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Abstract: A curve on a surface is a geodesic curve if its principal normal vector is anywhere aligned
with the surface normal. Using the Serret–Frenet frame, a timelike surface couple (T LSC) with
the symmetry of a Bertrand couple (BC) can be specified in terms of linear combinations of the
components of the local frames in Minkowski 3-space E3

1 . With these parametric representations, the
necessary and sufficient conditions for the specified BC are derived to be the geodesic curves defining
these surfaces. Afterward, the definition of a T L ruled surface (RS) is also provided. Furthermore,
the application of the method to some significant models is given.
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1. Introduction

In the context of differential geometry, a geodesic along two points on a surface is
defined as a curve embedded in the surface with the least distance along the points. In fact,
the sufficient and necessary conditions that a curve on a surface is a geodesic is that the
rectifying plane of the curve and the surface tangent plan are identical [1,2]. The geodesic
also plays a role in the relativistic description of gravity. Einstein’s concept of equality says
that the geodesic manifests the locus of a freely falling particle in a specified space. (Freely
landing in this situation means movable only down the influence of gravity, with no other
forces involved). The geodesic concept states that the free locus is the geodesic of space.
It plays a fully considerable role in a geometric-relativity theory, since it means that the
basic equation of dynamics is fully endowed by the geometry of space and subsequently
is not to be set as an independent equation. Furthermore, in such a theory, the attitude
is distinguished (up to a stationary) by the major length invariant, so that the stable
attitude principal and the geodesic principle become identical [3,4]. Geodesics have been
widely applied in different fields, such as cutting and painting paths, tent industrialization,
fiberglass tape furls in pipe industrialization, and textile industrialization [5,6]. Is is also
used for Fermat’s principle in classical optics, and as a cornerstone of general relativity.
Normally, the key consideration in geodesic research is how to find and depict geodesics on
the considered surfaces, and there are a large number of papers focused on this matter. For
example, the studies were carried out for the polymer case to find the shortest distance, as
in [7], while it focused more on the directions of the geodesics of physical four-dimensional
space–times [8]. Furthermore, other studies examined geodesic curves in various cases
such as polynomial surfaces [9], convex polytopes in three dimensions [10,11] or even as
applications as in [12–14], where the idea of geodesics applied to a change in sail design,
for object segmentation in images and the fast marching method for solving the Eikonal
equation on triangular meshes, respectively. Most of the previous work about surface curves
focuses on how to find them on a given surface. However, the more relevant problem is
to find surfaces passing through a given curve and accepting it as a special curve, such
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as a geodesic, asymptotic curve or line of curvature. In [15], Wang et al. investigated the
issue of constructing a bundle of surfaces from a delineated geodesic curve for which each
surface could be considered a candidate for style planning. They evidenced the necessary
and sufficient situation for the coefficients to be significant under both the geodesic and
isoparametric requirements. Later, a large number of research efforts dealing with bundles
of surfaces having a conjoint distinctive curve in both Euclidean and non-Euclidean spaces.
For example, the recent methods are used to construct developable surface depending on
a given curve, a given line of curvature or given curve as its common asymptotic curve
by applying the parametric representation of the developable surfaces, because this is
very important in the field of geometric design and surfaces analysis [16–18]. Moreover,
in [19], in Euclidean 3-space, a Smarandache curve that is geodesic and isoparametric is
used to find a surfaces family with the use of a Frenet frame, while another study was
performed in the same space but with the use of common geodesic curves [20]. On the
other hand, R.A. Abdel-Baky [21] presented a study that constructed a timelike surface
pencil from a given spacelike or timelike asymptotic curve in Minkowski 3-space. Similar
studies into the same kind of the space were performed but in the case of a given spacelike
or timelike line of curvature [22]. Recently, a common asymptotic null curve is used to
build a surface family, as well as providing the necessary and sufficient conditions for them
to be ruled and developable surfaces [23]. In addition, using the Cartan frame, a surfaces
family was constructed with an asymptotic curve where the surface was presented as a
linear combination of this frame [24,25]. Furthermore, the focus of the concept of a Bertrand
pair appears in recent studies more in [26,27], where both studies were carried out in the
Galilean space, but the first used a Bertrand pair as common asymptotic curves and the
other used a Bertrand pair as common geodesic curves.

