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Abstract: The goal of this research is to utilize some ansatz forms of solutions to obtain novel forms
of soliton solutions for the Benney–Luke equation. It is a mathematically valid approximation that
describes the propagation of two-way water waves in the presence of surface tension. By using ansatz
forms of solutions, with an appropriate set of parameters, the lump soliton, periodic cross-kink waves,
multi-waves, breather waves, Ma-breather, Kuznetsov–Ma-breather, periodic waves and rogue waves
solutions can be obtained. Breather waves are confined, periodic, nonlinear wave solutions that
preserve their amplitude and shape despite alternating between compression and expansion. For
some integrable nonlinear partial differential equations, a lump soliton is a confined, stable solitary
wave solution. Rogue waves are unusually powerful and sharp ocean surface waves that deviate
significantly from the surrounding wave pattern. They pose a threat to maritime safety. They typically
show up in solitary, seemingly random circumstances. Periodic cross-kink waves are a particular
type of wave pattern that has frequent bends or oscillations that cross at right angles. These waves
provide insights into complicated wave dynamics and arise spontaneously in a variety of settings.
In order to predict the wave dynamics, certain 2D, 3D and contour profiles are also analyzed. Since
these recently discovered solutions contain certain arbitrary constants, they can be used to describe
the variation in the qualitative characteristics of wave phenomena.

Keywords: Benney–Luke equation; lump soliton; breather waves; Ma-breather; Kuznetsov–Ma-
breather; periodic cross-kink waves; multi-waves; rogue waves; periodic waves; soliton solutions

1. Introduction

A fascinating feature of nature is nonlinearity, and many scientists consider nonlinear
research to be the most important area of research for the fundamental understanding of
nature. The investigation of multiple classes of nonlinear evolution equations (NLEEs)
is essential for the mathematical modeling of complicated events that change over time.
Numerous fields provide these models, such as the physical and natural sciences, neural
networks, viral diseases, epidemiology, population ecology, economics and optical fibers.
A few years ago, numerous innovative studies were conducted on models of the infection
systems, the epidemic systems and fatal diseases in pregnant women [1,2]. Some qualitative
and quantitative aspects of nonlinear phenomena can only be revealed with the help of
exact solutions [3–6].

Symmetry 2024, 16, 747. https://doi.org/10.3390/sym16060747 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16060747
https://doi.org/10.3390/sym16060747
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1567-0264
https://orcid.org/0000-0002-0491-1528
https://orcid.org/0000-0001-5778-6794
https://orcid.org/0000-0001-9988-0498
https://doi.org/10.3390/sym16060747
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16060747?type=check_update&version=2


Symmetry 2024, 16, 747 2 of 17

In nonlinear research, it is crucial to find exact solutions to nonlinear partial differen-
tial equations (NLPDEs). Because of their enormous importance in modeling nonlinear
physical phenomena in the fields of mathematics and physics, NLEEs have received more
scrutiny [7–11]. The exact solutions to NLEEs have been found using a variety of integra-
tion standards during the past few decades, including the direct algebraic scheme [12–14],
the extended trial equation technique [15,16], modified (G′

G ) expansion technique [17,18],
the sine–cosine scheme [19,20], applications of symmetry methods to PDEs [21] and similar-
ity methods for differential equations [22]. Some other important methods have provided
exact solutions in the form of solitons, etc, like soliton molecules and Painlevé analysis for
the nano-bioelectronics transmission model [23], chirp-free solitons of the Biswas–Arshed
model in birefringent fibers [24], wave solutions to the unidirectional shallow water wave
Dullin–Gottwald–Holm system [25,26], and solitary wave solutions for the fourth-order
nonlinear Boussinesq water wave equation [27]. Özkan explored the soliton equation
with the help of two efficient techniques [28]. New insights and methods in mathematical
physics enable the understanding and modeling of complex physical phenomena and
dynamical processes. Solitons are solitary, self-reinforcing waves that travel through a
medium without changing their shape or speed. They are important in many different
domains and have both theoretical and practical applications. Solitons can be helpful for
studying nonlinear processes in physics because they shed light on how complex systems
behave. Solitons are crucial for understanding and predicting the dynamics of ocean waves
and tsunamis in water wave scenarios, which helps with the development of early warning
systems. Overall, solitons are significant due to their ability to maintain stability and co-
herence during propagation, influencing advancements in various scientific and technical
fields. Numerous soliton solutions exist, such as bell-type, kink wave, lump wave, peakons,
compactons, cuspons, rogue wave, breathers, bright soliton and many more [29–31].

