets, respectively (as shown in Table 2), significantly outperforming the baseline
model. Furthermore, compared to other single-stage pose estimation models, the YOLO-
GP model achieves competitive performance on both datasets as shown in Table 6. The
performance improvements validate the effectiveness of the proposed model in enhancing
detection accuracy and robustness, indicating its promising prospects and significant value
in practical applications.

However, despite the model’s promising performance on the current dangerous
behavior dataset and the publicly available Construction Site Safety Image Dataset, its
performance in real-world scenarios may be influenced by additional factors such as
lighting conditions, weather conditions, and background interference, which are often more
complex and variable in real environments. Moreover, during the research implementation,
data collection faced certain limitations. The datasets specifically designed for dangerous
behavior detection in chemical enterprises are very limited, with most containing only one
or two types of dangerous behaviors. Thus, a single behavior dataset may not fully cover all
the variations and challenges present in real-world scenarios. Additionally, although YOLO-
GP performs well on most metrics, its inference speed is not optimal. We attribute this to
the introduction of the attention mechanism, which increases the complexity of the model
structure, leading to a higher number of parameters and reduced model efficiency. While
the computational efficiency of the model has not reached an optimal level, it still meets
the requirements for most tasks.

Future work should not only focus on collecting more diverse and complex dangerous
behavior datasets but also consider how to further improve the model’s generalization
ability across these diverse datasets. This may include introducing more data augmentation
techniques to increase dataset diversity, designing more robust and transferable model
architectures, and developing more intelligent and adaptive algorithms to tackle challenges
in different scenarios. Additionally, efforts should be made to enhance model efficiency by
simplifying the model structure, and reducing the number of parameters and computational
load, thereby improving the model’s speed and efficiency during inference. By reducing
model complexity, we can better meet the demands of real-time behavior detection tasks,
making the model more reliable and feasible for practical applications.
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