In the theory of curves, the conformable interconnection of curves is a perfect is-
sue to be investigated. A Bertrand couple (BC) is one of the classic distinguished curves.
Two curves are a BC if there exists a bijection between them such that both curves have com-
mon principal normals [1,2,28]. BCs have been utilized as private models of offset curves
in computer-aided design (CAD) and computer-aided manufacture (CAM) (see [29–31]).
Different researchers investigated Bertrand curves, which are important for the theory of
curves, in different cases with various conditions and spaces, such as in [32–36]. The gener-
alization of Bertrand curves was investigated in [37] with respect to the casual characters of
the curves in Minkowski space–time.

Some of the previous studies are related to the topic of this paper but not focused on
the same details for both timelike surfaces and geodesic curves, especially in the Minkowski
space with the concept of a Bertrand couple. For example, for the timelike surfaces, it
is proven that the Gauss map and mean curvature both satisfy a system in the partial
differential equations [38]. Another study was performed by Mehmet et al. [39], who
gave the Frenet frames as well as Frenet invariants in the case of timelike ruled surfaces in
the Minkowski 3-space. Murat et al. [40] investigated time-like loxodromes at rotational
surfaces in the Minkowski 3-space, and later, another study presented the kinematic
geometry of the timelike ruled surface considering a constant Disteli-axis under special
cases such as a one-parameter screw motion in the same space [41]. In [42], differential
equations for the space-like loxodromes on helicoidal surfaces in the Minkowski 3-space
were calculated by Murat et al. More recently, in Ref. [43], timelike circular surfaces are
parameterized, and some geometric properties such as singularities, striction curves, and
Gaussian and mean curvatures are examined. Furthermore, in [44], the singularities are
classified by the osculating developable surface, in addition to giving a relation between
both the osculating Darboux vector fields and normal vector fields of timelike surfaces along
the curve using Legendrian dualities. Additionally, in the Lorentz–Minkowski 3-space,
the relation between geodesic torsions, normal curvatures and geodesic curvatures for
parameter curves that intersect at any angle in case of timelike surfaces are investigated [45].
However, to the best of our knowledge, no work has focused on constructing T LSC using
a BC as a pair of geodesic curves in the Minkowski 3-space E3

1 . This work proposes to fill
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this research gap and discusses the use of a BC as a pair of geodesic curves to construct
T LSC in the Minkowski 3-space E3

1 .
The key contribution of this work is the construction of T LSC with BC as geodesic

curves in the Minkowski 3-space E3
1 . Then, employing the Serret–Frenet frame, the nec-

essary and sufficient conditions for T LSC embedding a BC as joint geodesic curves are
determined. Afterward, the definition of T LRS is also inspected. Furthermore, models
are considered to demonstrate the implementation of the theoretical results. This study is
purposed to add to the geometric analysis of timelike surface couples through the timelike
Bertrand couple.

2. Preliminaries

Let E3
1 indicate the Minkowski 3-space [3,4]. For the vectors u = (u1, u2, u3) and

v = (v1, v2, v3) in E3
1 ,

⟨u, v⟩=u1v1 − u2v2 + u3v3

is called the Lorentzian inner product. The vector is defined as

u×v = (u2v3 − u3v2, u1v3 − u3v1, u1v2 − u2v1).

As ⟨ , ⟩ is an indefinite metric, recall that a vector u ∈ E3
1 can have one of three causal

natures: it can be spacelike (SL) if ⟨u, u⟩>0 or u = 0, T L if ⟨u, u⟩<0 and lightlike or null if
⟨u, u⟩=0 and u ̸= 0. The norm of u∈E3

1 is denoted by ∥u∥ =
√
|⟨u, u⟩|. Then, the hyperbolic

and Lorentzian (de Sitter space) unit spheres are defined as

H2
+ = {u∈E3

1 | ∥u∥2 := u2
1 − u2

2 + u2
3 = −1, u1 > 0}, (1)

and
S2

1 = {u∈E3
1 | ∥u∥2 := u2

1 − u2
2 + u2

3 = 1}. (2)

