Lump, Breather, Ma-Breather, Kuznetsov–Ma-Breather, Periodic Cross-Kink and Multi-Waves Soliton Solutions for Benney–Luke Equation
Abstract
:1. Introduction
2. Lump Soliton Solution
3. Multi-Waves Solution
4. Breather Waves Solution
5. Ma-Breather
6. Kuznetsov–Ma-Breather
7. Periodic Cross-Kink Waves Solution
8. Rogue Waves
9. Periodic Waves Solution
10. Results and Discussion
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Günerhan, H.; Baskonus, H.M. Analytical and approximate solutions of an epidemic system of HIV/AIDS transmission. Alex. Eng. J. 2020, 59, 3197–3211. [Google Scholar] [CrossRef]
- Gao, W.; Günerhan, H.; Baskonus, H.M. Novel Dynamic Structures of 2019-nCoV with Nonlocal Operator via Powerful Computational Technique. Biology 2020, 9, 107. [Google Scholar] [CrossRef] [PubMed]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: London, UK, 1991; Volume 149. [Google Scholar]
- Chen, S.J.; Yin, Y.H.; Ma, W.X.; Lü, X. Abundant exact solutions and interaction phenomena of the (2+ 1)-dimensional YTSF equation. Anal. Math. Phys. 2019, 9, 2329–2344. [Google Scholar] [CrossRef]
- Hua, Y.F.; Guo, B.L.; Ma, W.X.; Lü, X. Interaction behavior associated with a generalized (2+ 1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 2019, 74, 184–198. [Google Scholar] [CrossRef]
- Lu, X.; Ma, W.X.; Yu, J.; Lin, F.; Khalique, C.M. Envelope bright-and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 2015, 82, 1211–1220. [Google Scholar] [CrossRef]
- Tran, M.Q. Ion acoustic solitons in a plasma A review of their experimental properties and related theories. Phys. Scr. 1979, 20, 317. [Google Scholar] [CrossRef]
- Seadawy, A.R. Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas. Phys. Plasmas 2014, 21, 052107. [Google Scholar] [CrossRef]
- Seadawy, A.R. Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized plasma. Comput. Math. Appl. 2016, 71, 201–212. [Google Scholar] [CrossRef]
- Yildirim, O. On the unique weak solvability of second-order unconditionally stable difference scheme for the system of sine-Gordon equations. Nonlinear Anal. Model. Control 2024, 29, 244–264. [Google Scholar] [CrossRef]
- Yildirim, Ö.; Uzun, M. Weak solvability of the unconditionally stable difference scheme for the coupled sine-Gordon system. Nonlinear Anal.-Model. Control 2020, 25, 997–1014. [Google Scholar] [CrossRef]
- Hereman, W.; Banerjee, P.P.; Korpel, A.; Assanto, G.; Van Immerzeele, A.; Meerpoel, A. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method. J. Phys. Math. Gen. 1986, 19, 607. [Google Scholar] [CrossRef]
- Hubert, M.B.; Betchewe, G.; Justin, M.; Doka, S.Y.; Crepin, K.T.; Biswas, A.; Belic, M. Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method. Optik 2018, 162, 228–236. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, J. Direct algebraic method for solving fractional Fokas equation. Therm. Sci. 2021, 25, 2235–2244. [Google Scholar] [CrossRef]
- Gurefe, Y.; Misirli, E.; Sonmezoglu, A.; Ekici, M. Extended trial equation method to generalized nonlinear partial differential equations. Appl. Math. Comput. 2013, 219, 5253–5260. [Google Scholar]
- Ekici, M.; Mirzazadeh, M.; Sonmezoglu, A.; Ullah, M.Z.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Nematicons in liquid crystals by extended trial equation method. J. Nonlinear Opt. Phys. Mater. 2017, 26, 1750005. [Google Scholar] [CrossRef]
- Yu-Bin, Z.; Chao, L. Application of modified (G′G)-expansion method to traveling wave solutions for Whitham–Broer–Kaup-like equations. Commun. Theor. Phys. 2009, 51, 664. [Google Scholar] [CrossRef]