In mathematical physics, lump soliton solutions have attracted a lot of interest. Physi-
cal phenomena such as soliton dynamics are described by lump soliton solutions. They
arise in various scientific domains, such as optic media, Bose Einstein condensate, plasma,
water waves and so forth. Breather waves, sometimes referred to as soliton breathers or just
breathers, are a particular kind of pulsing, localized solution to nonlinear wave equations.
The oscillation pattern of these waves is periodic or quasi-periodic, gradually growing
and decreasing over time without changing its general shape. Breather waves are easily
distinguished from other wave types due to their characteristic features, which include
well-defined width and confined amplitude peaks. To gain a deeper understanding of
extreme wave events and their impact on the ecosystem, rogue waves are studied. Early
warning mechanisms and maritime operations readiness are aided by this modeling. De-
signing coastal infrastructure, like wind turbines and oil rigs, to withstand the impact of
rogue waves requires an understanding of these waves. One of the fundamental concepts
in physics is periodic waves, which are recurring disturbances that oscillate regularly in
space and time as they propagate through a medium. These waves include distinguishing
features such as frequency, which indicates the number of full oscillations in a specific time
period and is usually measured in hertz, and amplitude, which indicates the maximum
deviation from the equilibrium position. A specific kind of wave phenomena known as
periodic cross-kink waves is identified by frequent bends or kinks that appear along the
propagation path. These waves have a distinctive pattern in which the amplitude of the
wave fluctuates repeatedly in both space and time, forming kinks or cross-like structures
at regular intervals. A number of factors, including boundary conditions, media qualities,
and nonlinear effects, contribute to this periodic behavior.

In addition to the diverse soliton solutions of the Benney–Luke equation, similar
soliton and breather-type solutions arise in other integrable systems, particularly the
classical nonlinear Schrödinger (NLS) equation. In particular, the connection between
the Peregrine soliton and its limiting behavior in relation to Akhmediev breathers and
Kuznetsov–Ma-breathers has been explored [32,33]. Additionally, recent studies have
investigated the characteristic features of the Fourier spectra of these NLS solutions [34,35].
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Further exploration includes comparisons with experimental data and investigations into
higher-order soliton solutions existing on a non-zero background [36,37].

In this current work, the soliton solutions of the nonlinear Benney–Luke equation
(BLE) are obtained by applying some ansatz forms of solutions. We have confirmed from
the literature that these solutions are new and have never been found before. Consider the
Benney–Luke equation of the following form [38]

wtt − wxx + awxxxx − bwxxtt + wtwxx + 2wxwxt = 0. (1)

Equation (1) establishes a relationship between the constants a − b = k − 1/3, where k
represents the bond number. Pego and Quintero [39] investigated the propagation of long
water waves with small amplitude. They proved that the circulation of such waves in the
presence of an external stiffness is governed by the Benney–Luke equation, initially derived
by Benney and Luke [40]. This approach is considered to be legally valid for characterizing
the bi-directional propagation of water waves under the influence of surface tension and
for capturing the effects of gravitational pull [41]. The purpose of this research is to identify
the lump soliton, breather waves, Kuznetsov–Ma-breather, Ma-breather, periodic cross-
kink waves, multi-waves, periodic waves and rogue waves solutions for the Benney–Luke
equation. The novelty of the work is in the identification of these various soliton solutions
with arbitrary constants, allowing the description of qualitative variations in wave events.
This work offers new insights and potential applications across various scientific and
technical sectors by focusing on these specific soliton solutions and employing ansatz forms
of solutions to explore the dynamics of the Benney–Luke equation.

The format of the article is as follows. The lump soliton solution will be discussed in
Section 2. In Section 3, the multi-waves soliton solution will be determined. The breather
waves solution is given in Section 4. The Ma-breather solution is given in Section 5.
The Kuznetsov–Ma-breather solution will be found in Section 6. In Section 7, the periodic
cross-kink waves solution will be discussed. In Section 8, the rogue waves solution will be
obtained. In Section 9, the periodic waves solution will be obtained. Results of our recently
discovered solutions are discussed in Sections 10 and 11 provides the conclusion.

2. Lump Soliton Solution

The subsequent transformation is used to find the lump soliton solution [42]:

w = 2(ln f )xx. (2)

In this section, we will find lump soliton solutions of Equation (1). Lump solutions are
one of multiple forms of exact solutions to NLPDEs, which are rational function solutions
localized in all directions in space. The lump soliton solution of Equation (1) can be found
using Equation (2), which will yield the bilinear form of the equation.
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− 6 f 3 f 2
t f 2