Let ω(v) be a unit-speed T L curve in E3
1 and suppose, without loss of generality, that

ω is represented by the arc-length parameter v ∈ I ⊆ R. If {ς1(v), ς2(v), ς3(v)} is the
Serret–Frenet frame (SF ) along ω(v), then the SF formulae read: ς

′
1

ς
′
2

ς
′
3

 =

 0 κ(v) 0
κ(v) 0 τ(v)
0 −τ(v) 0

 ς1
ς2
ς3

, (3)

where κ(v) and τ(v) denote the curvature and torsion of ω(v), respectively. One can also
show that

−⟨ς1, ς1⟩ = ⟨ς2, ς2⟩ = ⟨ς3, ς3⟩ = 1,
ς1 × ς2 = ς3, ς1 × ς3 = −ς2, ς2 × ς3 = −ς1.

(4)

The subspaces Sp{ς1, ς2}, Sp{ς2, ς3}and Sp{ς3, ς1} are named the osculating plane,
normal plane and rectifying plane, respectively. Similarly, in line with [1,2], the following
definition is given:

Definition 1. Two T L curves ω(v) and ω̂(v) are BC if there exists a bijection among them such
that they have a common principal normal, and

ω̂(v) = ω(v) + f ς2(v), (5)

where f is a stationary .
A surface M is defined by

M : r(v, t) = (r1(v, t), r2(v, t), r3(v, t)), (v, t) ∈ D ⊆ R2. (6)
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If rv(v, t) = ∂r
∂v and rt(v, t) = ∂r

∂t , then the surface normal is

N (v, t) = rv ∧ rt, ⟨N , rv⟩ = ⟨N , rt⟩ = 0. (7)

A curve on a surface is geodesic if and only if the normal vector to the curve is
everywhere parallel to the local normal vector of the surface [1,2].

A surface in E3
1 is called a T L surface if the induced metric on the surface is a

Lorentzian metric and is called a SL surface if the induced metric on the surface is a
positive definite Riemannian metric; that is, the surface normal is a T L (SL) vector [3,4].

An isoparametric curve ω(v) is a curve on a surface M : r(v, t) in E3
1 that has a

constant v or t-parameter value. In other words, there exists a parameter t0 or v0 such that
ω(v) = r(v, t0) or ω(t) = r(v0, t). Given a parametric curve ω(v), it is clear that ω(v) is an
isogeodesic of M : r(v, t) if it is both a geodesic and an isoparametric curve on M : r(v, t).

3. Main Results

This section presents a novel method for construction of a T LSC with a BC as a pair
of common geodesic curves in E3

1 . For this purpose, consider a T LBC such that the tangent
planes of the T LSC are simultaneous with the rectifying planes of the T LBC.

Consider that ω(v) and ω̂(v) are two T LBC. If {κ(v), τ(v), ς1(v), ς2(v), ς3(v)} and
{κ̂(v), τ̂(v), ς̂1(v), ς̂2(v), ς̂3(v)} are two Frenet–Serret frames of ω(v) and ω̂(v), respec-
tively, then

M : r(v, t) = ω(v) + x(v, t)ς1(v)+y(v, t)ς3(v); 0 ≤ t ≤ T, 0 ≤ v ≤ L (8)

is a T L surface bundle M with ω(v) as a joint curve. Similarly, the T L surface bundle M̂
along ω̂(v) is

M̂ : r̂(v, t) = ω̂(v) + x(v, t)ς̂1(v)+y(v, t)ς̂3(v); 0 ≤ t ≤ T, 0 ≤ v ≤ L, (9)

where x(v, t), y(v, t) ∈ C1 are called marching-scale functions and are differentiable func-
tions at least of order 1, with the constraint y(v, t0) ̸= 0.