- Shehata, A.R. The traveling wave solutions of the perturbed nonlinear Schrödinger equation and the cubic–quintic Ginzburg Landau equation using the modified (G′G)-expansion method. Appl. Math. Comput. 2010, 217, 1–10. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A sine-cosine method for handlingnonlinear wave equations. Math. Comput. Model. 2004, 40, 499–508. [Google Scholar] [CrossRef]
- Bekir, A. New solitons and periodic wave solutions for some nonlinear physical models by using the sine–cosine method. Phys. Scr. 2008, 77, 045008. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2009. [Google Scholar]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Springer: New York, NY, USA, 1974. [Google Scholar]
- Farah, N.; Seadawy, A.R.; Ahmad, S.; Rizvi, S.T.R.; Younis, M. Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model. Opt. Quantum Electron. 2020, 52, 1–15. [Google Scholar] [CrossRef]
- Rizvi, S.T.R.; Seadawy, A.R.; Ali, I.; Bibi, I.; Younis, M. Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers. Mod. Phys. Lett. B 2020, 34, 2050399. [Google Scholar] [CrossRef]
- Bilal, M.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R.; Zahed, H. Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Math. Methods Appl. Sci. 2021, 44, 4094–4104. [Google Scholar] [CrossRef]
- Younas, U.; Seadawy, A.R.; Younis, M.; Rizvi, S.T.R. Dispersive of propagation wave structures to the Dullin–Gottwald–Holm dynamical equation in a shallow water waves. Chin. J. Phys. 2020, 68, 348–364. [Google Scholar] [CrossRef]
- Helal, M.A.; Seadawy, A.R.; Zekry, M.H. Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation. Appl. Math. Comput. 2014, 232, 1094–1103. [Google Scholar] [CrossRef]
- Özkan, A. Analytical solutions of the nonlinear (2+ 1)-dimensional soliton equation by using some methods. J. Eng. Technol. Appl. Sci. 2022, 7, 141–155. [Google Scholar] [CrossRef]
- Rao, J.; Mihalache, D.; Cheng, Y.; He, J. Lump-soliton solutions to the Fokas system. Phys. Lett. A 2019, 383, 1138–1142. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y. Construction of lump soliton and mixed lump stripe solutions of (3+ 1)-dimensional soliton equation. Results Phys. 2018, 10, 94–98. [Google Scholar] [CrossRef]
- Abdullah; Seadawy, A.R.; Wang, J. Three-dimensional nonlinear extended Zakharov-Kuznetsov dynamical equation in a magnetized dusty plasma via acoustic solitary wave solutions. Braz. J. Phys. 2019, 49, 67–78. [Google Scholar] [CrossRef]
- Karjanto, N. Peregrine soliton as a limiting behavior of the Kuznetsov-Ma and Akhmediev breathers. Front. Phys. 2021, 9, 599767. [Google Scholar] [CrossRef]
- Karjanto, N.; Van Groesen, E. Derivation of the NLS breather solutions using displaced phase-amplitude variables. arXiv 2011, arXiv:1110.4704. [Google Scholar]
- Karjanto, N. Bright soliton solution of the nonlinear Schrödinger equation: Fourier spectrum and fundamental characteristics. Mathematics 2022, 10, 4559. [Google Scholar] [CrossRef]
- Karjanto, N. On spatial Fourier spectrum of rogue wave breathers. Math. Methods Appl. Sci. 2023, 46, 3405–3421. [Google Scholar] [CrossRef]
- Karjanto, N. Mathematical Aspects of Extreme Water Waves. Ph.D. Thesis, Universiteit Twente, Enschede, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Karjanto, N.; Van Groesen, E. Mathematical physics properties of waves on finite background. In Handbook of Solitons: Research, Technology and Applications; Lang, S.P., Bedore, H., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2009; Chapter 14; pp. 501–539. [Google Scholar] [CrossRef]
- Akter, J.; Akbar, M.A. Exact solutions to the Benney–Luke equation and the Phi-4 equations by using modified simple equation method. Results Phys. 2015, 5, 125–130. [Google Scholar] [CrossRef]