x + 2 f 4 ftt f 1
x + 6 f 3 f 4

x + 20b f f 2
t f 4

x − 24b f 2 ftt f 4
x − 120a f f 6

x − 72 ft f 6
x + 8 f 4 ft fx fxt

− 192b f 2 ft fx
3 fxt + 72 f fx

5 fxt − 2 f 5 f 2
xt + 72b f 3 f 2

x f 2
xt − 2 f 5 fx fxtt + 24b f 3 f 3

x fxtt + 2 f 4 f 2
t fxx − f 5 ftt fxx

− 12 f 4 f 2
x fxx − 144b f 2 f 2

t f 2
x fxx + 36b f 3 ftt f 2

x fxx + 360a f 2 f 4
x fxx + 180 f ft f 4

x fxx + 144b f 3 ft fx fxt fxx

− 144 f 2 f 3
x fxt fxx − 24b f 4 f 2

xt fxx − 24b f 4 fx fxtt fxx + 3 f 5 f 2
xx + 18b f 3 f 2

t f 2
xx − 6b f 4 ftt f 2

xx − 270a f 3 f 2
x f 2

xx

− 108 f 2 ft f 2
x f 2

xx + 48 f 3 fx fxt f 2
xx + 30a f 4 f 3

xx + 6 f 3 ft f 3
xx − 2 f 5 ft fxxt + 72b f 3 ft f 2

x fxxt − 36 f 2 f 4
x fxxt

− 48b f 4 fx fxt fxxt − 24b f 4 ft fxx fxxt + 60 f 3 f 2
x fxx fxxt − 6 f 4 f 2

xx fxxt + 6b f 5 f 2
xxt + f 6 fxxtt − 12b f 4 f 2

x fxxtt

+ 6b f 5 fxx fxxtt + 4 f 5 fx fxxx + 24b f 3 f 2
t fx fxxx − 8b f 4 ftt fx fxxx − 120a f 3 f 3

x fxxx − 48 f 2 ft f 3
x fxxx

− 16b f 4 ft fxt fxxx + 40 f 3 f 2
x fxt fxxx + 4b f 5 fxtt fxxx + 120a f 4 fx fxx fxxx + 44 f 3 ft fx fxx fxxx − 12 f 4 fxt fxx fxxx

− 20 f 4 fx fxxt fxxx − 10a f 5 f 2
xxx − 4 f 4 ft f 2

xxx − 16b f 4 ft fx fxxxt + 8 f 3 f 3
x fxxxt + 8b f 5 fxt fxxxt − 12 f 4 fx fxx fxxxt

+ 4 f 5 fxxx fxxxt + 4b f 5 fx fxxxtt − f 6 fxxxx − 2b f 4 f 2
t fxxxx + b f 5 ftt fxxxx + 30a f 4 f 2

x fxxxx + 4 f 3 ft f 2
x fxxxx

− 4 f 4 fx fxt fxxxx − 15a f 5 fxx fxxxx − 2 f 4 ft fxx fxxxx + 2 f 5 fxxt fxxxx + 2b f 5 ft fxxxxt − b f 6 fxxxxtt

− 6a f 5 fx fxxxxx + a f 6 fxxxxxx = 0. (3)

Now, using the function f given as [43]:
f = ζ2

1 + ζ2
2 + a7,

ζ1 = a1x + a2t + a3,
ζ2 = a4x + a5t + a6,

(4)

where ζ1 = a1x + a2t + a3, ζ2 = a4x + a5t + a6, and 1 ≤ ai ≤ 7 are the real parameters to
be found. Substitute Equation (4) into Equation (3) to obtain the specific equations that
determine the values of the coefficients.

When a1 = a6 = 0, the following solutions are obtained:

a2 =
√
−15a5, a3 = a3, a4 = 2a5, a5 = a5, a7 = −160

17
aa2

5 −
260
17

a2
5b +

63
17

a2
3.

Using the above values in Equation (2) yields

w = 2
(ζ2

1 + ζ2
2 + a7)(8a5

2)− 16a5
2(a5t + 2a5x)2

(ζ2
1 + ζ2

2 + a7)
2 , (5)

where
ζ1 = a3 + i

√
15a5t, ζ2 = a5t + 2a5x.

Here, a few graphical representations of the above solution (5) are examined in the
Figure 1.
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(a) 3D profile (b) Contour profile (c) 2D profile

Figure 1. The visual depiction for absolute part of w(x, t) for Equation (5) is given. (a) 3D profile;
(b) contour profile; (c) 2D profile, when a5 = −1.9, b = 5, a = 5.5, a3 = 10.5.

3. Multi-Waves Solution

In this section, we will find multi-waves solutions to (1). Much research has been
conducted on multi-waves. Recently, Yousuf et al. studied the multi-wave solutions to the
Kadomtsev–Petviashvili equation using two efficient techniques [44]. Wang studied the
multi-wave complexiton solution, multi-wave solution and the interaction wave solutions
of the (2 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation (BLMPE), which de-
scribes an irrotational incompressible fluid [45]. The following form of solution will be
used for multi-waves:

f = f0 cosh ζ1 + f1 cos ζ2 + f2 cosh ζ3 + a10,
ζ1 = a1x + a2t + a3,
ζ2 = a4x + a5t + a6,
ζ3 = a7x + a8t + a9,

(6)

where 1 ≤ ai ≤ 10 are the real parameters to be found. Substitute Equation (6) into
Equation (3) to obtain the particular equations that yield values for the coefficients.

