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Abstract: Community detection can help analyze the structural features and functions of complex
networks, and plays important roles in many aspects such as project recommendation and network
evolution analysis. Therefore, community detection has always been a hot topic in the field of complex
networks. Although various community-detection methods have been proposed, how to improve
their accuracy and efficiency is still an ambition pursued by researchers. In view of this, this paper
proposes a community-detection method for complex networks based on node influence analysis.
First, the influence of nodes is represented as a vector composed by neighborhood degree centrality,
betweennes centrality and clustering coefficient. Then, Pareto dominance is used to rank the influence
of nodes. After that, the community centers are selected by comprehensively considering the node
influence and crowding degree. Finally, the remaining nodes are allocated to different communities
using a labeling algorithm. The proposed method in this paper is applied to several actual networks.
The comparison results with other methods demonstrate the effectiveness of the proposed method.

Keywords: complex network; community detection; node influence; Pareto dominance; crowding
degree; labeling algorithm

1. Introduction

Many complex systems in reality can be modeled as a complex network, such as
power networks, aviation networks, transportation networks, social networks, etc. [1,2].
For undirected networks, this relationship satisfies transitivity and symmetry. Complex
networks often exhibit obvious structural properties, such as small-world properties, scale-
free properties and community structure properties [3]. Detecting the community structure
of the network is important to help study its organizational functions and uncover the
hidden inner connections between nodes [4].

Community detection is to partite the entire network into some sub-networks such
that each sub-network is tightly connected to the others internally and sparsely connected
between different sub-networks [5]. Community detection has very important applications
in many fields, such as identifying criminal gangs [6] and product recommendation [7].
Although the community-detection problem of complex networks has been widely studied
and a variety of classical algorithms have emerged [8,9], the quality of community detection
of many existing methods largely depends on the selection of seed nodes, i.e., community
centers. The search for more efficient and accurate community-detection methods is still a
hot issue of research.

Generally speaking, the central nodes of communities should be individuals with high
influence in the community. If influential nodes of the network can be identified, then the
community centers can be determined based on these influential nodes, which is expected
to greatly improve the efficiency and accuracy of community detection.
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In view of this, this paper proposes a community-detection method of complex net-
works based on node influence analysis. Firstly, the influence of a node is represented
by a vector consisting of three indicators. Then, Pareto dominance is used to divide the
nodes into several levels. After that, the community centers are selected taking into account
the node influence and the crowding degree. Finally, a labeling algorithm is proposed to
partition nodes into various communities. The comparison results with other methods
have verified the effectiveness of our method.

This paper has the following three-fold innovations and contributions:

1. A node impact-ranking method based on Pareto dominance is proposed, which
comprehensively considers multiple node influence indicators. We also propose
a concept of neighborhood degree centrality, which is more suitable for detecting
community centers than conventional degree centrality.

2. A community-detection method based on node influence and crowding degree is
presented. The algorithm first comprehensively considers node influence and crowd-
ing degree to determine community centers, and then assigns nodes to different
communities by a label method.

3. The proposed method is applied to different types of actual networks, and the experi-
mental results demonstrate the superiority of the proposed method.

The remainder of this paper is organized as follows: Section 2 gives the related work;
the node influence-ranking method based on Pareto dominance is presented in Section 3;
Based on the node influence analysis, Section 4 proposes the community-detection method.
The experiment to validate the proposed method is put forward in Section 5. Finally,
Section 6 shortly summarizes the work of this paper.

2. Related Work

Since Girven and Newman introduced the concept of community in 2002 [8], many
community-detection methods have been proposed [10]. Among them, the community-
detection methods for undirected complex networks have been widely studied, which can
be broadly classified into graph-partitioning methods [11,12], clustering methods [13,14]
and methods based on heuristic algorithms [15,16]. Some of these methods require early
identification of community centers, while others do not. In general, people mainly use the
influence of nodes to determine the community centers [17]. Therefore, we will elaborate on
the related work for both general community-detection methods and node influence-based
community-detection methods.