For M̂ with ω̂(v) as a joint geodesic T L curve, according to Equation (9), it is expected
that the marching-scale functions should be satisfied . Simplifying the calculations, we
have

r̂v(v, t) = (1 + xv)ς̂1 + (xκ̂ + τ̂y)ς̂2 + ys ς̂3,
r̂t(v, t) = xt ς̂1+yt ς̂3,

}
(10)

and
N̂ (v, t) := r̂v × r̂t = (xκ̂ + yτ̂)yt ς̂1 + [(1 + xv)yt − yvxt]ς̂2−(xκ̂ + yτ̂)xt ς̂3. (11)

As ω̂(v) is an isoparametric on M̂, there exists a value t0 ∈ [0, T] such that r̂(v, t0) = ω̂(v);
that is,

x(v, t0) = y(v, t0) = 0, xv(v, t0) = yv(v, t0) = 0. (12)

Thus, when t = t0, that is, on ω̂(v), we have

N̂ (v, t0) = yt(v, t0)ς̂2(v). (13)

Equation (13) shows that the rectifying plane of ω̂(v) coincides with the tangent plane to
the surface M̂. This means that ω̂(v) is a T L geodesic curve on M̂. Thus, we gain the
following theorem.

Theorem 1. ω̂(v) is an isogeodesic (geodesic for short) on the T L surface bundle M̂ if and only if

x(v, t0) = y(v, t0) = 0,
yt(v, t0) ̸= 0, 0 ≤ t0 ≤ T, 0 ≤ v ≤ L.

}
(14)
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Any T L surface fulfilling Equation (14) is an element of this surface bundle. For
facilitation and better inspection, the marching-scale functions x(v, t) and y(v, t) can be
displayed in terms of two factors [15]:

x(v, t) = l(v)X(t),
y(v, t) = m(v)Y(t).

(15)

Here, l(v), m(v),X(t), and Y(t) are C1 functions that do not identically vanish. Then, from
Theorem 1, we derive the following:

Corollary 1. ω̂(v) is a geodesic on the T L surface bundle M̂ if and only if

X(t0) = Y(t0) = 0, l(v) = const. ̸= 0, m(v) = const. ̸= 0,
dY(t0)

dt = const. ̸= 0, 0 ≤ t0 ≤ T, 0 ≤ v ≤ L.

}
(16)

To achieve the T L surface bundle M̂ interpolating ω̂(v), we can first determine the
marching-scale functions from Equation (16), then employ them in Equations (8) and (9)
to derive the parameterization. For suitability in implementation, x(v, t) and y(v, t) can
be, moreover, forced to be in extra limited forms, while still having sufficient degrees of
freedom, in order to assign M̂ with ω̂(v) as a shared geodesic T L curve. Therefore, let us
assume that x(v, t) and y(v, t) can be given in two various configurations, as follows:
(1) If we set 

x(v, t) =
p
Σ

k=1
a1kl(v)kX(t)k,

y(v, t) =
p
Σ

k=1
b1km(v)kY(t)k,

(17)

then we can naturally indicate the sufficient condition for ω̂(v) being T L geodesic curves
on M̂ as {

X(t0) = Y(t0) = 0,
b11 ̸= 0, m(v) ̸= 0, and dX(t0)

dt = const. ̸= 0,
(18)

where l(v), m(v), X(t),Y(t) ∈ C1, aij, bij ∈ R (i = 1, 2; j = 1, 2, ..., p) and l(v) and m(v) are
not identically zero.
(2) If we set 

x(v, t) = f (
p
Σ

k=1
a1klk(v)Xk(t)),

y(v, t) = g(
p
Σ

k=1
b1kmk(v)Yk(t)),

(19)

then {
X(t0) = Y(t0) = f (0) = g(0) = 0,

b11 ̸= 0, dY(t0)
dt = const ̸= 0, m(v) ̸= 0, g

′
(0) ̸= 0,

(20)

where l(v), m(v), X(t),Y(t) ∈ C1, aij, bij ∈ R (i = 1, 2; j = 1, 2, . . . , p) and l(v) and m(v)
are not identically zero. As there are no constraints associated with the curves specified
in Equations (16), (18) or (20), the T L surface bundle M̂ with ω̂(v) as joint geodesic T L
curve can be derived by choosing appropriate marching-scale functions. We use {M̂, M}
to denote the T LSC with BC {ω̂(v), ω(v)} as common geodesic curves.