When a1 = a6 = a8 = 0, the following solutions are obtained:

a2 =

√√√√−
−32 − 985(− 7

2 +
√

17
2 )aa2

7 − 520aa2
7

240a2
7b + 27 + 3

√
17

, a3 = a3, a4 =
1
2

√
−14 + 2

√
17a7,

a5 = 0, a7 =
1
2

√
−2b +

√
−b2 + 5b4

b
, a9 = a9, a10 = a10, f0 = f0, f1 = f1, f2 = f2.

Substituting the above values in Equation (2) yields

w = 2
Ωκ1 − κ2

Ω2 , (7)

where

f (x, t) = Ω = f0 cosh ζ1 + f1 cos ζ2 + f2 cosh ζ3 + a10,

κ1 =
(14−2

√
17)(−2b+

√
−b2+5b4) f1 cosh

(√
14−2

√
17
√

−2b+
√

−b2+5b4x
4b

)
16b2 +

(−2b+
√
−b2+5b4) f2 cosh

(
a9+

√
−2b+

√
−b2+5b4x

2b

)
4b2 ,
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κ2 =


√

14−2
√

17
√

−2b+
√
−b2+5b4 f1 sinh

(√
14−2

√
17
√

−2b+
√

−b2+5b4x
4b

)
4b +

√
−2b+

√
−b2+5b4 f2 sinh

(
a9+

√
−2b+

√
−b2+5b4x

2b

)
2b


2

,

ζ1 = a3 +

√√√√√√−
−32 − 130a(−2b+

√
−b2+5b4)

b2 −
985
(
− 7

2+
√

17
2

)
a(−2b+

√
−b2+5b4)

4b2

27 + 3
√

17 +
60(−2b+

√
−b2+5b4)

b

t,

ζ2 =
i
√

14 − 2
√

17
√
−2b +

√
−b2 + 5b4x

4b
,

ζ3 = a9 +

√
−2b +

√
−b2 + 5b4x

2b
,
−32 − 985(− 7

2 +
√

17
2 )aa2

7 − 520aa2
7

240a2
7b + 27 + 3

√
17

< 0,−14 + 2
√

17 > 0,−2b +
√
−b2 + 5b4 > 0.

The graphical representations of the above solution (7) are given in Figures 2 and 3.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 2. The visual depiction of w(x, t) for Equation (7) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a10 = −2.5, b = 5, a = −15.6, a3 = −5, a2 = 5, a9 = −4, f0 = 5, f1 = 8, f2 = 7.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 3. The visual depiction of w(x, t) for Equation (7) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a10 = 10.5, b = −1.5, a = −15.6, a3 = −0.5, a2 = −5, a9 = 4, f0 = −5, f1 = 50.8,
f2 = 7.

4. Breather Waves Solution

This section will provide the breather waves (BWs) solution for Equation (1). Breather
waves are intriguing nonlinear wave phenomena that can be seen in a variety of physical
systems. Breathers exhibit periodic oscillations in both their amplitude and width as they
travel through a medium, in contrast to ordinary solitons, which are solitary waves that
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maintain their shape and amplitude during propagation. The subsequent form of solution
will be used for breather waves solutions:

f (x, t) = m1eqζ1(x,t) + e−qζ1(x,t) + m2 cos(q1ζ2(x, t)) + a6,
ζ1 = a1x + a2t + a3,
ζ2 = a4x + a5t,

(8)

where m1, m2 and ai are real parameters to be found. By inserting Equation (8) into
Equation (3), some equations that provide coefficient values are found.

When a2 = a6 = 0, the subsequent solutions are obtained:

a1 =

√
− 1

40a

q
, a3 = a3, a4 =

√
8
a

8q1
, a5 = 0, m1 = m1, m2 = m2.

Inserting the above values in Equation (2) yields

w = 2
Ωκ1 − κ2

Ω2 , (9)

where

Ω = f (x, t) = m1eqζ1(x,t) + e−qζ1(x,t) + m2 cos(q1ζ2(x, t)) + a6,

κ1 = −e
−q

(
a3+

√
− 1

a x
2
√

10q

)

40a
− e

q

(
a3+

√
− 1

a x
2
√

10q

)
m1

40a
−

m2 cos

(√
1
a x

2
√

2

)
8a

,

κ2 =

−

√
− 1

a e
−q

(
a3+

√
− 1

a x
2
√

10q

)

2
√

10
+

√
− 1

a e
q

(
a3+

√
− 1

a x
2
√

10q

)
m1

2
√

10
−

√
1
a m2 sin

(√
1
a x

2
√

2

)
2
√

2


2

, ζ1 = a3 +

√
− 1

a x

2
√

10q
, ζ2 =

√
1
a x

2
√

2q1
.