- Pego, R.L.; Quintero, J.R. Two-dimensional solitary waves for a Benney–Luke equation. Phys. D Nonlinear Phenom. 1999, 132, 476–496. [Google Scholar] [CrossRef]
- Benney, D.J.; Luke, J.C. On the interactions of permanent waves of finite amplitude. J. Math. Phys. 1964, 43, 309–313. [Google Scholar] [CrossRef]
- Quintero, J.R.; Grajales, J.C.M. Instability of solitary waves for a generalized Benney–Luke equation. Nonlinear Anal. Theory Methods Appl. 2008, 68, 3009–3033. [Google Scholar] [CrossRef]
- Wang, H. Lump and interaction solutions to the (2+ 1)-dimensional Burgers equation. Appl. Math. Lett. 2018, 85, 27–34. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Lou, Z.M. A new nonlinear equation with LS, lump periodic, and lump-periodic-soliton solutions. Complexity 2019, 2019, 4072754. [Google Scholar] [CrossRef]
- Yusuf, A.; Sulaiman, T.A.; Khalil, E.M.; Bayram, M.; Ahmad, H. Construction of multi-wave complexiton solutions of the Kadomtsev-Petviashvili equation via two efficient analyzing techniques. Results Phys. 2021, 21, 103775. [Google Scholar] [CrossRef]
- Wang, K.J. Multi-wave complexiton, multi-wave, interaction-wave and the travelling wave solutions to the (2 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation for the incompressible fluid. Pramana 2024, 98, 47. [Google Scholar] [CrossRef]
- Islam, S.R.; Khan, K.; Woadud, K.A.A. Analytical Studies on the Benney–Luke Equation in Mathematical Physics. Waves Random Complex Media 2018, 28, 300–309. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Taha, W.M.; Noorani, M.S.M. Homogenous balance method for solving exact solutions of the nonlinear Benny-Luke equation and Vakhnenko-Parkes equation. Zanco J. Pure Appl. Sci. 2019, 31, 52–56. [Google Scholar]
- Triki, H.; Yildirim, A.; Hayat, T.; Aldossary, O.M.; Biswas, A. Shock wave solution of the Benney-Luke equation. Rom. J. Phys. 2012, 57, 1029–1034. [Google Scholar]
- Ablowitz, M.J.; Curtis, C.W. Conservation laws and non-decaying solutions for the Benney–Luke equation. Proc. R. Soc. Math. Phys. Eng. Sci. 2013, 469, 20120690. [Google Scholar] [CrossRef]
- Hussain, A.; Usman, M.; Zaman, F.D.; Ibrahim, T.F.; Dawood, A.A. Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the Benney-Luke equation using optimal system of Lie subalgebras. Chin. J. Phys. 2023, 84, 66–88. [Google Scholar] [CrossRef]
- Grajales, J.C.M. Instability and long-time evolution of cnoidal wave solutions for a Benney–Luke equation. Int. J. Non-Linear Mech. 2009, 44, 999–1010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Baloch, S.A.; Abbas, M.; Alosaimi, M.; Wei, G. Lump, Breather, Ma-Breather, Kuznetsov–Ma-Breather, Periodic Cross-Kink and Multi-Waves Soliton Solutions for Benney–Luke Equation. Symmetry 2024, 16, 747. https://doi.org/10.3390/sym16060747
Vivas-Cortez M, Baloch SA, Abbas M, Alosaimi M, Wei G. Lump, Breather, Ma-Breather, Kuznetsov–Ma-Breather, Periodic Cross-Kink and Multi-Waves Soliton Solutions for Benney–Luke Equation. Symmetry. 2024; 16(6):747. https://doi.org/10.3390/sym16060747
Chicago/Turabian StyleVivas-Cortez, Miguel, Sajawal Abbas Baloch, Muhammad Abbas, Moataz Alosaimi, and Guo Wei. 2024. "Lump, Breather, Ma-Breather, Kuznetsov–Ma-Breather, Periodic Cross-Kink and Multi-Waves Soliton Solutions for Benney–Luke Equation" Symmetry 16, no. 6: 747. https://doi.org/10.3390/sym16060747
APA StyleVivas-Cortez, M., Baloch, S. A., Abbas, M., Alosaimi, M., & Wei, G. (2024). Lump, Breather, Ma-Breather, Kuznetsov–Ma-Breather, Periodic Cross-Kink and Multi-Waves Soliton Solutions for Benney–Luke Equation. Symmetry, 16(6), 747. https://doi.org/10.3390/sym16060747