2.1. Graph-Partitioning Method

The graph-partitioning method divides the nodes of a network into groups of sub-
graphs with the rule that the number of connected edges between the subgraphs is minimal,
the most famous of which is the GN (Girvan–Newman) algorithm proposed by Girven and
Newman [8]. This type of algorithm requires the number of communities to be specified
in advance and is not applicable to community detection in general networks. Belim and
Larionov [18] used a modularity function to evaluate the quality of community-partitioning
and proposed a greedy algorithm to find communities. Mourchid et al. [19] proposed a new
community-partitioning algorithm by maximizing a new centrality metric, local Fiedler
vector centrality (LFVC), at each stage. Most graph-partitioning problems are NP-hard,
and therefore, efforts have been devoted to finding algorithmic designs that are closer to
the optimal solution. Zhang et al. [20] proposed a large-scale community-detection method
based on core node and layer-by-layer label propagation (CNLP).

2.2. Clustering Method

The clustering method mainly clusters nodes based on some kind of metric that mea-
sures the result of community partition. The most commonly used metric is the modularity
function proposed by Newman and Girvan [21]. Newman [22] first proposed a community-
detection algorithm based on modularity optimization, i.e., fast Newman. Blondel et al. [23]
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proposed the Louvain algorithm based on hierarchical clustering, which is divided into
two stages: the first stage forms the initial community by merging nodes, and the second
stage obtains the final community-detection result by merging the initial community. Both
stages use modularity as the optimization function. Besides modularity, some scholars
also use other improved similarity functions for node clustering. Lv et al. [24] proposed
a community-detection algorithm based on proximity ranking and signal transmission,
which ranks nodes by proximity centrality, calculates the similarity between nodes based
on the idea of signal transmission and then assigns each node to a candidate community.

2.3. Heuristic Algorithm-Based Method

The heuristic algorithm-based approach regards the community-detection problem
as an optimization one and then solves it using some heuristic algorithm. The classical
heuristic algorithms are genetic algorithm [25], particle swarm algorithm [26], simulated an-
nealing algorithm [27], label propagation algorithm (CIDLPA) [28], etc. In terms of objective
function construction, there is no widely accepted criterion for community quality evalua-
tion, and most optimization objectives are to minimize or maximize some structural metrics,
such as modularity, triangle participation ratio or conductivity of the community [29].

2.4. Node Influence-Based Method

In actual complex networks, the influences of different individuals varies. The nodes
with high influence are often the leaders of various communities. Therefore, it is natural to
first determine the community centers based on the influence of nodes, and then assign
other nodes to the community centers.

Zhao et al. [30] introduced an algorithm for detecting overlapping communities by
utilizing node influence propagation. Node influence refers to a node’s capacity to impact
other nodes, which is determined by both the node’s location and its activity behavior.
Liu et al. [31] proposed an algorithm for discovering communities that integrates the in-
fluence of seed nodes and the similarity of neighborhoods. Xu et al. [32] introduced a
community-detection algorithm that utilizes node influence and node similarity for cluster-
ing. The algorithm comprises three fundamental steps: identification of the central nodes
based on node influence, selection of candidate neighbors based on node similarity to
expand the community and merging of small communities based on community similarity.
Ma et al. [33] put forward a new method to identify the most influential nodes which are
considered as cores of communities and achieve the initial communities. Subsequently,
through an expansion strategy, unassigned nodes are incorporated into the initial communi-
ties to facilitate their growth and enlargement. In order to maximize modularity, Boroujeni
and Soleimani [34] attempted to identify influential nodes, and then detect communities by
estimating their influence domains.

The above research results have provided various ideas and methods for the community-
detection problem of complex networks, which greatly enriched the theory of complex net-
works and effectively improved the accuracy of community detection. However, the search
for more efficient and accurate community-detection methods is still the focus of attention
in the field of complex network, and the in-depth research in this popular direction will
continue to be promoted on the basis of the existing research results.

3. Analysis of Node Influence Based on Pareto Dominance

We first provide some basic knowledge on networks that need to be used. Then, the
node’s influence vector is constructed. Finally, the node influence-ranking method based
on Pareto dominance is presented.

3.1. Basic Concepts on Network

Generally, a network can be represented by a graph G = (V, E), where V = {v1, · · · , vn}
is the node set of the network, and n is the number of nodes in the network; E is called the
edge set of the network, and m = |E| represents the number of edges in the network.
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If there is an edge between vi and vi, then one of them is called a neighbor of the other
one. The edge e = (vi, vj) is said to be incident with vi and vj. The neighbor set of vi is
denoted as N(vi). The degree of vi refers to the number of edges of G incident with vi,
denoted as d(vi). For a graph without loops, d(vi) = |N(vi)|.