Here, a few graphical representations of the above solution (9) are examined in the
Figure 4.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 4. The visual depiction of w(x, t) for Equation (9) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when q = 5.5, b = 0.9, a = 8.5, a3 = 0.5, q1 = 0.5, m1 = 4, m2 = 1.
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5. Ma-Breather

This section will provide the Ma-breather solution for Equation (1). The Ma-breather
is a localized, explicit periodic solution. The following form of solution will be used for
Ma-breather:

f (x, t) = e−i(p1x)ek1t+k2 + m1e2(k1t+k2) + ei(p1x) + a1, (10)

where a1, p1, k1, k2 and m1 are real parameters. Some equations that yield coefficient values
can be obtained by inserting Equation (10) into Equation (3). The subsequent solutions are
obtained:

a1 = a1, b = −
100ap2

1 + 21p3
1

(
1
8 p3

1 +
1
68

√
441p6

1 + 134400ap2
1 + 5376

)
+ 4

p2
1

(
21p3

1

(
1
8 p3

1 +
1

68

√
441p6

1 + 134400ap2
1 + 5376

)
+ 400ap2

1 + 16
) ,

k1 =

(
1
8

p3
1 +

1
68

√
441p6

1 + 134400ap2
1 + 5376

)
p1, m1 = − 1

4

2289p3
1

(
1
8 p3

1 +
1

68

√
441p6

1 + 134400ap6
1 + 5376

)
+ 1270ap2

1 + 1966

a3
1

(
40ap2

1 − 11
) ,

p1 = p1, k2 = k2.

By substituting the above values in Equation (2), we obtain

w = 2
Ωκ1 − κ2

Ω2 , (11)

where

Ω = f (x, t) = e−i(p1x)ek1t+k2 + m1e2(k1t+k2) + ei(p1x) + a1,

κ1 = −eip1x p2
1 − e

k2+p1

(
p3

1
8 + 1

68

√
5376+134400ap2

1+441p6
1

)
t−ip1x

p2
1,

κ2 =

ieip1x p1 − ie
k2+p1

(
p3

1
8 + 1

68

√
5376+134400ap2

1+441p6
1

)
t−ip1x

p1

2

, 5376 + 134400ap12 + 441p16 > 0.

Here, a few graphical representations of the above solution (11) are examined in
Figures 5 and 6.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 5. The visual depiction of w(x, t) for Equation (11) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when p1 = 0.5, k2 = −0.5, a = −0.05, a1 = 5.5.
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(a) 3D profile (b) Contour profile (c) 2D profile

Figure 6. The visual depiction of w(x, t) for Equation (11) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when p1 = −0.5, k2 = −1.5, a = 0.5, a1 = 10.

6. Kuznetsov–Ma-Breather

The Kuznetsov–Ma-breather is an explicit time-periodic solution. The following form
of solution will be used for Kuznetsov–Ma-breather:

f (x, t) = e−p1(x−b1t) + a1 cos(p(x + b1t)) + a2 cos(p(x − b1t)), (12)

where a1, p1, p, a2 and b1 are real parameters. Some equations that yield coefficient values
can be obtained by inserting Equation (12) into Equation (3). The subsequent solutions are
obtained:

a1 = a1, a2 = a2, p =

√
− 1

32
3 − 1

2
5a+3b+

√
25a2+2ab+9b2

b
a

, b1 =
1√
2

√
5a + 3b +

√
25a2 + 2ab + 9b2

b
, p1 = 0.

By substituting the above values in Equation (2), we obtain

w = 2
Ωκ1 − κ2

Ω2 , (13)

where
Ω = f (x, t) = e−p1(x−b1t) + a1 cos(p(x + b1t)) + a2 cos(p(x − b1t)),

κ1 =

a2

(
3 − λ

2

)
cos


√
− 3− λ

2
a

(
−

√
λt√
2
+x
)

4
√

2


32a

+

a1

(
3 − λ

2

)
cos


√
− 3− λ

2
a

(√
λ
b t

√
2
+x

)
4
√

2


32a

,

κ2 =


−

a2

√
− 3− λ

2
a sin


√
− 3− λ

2
a

(
−

√
λt√
2
+x
)

4
√

2


4
√

2
−

a1

√
− 3− λ

2
a sin


√
− 3− λ

2
a

(√
λt√
2
+x
)

4
√

2


4
√

2



2

,

λ =
5a + 3b +

√
25a2 + 2ab + 9b2

b
, 25a2 + 2ab + 9b2 > 0.