Example 1. Consider the T L circular helix

ω(v) = (
√

3 cosh v,
√

2v,
√

3 sinh v), −2 ≤ s ≤ 2.
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Then
ς1(v) = (

√
3 sinh v,

√
2,
√

3 cosh v),
ς2(v) = (cosh v, 0, sinh v),

ς3(v) = (
√

2 sinh v,
√

3,−
√

2 cosh v).


TheT L surface bundle M with ω(v) as joint T L geodesic curve is

M : r(v, t) = (
√

3 cosh v,
√

2v,
√

3 sinh v) + (x(v, t), 0, y(v, t))×
√

3 sinh v
√

2
√

3 cosh v
cosh v 0 sinh v√

2 sinh v
√

3 −
√

2 cosh v

,

where −1 ≤ t ≤ 1 and −2 ≤ v ≤ 2. If f = −2
√

3 in Equation (5), then

ω̂(v) := ω(v)− 2
√

3ς2(v) = (−
√

3 cosh v,
√

2v,−
√

3 sinh v),

and
ς̂1(v) = (−

√
3 sinh v,

√
2,−

√
3 cosh v),

ς̂2(v) = (− cosh v, 0,− sinh v),
ς̂3(v) = (−

√
2 sinh v,

√
3,−

√
2 cosh v).


The T L surface bundle M̂ with ω̂(v) as joint T L geodesic curve is

M̂ : r̂(v, t) = (−
√

3 cosh v,
√

2v,−
√

3 sinh v) + (x(v, t), 0, y(v, t))× −
√

3 sinh v
√

2 −
√

3 cosh v
− cosh v 0 − sinh v
−
√

2 sinh v
√

3 −
√

2 cosh v

.

Choosing x(v, t) = sin t, y(v, t) = 1 − cos t, and t0 = 0, then Equation (16) is satisfied and the
obtained {M, M̂} is shown in Figure 1, where the blue curve symbolizes ω̂(v) on M̂, and the green
curve is ω(v) on M.

Figure 1. {M̂, M} with x(v, t) = sin t, y(v, t) = 1 − cos t, and t0 = 0.

Example 2. Let ω(v) be a T L helix defined by

ω(v) = (
√

2 cos v,
√

2 sin v,
√

3v), 0 ≤ v ≤ 2π.

Then
ς1(v) = (−

√
2 sin v,

√
2 cos v,

√
3),

ς2(v) = (− cos v,− sin v, 0),
ς3(v) = (

√
3 sin v,−

√
3 cos v,−

√
2).


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The T L surface bundle M with ω(v) as joint T L geodesic curve is given by

M : r(s, t) = (
√

2 cos v,
√

2 sin v,
√

3v) + (x(v, t), 0, y(v, t))× −
√

2 sin v
√

2 cos v
√

3
− cos v − sin v 0√

3 sin v −
√

3 cos v −
√

2

,

where −1 ≤ t ≤ 1 and 0 ≤ v ≤ 2π. If f = 2
√

2 in Equation (5), then

ω̂(v) := ω(v) + 2
√

2ς2(v) = (−
√

2 cos v,−
√

2 sin v,
√

3v),

and
ς̂1(v) = (

√
2 sin v,−

√
2 cos v,

√
3),

ς̂2(v) = (cos v, sin v, 0),
ς̂3(v) = (−

√
3 sin v,

√
3 cos v,−

√
2).


The T L surface bundle M̂ with ω̂(v) as joint T L geodesic curve is

M̂ : r̂(v, t) = −
√

2 cos v,−
√

2 sin v,
√

3v) + (x(v, t), 0, y(v, t))×
√

2 sin v −
√

2 cos v
√

3
cos v sin v 0√

3 sin v
√

3 cos v −
√

2

.