A path P in G is a non-null sequence v1, · · · , vk, in which all nodes are distinct. k is
called the length of P. Nodes vi and vj are said to be connected if there is a (vi, vj) path in
G. Distance dis(ui, vj) of vi and vj in G is the smallest length of the (vi, vj) path. If there is
no path between vi and vj, then it is specified that dis(vi, vj) = ∞. The distance between all
nodes can form a matrix called the distance matrix D = (dij), where dij = dis(vi, vj). We
can use the Dijkstra’ algorithm to find the shortest path from any node to all other nodes in
a network [35].

3.2. Node’s Influence Vector

Some nodes play a vital role in the complex network. The influential and important
nodes have a great impact on the structure and function of the network. Therefore, it has
important theoretical significance and application value to evaluate the node influence of
complex networks, and then explore the key nodes.

This paper synthesizes three commonly used indicators to evaluate the node influence
of complex networks. In fact, there are many indicators that can measure the centrality of
nodes. We have comprehensively considered the focus and computational cost of different
indicators and selected three measurement methods, i.e., neighborhood degree centrality,
closeness centrality and clustering coefficient.

3.2.1. Neighborhood Degree Centrality

Generally speaking, in social networks, the greater the influence of an individual,
the stronger his social relationships, and therefore the greater its degree will be. So, peo-
ple measure the influence of nodes based on degrees. The degree centrality of node vi is
defined as [36]:

DC(vi) =
d(vi)

n
(1)

Degree centrality measures the degree of connection between a node and all other
nodes in the network. However, some communities contain large number of nodes, and the
degrees of core nodes are relatively high. But some communities have fewer nodes, and the
degrees of core nodes are relatively small. Therefore, it is unreasonable to analyze the
influence of nodes using traditional degree centrality. To address this issue, we propose the
concept of neighborhood degree centrality, which is defined as follows:

DCR(vi) =
d(vi)

maxvj∈N∗(vi)
{d(vj)}

(2)

where N∗(vi) = N(vi)
⋃{vi}, and N(vi) is the neighbor set of vi. Relative degree centrality

measures the relative size of a node’s degree within its neighborhood. If a node has signifi-
cant influence, its relative degree centrality tends to be closer to 1; conversely, the relative
degree centrality approaches 0 if its influence is small.

3.2.2. Betweenness Centrality

Betweenness centrality quantifies the number of times a node acts as a bridge along
the shortest path between two other nodes. The betweenness centrality of node vi is
defined as [36]:

BC(vi) = ∑
vj ̸=vi ,vk ̸=vi

δjk(vi)

δjk
(3)

where δjk(vi) represents the number of shortest paths between i and vj that pass vi, and δjk
refers to the number of all shortest paths between i and vj.
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Nodes with high betweenness centrality have significant influence over the flow of
information in the network, as many shortest paths pass through them.

3.2.3. Clustering Coefficient

Clustering coefficient is the quantity that represents the aggregation degree of nodes
in the network. Let γi = |N(vi)|, which refers to the number of neighbors of vi. Let εi be
the number of edges between all nodes of N(vi). Then, the clustering coefficient of vi is
defined as [36]:

CC(vi) =
2εi

γi(γi − 1)
(4)

The clustering coefficient can quantitatively describe the probability that any two
neighbors of a node in a network are also neighbors with each other. The larger the
clustering coefficient, the higher the degree of aggregation between the neighbors of
the node.

3.2.4. Influence Vector

The above three indicators of node influence can be regarded as a three-dimensional vector,
called the influence vector, denoted as IV(vi), i.e., IV1(vi) = DCR(vi), IV2(vi) = BC(vi) and
IV3(vi) = CC(vi).

3.3. Node Influence Ranking Based on Pareto Dominance

The above three indicators can reflect the influence of nodes from different aspects,
and each have its own advantages and disadvantages. Some works combine different
indicators into one indicator by weighting [37]. Although this kind of method can integrate
the advantages of each indicator, the weights of different indicators has a great impact on the
evaluation results. In addition, it is easy to ignore which nodes are particularly prominent
in some aspects. Therefore, this paper uses Pareto dominance to sort the influence of
different nodes.