Here, a few graphical representations of the above solution (13) are given in Figures 7
and 8.
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(a) 3D profile (b) Contour profile (c) 2D profile

Figure 7. The visual depiction of w(x, t) for Equation (13) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when b = −6, a = 10, a2 = −0.5, a1 = 5.5.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 8. The visual depiction of w(x, t) for Equation (13) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when b = −6, a = 1, a2 = −0.5, a1 = 5.5.

7. Periodic Cross-Kink Waves Solution

The periodic cross-kink waves (PCKWs) solution for Equation (1) is given in this
section. The following form of solution will be used for the PCKWs solution:

f (x, t) = m1eζ1 + e−ζ1 + m2 cos(ζ2(x, t)) + m3 cosh(ζ3(x, t)) + a10,
ζ1 = a1x + a2t + a3,
ζ2 = a4x + a5t,
ζ3 = a6x + a7t.

(14)

Some equations that provide coefficient values can be obtained by inserting Equation (14)
into Equation (3).

When a1 = 0, a3 = 0, a7 = 0, m1 = 0, the following solutions are obtained:

a2 =
1026000a2b + 311070a − 167179b

205200a2 , a4 =

√
1
8a

, a5 = 0, a6 =

√
− 47

120a
, a10 = a10, m2 = m2, m3 = m3.

Substituting the above values in Equation (2) yields

w = 2
Ωκ1 − κ2

Ω2 , (15)

where

Ω = f (x, t) = m1eζ1 + e−ζ1 + m2 cos(ζ2(x, t)) + m3 cosh(ζ3(x, t)) + a10,
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κ1 = −
m2 cos

(√
1
a x

2
√

2

)
8a

−
47m3 cosh

(
1
2

√
47
30

√
− 1

a x
)

120a
, κ2 = −

m2 cos

(√
1
a x

2
√

2

)
8a

−
47m3 cosh

(
1
2

√
47
30

√
− 1

a x
)

120a
,

ζ1 =

(
311070a − 167179b + 1026000a2b

)
t

205200a2 , ζ2 =

√
1
a x

2
√

2
, ζ3 =

1
2

√
− 47

30a
.x

The graphical representations of the above solution (15) are displayed in Figures 9
and 10.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 9. The visual depiction of w(x, t) for Equation (15) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a10 = 1.5, b = 0.5, a = −1, m2 = −1.3, m3 = −5.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 10. The visual depiction of w(x, t) for Equation (15) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a10 = −0.5, b = 0.5, a = −0.5, m2 = 2.3, m3 = 0.5.

8. Rogue Waves

This section will provide the rogue waves solution for Equation (1). In order to
comprehend extreme wave events and their effects on the ecosystem more fully, the rogue
waves are investigated. The following form of solution will be used for rogue waves:

f (x, t) = ζ2
1 + ζ2

2 + m1 cosh(α(x, t)) + a7,
ζ1 = a1x + a2t + a3,
ζ2 = a4x + a5t + a6,
α(x, t) = b1x + b2t,

(16)

where 1 ≤ ai ≤ 7, b1, b2 and m1 are real parameters to be found. By inserting Equation (16)
into Equation (3), one can obtain particular equations that provide values for parameters.
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When a1 = b2 = a6 = 0, we obtain the following solutions:

a2 =

√
−

378aa2
4 + 81aa2

5 − 108a2
5b

3a − 4b
, a3 = a3, a5 = a5, a7 = a7, m1 = m1, b1 =

√
2
3a

.

Substituting the above values in Equation (2) yields

w = 2
Ωκ1 − κ2

Ω2 , (17)

where

f (x, t) = Ω = ζ2
1 + ζ2

2 + m1 cosh(α(x, t)) + a7,

κ1 = 2a2
4 +

2m1 cosh
(√

2
3

√
1
a x
)

3a
, κ2 =

(
2a4(a5t + a4x) +

√
2
3

√
1
a

m1 sinh

(√
2
3

√
1
a

x

))2

,

ζ1 = a3 +

√
−

378aa2
4 + 81aa2

5 − 108a2
5b

3a − 4b
t, ζ2 = a5t + a4x, α(x, t) =

√
2
3a

x,
378aa42 + 81aa52 − 108a52b

3a − 4b
< 0.

The graphical representations of the above solution (17) are displayed in Figures 11
and 12.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 11. The visual depiction of w(x, t) for Equation (17) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a4 = 0.5, a7 = 0.5, m1 = −5, b = −0.3, a5 = 0.5, a = 1, a3 = −0.5.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 12. The visual depiction of w(x, t) for Equation (17) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a4 = −0.5, a7 = −5.5, m1 = −5.5, b = −5, a5 = −0.5, a = 0.9, a3 = 15.5.
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9. Periodic Waves Solution

This section will provide the periodic waves solution for Equation (1). For this, we
study the following form of the solution.

f (x, t) = ζ2
1 + ζ2

2 + m1 cos(α(x, t)) + a7,
ζ1 = a1x + a2t + a3,
ζ2 = a4x + a5t + a6,
α(x, t) = b1x + b2t,

(18)

where ai, bi and m1 are the real constants that need to be found. By substituting Equation (10)
into Equation (3), we attain following values of parameters.