(1) Taking

x(v, t) = (1 + sin t) +
4
Σ

k=2
a1k(1 + sin t)k,

y(v, t) = (1 − cos t) +
4
Σ

k=2
b1k(1 − cos t)k,

 (a)

where −π/4 ≤ t ≤ π/4 and 0 ≤ v ≤ 2π, t0 = 0, and a1k, b1k ∈ R, then Equation (18) is
satisfied. If a1k = b1k = 1, then the resulting {M, M̂} is shown in Figure 2, where the blue curve
symbolizes ω̂(v) on M̂, and the green curve is ω(v) on M.

Figure 2. {M̂, M} with x(v, t), and y(v, t) as in Equation (a).

(2) Selecting

x(v, t) = sin t +
4
Σ

k=2
a1k sink t, y(v, t) = 1 − cos t +

4
Σ

k=1
b1k(1 − cos t)k, (b)

where −π/2 ≤ t ≤ π/2, 0 ≤ v ≤ 2π, t0 = 0, and a1k, b1k ∈ R; then, Equation (20) is satisfied.
For a1k = b1k = 1, the obtained {M, M̂} is plotted in Figure 3, where the blue curve symbolizes
ω̂(v) on M̂, and the green curve is ω(v) on M.
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Figure 3. {M̂, M} with x(v, t), and y(v, t), as in Equation (b).

Note that we could continue with this series of T L surfaces through selecting different
collections of characteristic curves or numbers of curves to interpolate.

Ruled T LSC with Joint T L Geodesic BC
Ruled surfaces play an important role in various types of design, architecture, man-

ufacturing, art and sculpture. They can be created in a variety of ways, which is a topic
that has been the subject of a lot of discussion in mathematics and engineering journals. In
geometric modeling, a ruled surface is a special surface created through the continuous
motion of a line (ruling) on a curve, which acts as the base curve.

Let us consider that ω̂(v) is a unit speed T L curve. Assume that r̂(s, t) is a T L ruled
surface with the base curve ω̂(v), and ω̂(v) is also an isoparametric T L curve of r̂(v, t).
Then, there exists t0 such that r̂(v, t0) = ω̂(v). It follows that

M̂ : r̂(v, t)− r̂(v, t0) = (t − t0)ê(v), with 0 ≤ v ≤ L, t, t0 ∈ [0, T],

where ê(v) is a T L unit vector along the rulings. According to Equation (9), we have

(t − t0)ê(v) = x(v, t)ς̂1(v)+y(v, t)ς̂3(v), 0 ≤ v ≤ L, with t, t0 ∈ [0, T], (21)

which is a system of two equations with two unknown functions x(v, t) and y(v, t). To solve
the functions x(v, t) and y(v, t), we have

x(v, t) = −(t − t0)⟨ê, ς̂1⟩ = −(t − t0)det(ê, ς̂2, ς̂3),
y(v, t) = (t − t0)⟨ê, ς̂3⟩ = (t − t0)det(ê, ς̂1, ς̂2).

(22)

Equation (22) precisely provides the necessary and sufficient conditions for M̂ to be a T L
ruled surface. In view of Theorem 1, if the curve ω̂(v) is also a T L geodesic curve on
M̂, then det(ê, ς̂1, ς̂2) ̸= 0. Thus, at any point on the T L curve ω̂(v), the ruling direction
ê(v) ∈ Sp{ς̂1, ς̂2}. Furthermore, the vectors ê(v) and ς̂1(v) must not be identical. This
leads to

ê(v) = γ(v)ς̂1(v) + β(v)ς̂3(v), 0 ≤ v ≤ L, (23)

for some real functions β(v) ̸= 0 and γ(v). Then

M̂ : r̂(v, t) = ω̂(v) + t(γ(s)ς̂1(v) + β(v)ς̂3(v)), 0 ≤ v ≤ L, 0 ≤ t ≤ T, (24)

where γ(v) and β(v) ̸= 0. However, the SL normal vector to M̂ along the curve ω̂(v) is

N̂ (v, t0) = β(v)ς̂2(v). (25)

Equation (25) shows that ω̂(v) is a T L geodesic curve on M̂. Thus, the following theorem
can be stated.
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Theorem 2. The ruled T LSC {M, M̂} interpolates the T LBC {ω(v), ω̂(v)} as joint geodesic
T L curves if there exist a parameter t0 ∈ [0, T] and the functions γ(v), β(v) ̸= 0 such that M̂
and M satisfy Equation (25), and