When a3 = a4 = a7 = b2 = 0, we obtain the following solutions:

a1 =

√
32b − 49b4

1
360a

a5, a2 =
a5√

3
, a5 = a5, a6 =

14
3

a5b2
1, b1 = b1.

By using the above values in Equation (2), we obtain

w = 2
Ωκ1 − κ2

Ω2 , (19)

where
f (x, t) = Ω = ζ1(x, t)2 + ζ2(x, t)2 + m1 cos(α(x, t)) + a7,

κ1 =
33320a2

5b4
1

27b2 − 1
2

a2m1 cos
(

ax√
2

)
,

κ2 =


28
√

85
3 a5b2

1

(
14i

√
85a5b2

1t
3b +

14
√

85
3 a5b2

1x
3b

)
3b

−
am1 sin

(
ax√

2

)
√

2


2

,

ζ1 =
a5t√

3
+

a5

√
32b−49b4

1
a x

6
√

10
, ζ2 =

14a5b2
1

3
+ a5t, α = b1x,

32b − 49b4
1

360a
> 0.

Here, a few graphical representations of the above solution (19) are displayed in
Figures 13 and 14.

(a) 3D profile (b) Contour profile (c) 2D profile

Figure 13. The visual depiction of w(x, t) for Equation (19) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a = −5, b = −5, a5 = −5, b1 = −5, m1 = 0.5.
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(a) 3D profile (b) Contour profile (c) 2D profile

Figure 14. The visual depiction of w(x, t) for Equation (19) is given. (a) 3D profile; (b) contour profile;
(c) 2D profile, when a = −0.5, b = −5, a5 = −5, b1 = −5, m1 = −0.5.

10. Results and Discussion

The Benney–Luke equation is used in many different studies. For example, exact
solutions to the BLE were found by utilizing the enhanced (G′/G) technique [46]. The ho-
mogeneous balancing technique was utilized to obtain the exact solutions for the BLE [47],
while the ansatz method was employed to find the shock wave solution for the BLE [48]. Ad-
ditionally, much research has been carried out on the Benney–Luke equation [49–51]. In our
study, we employed various ansatz forms of solutions to investigate the Benney–Luke
equation, focusing on lump soliton, rogue waves, breather waves, Kuznetsov–Ma-breather,
Ma-breather and periodic cross-kink wave solutions.

The lump soliton, rogue waves, breather waves, Kuznetsov–Ma-breather, Ma-breather
and periodic cross-kink waves solutions are obtained for various parameter values using
Mathematica 13.2. The lump soliton solution is shown by Equation (5). These solitons have
been explored in various physical occurrences, including optical media, plasma, shallow
water waves and similar phenomena. Equation (7) illustrates the solution for multi-waves.
Complex wave patterns that are defined by the simultaneous existence of several different
wave components propagating across a material are referred to as multi-waves. These
waves can have a variety of amplitudes, wavelengths and frequencies, which can lead to
complex interference patterns and nonlinear interactions. Equation (9) shows the breather
waves solution. Breather waves, sometimes referred to as soliton waves or localized waves,
are unified, consistent wave solutions that travel through a medium while retaining their
amplitude and form, frequently in the face of dispersion and nonlinearity. Breather waves
are important in the study of wave dynamics, such as in oceanography for modeling rogue
waves or in plasma physics for understanding wave–particle interactions. Breather waves
are used in many different domains, such as nonlinear optics, where they allow ultrashort
pulses to be generated for imaging and high-speed communication systems. Equation (11)
illustrates the Ma-breather solution. This solution can be relevant in the study of wave
stability and interactions, particularly in nonlinear systems where breather-like structures
emerge. The Kuznetsov–Ma-breather solution is shown by Equation (13).

The solution for periodic cross-kink waves is represented by Equation (15). These
waves, commonly observed in nonlinear systems such as plasmas, magnetic materials or
elastic structures, exhibit unified and persistent wave patterns characterized by periodic os-
cillations in multiple dimensions. Periodic cross-kink waves originate from the interaction
of dispersion, nonlinearity and inherent features of the medium. They are controlled by
nonlinear equations. These solutions are helpful for comprehending interference effects
and wave patterns in several mediums, such acoustic wave propagation or crystal lattice
dynamics. The solution for rogue waves is given by Equation (17). Rogue waves, which
are exceptionally large and unexpected ocean waves, emerge suddenly amidst a sea of
smaller waves. These waves, sometimes referred to as freak waves or monster waves,
frequently tower over surrounding waves and reach heights noticeably higher than the
average waves in the the area. While rogue waves are typically associated with mar-
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itime hazards, they also hold value in oceanography, for enhancing our comprehension of
climatic patterns and predictive models. Furthermore, research on rogue waves drives ad-
vancements in maritime engineering, renewable energy technologies and communications,
with potential applications spanning from robust infrastructure design to efficient signal
processing, and renewable energy generation. The periodic waves solution is represented
by Equation (19). The lump soliton solution is depicted in Figure 1. It depicts the 3D,
contour and 2D profiles for the absolute part of w, illustrating a dark face of lump solution
for a5 = −1.9, b = 5, a = 5.5 and a3 = 10.5. Figure 2 depicts the 3D, contour and 2D
profiles of w, illustrating the large peak wave for a10 = −2.5, b = 5, a = −15.6, a3 = −5,
a2 = 5, a9 = −4, f0 = 5, f1 = 8 and f2 = 7. Figure 3 depicts the 3D, contour and 2D
profiles of w, illustrating a large bright soliton solution for a10 = 10.5, b = −1.5, a = −15.6,
a3 = −0.5, a2 = −5, a9 = 4, f0 = −5, f1 = 50.8 and f2 = 7. Figure 4 shows the 3D, contour
and 2D profiles of w, illustrating a periodic wave solution for q = 5.5, b = 0.9, a = 8.5,
a3 = 0.5,q1 = 0.5, m1 = 4 and m2 = 1. Figure 5 depicts the 3D, contour and 2D profiles of
w, illustrating two bright faces of solution for p1 = 0.5, k2 = −0.5, a = −0.05 and a1 = 5.5.

Figure 6 shows the 3D, contour and 2D profiles of w, illustrating two bright and two
dark faces of solution for p1 = −0.5 , k2 = −1.5, a = 0.5 and a1 = 10. Figure 7 depicts
the 3D plot, contour plot and 2D graphs of w, illustrating two bright faces of solution for
b = −6, a = 10, a2 = −0.5 and a1 = 5.5. In Figure 8 depicts the 3D, contour and 2D profiles
of w, illustrating a large bright soliton solution for b = −6, a = 1, a2 = −0.5 and a1 = 5.5.
Figures 9 and 10 depict the 3D, contour and 2D profiles of w, illustrating a bright soliton
solution for a10 = 1.5, b = 0.5, a = −1, m2 = −1.3, m3 = −5, and a10 = −0.5, b = 0.5,
a = −0.5, m2 = 2.3, m3 = 0.5, respectively. Figure 11 depicts the 3D, contour and 2D
profiles of w, illustrating a bright face of solution for a4 = 0.5, a7 = 0.5,m1 = −5, b = −0.3,
a5 = 0.5, a = 1 and a3 = −0.5. Figure 12 shows the 3D, contour and 2D profiles of w,
illustrating multiple dark and bright faces of solution for a4 = −0.5, a7 = −5.5, m1 = −5.5,
b = −5,a5 = −0.5, a = 0.9 and a3 = 15.5. Figure 13 shows the 3D plot, contour plot and
2D graphs of w, illustrating a bright face of solution for a = −5, b = −5, a5 = −5, b1 = −5
and m1 = 0.5 . Figure 14 depicts the 3D plot, contour plot and 2D graphs of w, illustrating
one bright and one dark face of solution for a = −0.5, b = −5, a5 = −5, b1 = −5 and
m1 = −0.5.

11. Conclusions

The main objective of this work is to explore the exact solutions of the Benney–Luke
equation (BLE). This study utilizes ansatz forms of solutions to introduce and examine
various types of solitons, including lump soliton, breather waves, Ma-breather, Kuznetsov–
Ma-breather, multi-waves, periodic cross-kink waves, periodic waves and rogue waves
solutions to the BLE. Solitons play a crucial role in many areas, including biological systems
and optical communications. Their self-sustaining, stable waveforms resist dispersion,
allowing for long-distance information transmission and fostering strong signal integrity
in complicated media. The found solutions are said to be novel, intriguing and noteworthy,
covering a significantly wider range of free constants. They may be helpful in characterizing
and elucidating the underlying structures of complex behaviors that are seen in the natural
world. We set the free parameters to appropriate values and produce a variety of 3D, 2D and
contour profiles to physically represent the solutions that we have found. The aim of this
work is to find previously undiscovered, newly determined solitons for the Benney–Luke
equation. Researchers can explore new phenomena, patterns and interactions between
solitons to find novel soliton solutions. In domains like communication systems or marine
engineering, concentrating on practical applications could encourage research toward
practical solutions. Advancing the study of soliton solutions in the Benney–Luke equation
requires collaboration, interdisciplinary work, and the use of advanced computational
and experimental techniques. Upon reviewing the literature, we have concluded that our
documented results represent a novel contribution to the field. This could inspire scientists
and scholars to further research this topic and enhance our understanding.
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