M : r(v, t) = ω(v) + t(γ(v)ς1(s) + β(v)ς3(v)), 0 ≤ v ≤ L, 0 ≤ t ≤ T. (26)

It must be pointed out that, in Equations (25) and (26), there exist two geodesic T L
curves crossing through every point on the curves ω̂(v)(ω(v)), where one is ω̂ itself and
the other is a geodesic T L line in the orientation ê(v), as given in Equation (23). Every
constituent of the isoparametric ruled T L surface bundle with the joint T L geodesic ω̂ is
defined by two set functions, γ(v) and β(v) ̸= 0.

Example 3. Considering Example 1, we have
If γ(v) = 0, β(v) = −1, the ruled T LSC {M, M̂} with T LBC {ω(v), ω̂(v)} is{

M : r(v, t) = (
√

3 cosh v −
√

2t sinh v,
√

2v +
√

3t,
√

3 sinh v −
√

2t cosh v),
M̂ : r̂(v, t) = (−

√
3 cosh v −

√
2t sinh v,

√
2v +

√
3t,−

√
3 sinh v −

√
2t cosh v),

where −10 ≤ t ≤ 10, −1.5 ≤ v ≤ 1.5. The surface is shown in Figure 4, where the blue curve
symbolizes ω̂(v) on M̂, and the green curve is ω(v) on M.

Figure 4. {M, M̂} with γ(v) = 0, β(v) = −1.

Example 4. Considering Example 2, we have:
(1) If γ(v) = 0, β(v) = −1, the ruled T LSC {M, M̂} with T LBC {ω(v), ω̂(v)} is:{

M : r(v, t) = (
√

3 cos v −
√

3t sin v,
√

2 sin v −
√

3t cos v,
√

3v −
√

2t),
M̂ : r̂(v, t) = (−

√
3 cos v −

√
3t sin v,−

√
2 sin v −

√
3t cos v,

√
3v −

√
2t),

where 0 ≤ t ≤ 3, 0 ≤ v ≤ 2π. The surface is shown in Figure 5, where the blue curve is ω̂(v) on
M̂, and the green curve is ω(v) on M.

Figure 5. {M, M̂} with γ(v) = 0, β(v) = −1.

(2) If γ(v) = β(v) = 1, the ruled T LSC {M, M̂} with T LBC {ω(v), ω̂(v)} is
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{
M : r(v, t) = (

√
2 cos v + t(

√
3 −

√
2) sin v,

√
2 sin v − t(

√
3 −

√
2) cos v, t(

√
3 −

√
2)),

M̂ : r̂(v, t) = (−
√

2 cos v + t(
√

3 +
√

2) sin v,−
√

2 sin v + t(
√

3 −
√

2) cos v, t(
√

3 −
√

2)),

where −3 ≤ t ≤ 3, 0 ≤ v ≤ 2π. The surface is shown in Figure 6, where the blue curve symbolizes
ω̂(v) on M̂, and the green curve is ω(v) on M.

Figure 6. {M, M̂} with γ(v) = β(v) = 1.

4. Conclusions

In this paper, we established a theory related to a T LSC with T LBC as a pair of
geodesic curves in Minkowski 3-space E3

1 . Subsequently, the outcomes for the ruled T LSC
with T LBC as geodesic curves were also addressed. More specifically, this research seeks
to investigate the geometric analysis of pairs of timelike surfaces through the utilization
of the timelike Bertrand pair. For validation of our results, some models were specified
in order to construct the T LSC and ruled T LSC using joint T LBC. We focused on the
kind of ruled surfaces because their geometry is necessary to study kinematics, spatial
mechanisms, surface design, robotic research and manufacturing technology [46–48]. This
study has a deeper and more meaningful approach when it depends on the curvature
theory to recalculate the robot’s motion curve [49]. In future work, we will attempt to
integrate the singularity and submanifold theories defined in [50–52], among others, with
the consequences of this work. Hopefully, these consequences will be helpful for physicists,
especially those concerned with general relativity theory.
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