Definition 1 ([38]). For nodes vi and vj, if the following two relationships are satisfied:

1. ∀k ∈ {1, 2, 3}, IVk(vi) ≥ IVk(vj);
2. ∃k ∈ {1, 2, 3}, IVk(vi) > IVk(vj).

it is said that node vi dominates vj, denoted as vi ≻ vj, which means that node vi has greater
influence than node vj. If a node is not dominated by any node, it is called a non-dominated node.
We can sort all nodes based on their dominance relationship.

The set consisting of all non-dominated nodes in V is recorded as F1. The nodes in set
F1 have the highest level of influence.

Then, let V1 = V\F1. The set consisting of all non-dominated nodes in V1 is recorded
as F2. The nodes in set F1 have the second level of influence.

This process continues, and we can divide all nodes into several layers. Assuming
that a total of l layers are obtained in the end, then V = F1

⋃ · · ·⋃ Fl . We can also set the
number of layers l in advance as needed. After obtaining the first l − 1 layers, assign the
remaining nodes to l-layer.

The process for sorting all nodes is shown as Algorithm 1. From line 1 to 2, the relativity
degree centrality, closeness centrality and clustering coefficient of each node are calculated,
respectively. In line 4, these three indicators are stitched together to form a matrix of size
n× 3. Each row of this matrix represents the influence vector of a node. Lines 5–22 are
to sort all nodes into several layers. To obtain the final set of non-dominant nodes, add
an attribute called “WND” to each node in Line 8. First assume that all nodes are not
dominated, i.e., WND = true. From line 9 to 16, the algorithm traverses all nodes vi in V
and compares its influence vector with all other nodes. If there exists another node vj that
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dominates vi, then set WND[vi] = false. If the attribute WND of node vi does not change
after the loop, then it belongs to the set Fl . In this way, all nodes can be divided into l layers.

Algorithm 1 Influence Ranking
Input: G = (V, E).
Output: F1, · · · , Fl .
1: for node vi ∈ V do
2: Calculate DCR(vi), BC(vi), CC(vi);
3: end for
4: IV ← append(DCR, BC, CC);
5: let l = 0;
6: if V ̸= ∅ then
7: let l = l + 1
8: WND[vi]← true, ∀vi ∈ V;
9: for vi ∈ V do

10: for vj ∈ V do
11: if vj ≻ vi then
12: WND[vi]← false;
13: break;
14: end if
15: end for
16: end for
17: Fl ←[];
18: for vi ∈ V do
19: if WND[vi] == true then
20: Fl .append(vi)
21: end if
22: end for
23: V = V\Fl
24: end if
25: Output F1, · · · , Fl .

4. Community-Detection Method Based on Node Influence and Crowding Degree

This section provides specific community division, including the determination of com-
munity centers, process of community detection, algorithm refinement and time complexity.

4.1. Determination of Community Center

In the real world, community centers are generally individuals with high influence.
Therefore, it is reasonable to detect the communities of the network with influential nodes
as the centers. However, there may also be more than one influential node within the same
community, and in general, these two nodes are closely connected. Additionally, it is also
possible that some community center has the highest influence in its own community, but is
relatively weak compared to the centers of other communities. In view of this, we consider
both node influence and crowding degree to determine the community center.

The crowding degree of nodes vi and vj is defined as follows:

Cr(vi, vj) =
|N(vi)

⋂
N(vj)|

|N(vi)
⋃

N(vj)|
(5)

The crowding degree is only between 0 and 1. The greater the crowding degree,
the more likely two nodes are to be in the same community; otherwise, they are more likely
to belong to different communities.

We first consider the nodes in the first layer F1. Each node in F1 has the highest
influence. First, a node is randomly selected in F1 as the first community center, recorded
as c1. Then, c1 and the nodes whose crowding degree with c1 is less than a given threshold
λ are removed from F1. The above process repeats until F1 is empty.
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We then consider the nodes in the second layer F2. The selection process of the center
nodes is similar to F1.

In order to ensure that the community center has a high level of influence, this paper
only selects nodes from the first or second layers as community centers.

The value of threshold λ will have a certain impact on the selection of community
centers. Generally speaking, the smaller the threshold, the larger the number of community
centers; conversely, the larger the threshold, the smaller the number of community centers.
Because the influence of the first layer individuals is higher than that of the first layer
individuals, the threshold should be set lower than that of the second layer, which is
conducive to selecting more individuals from the second layer as community centers.

The specific selection process is shown in Figure 1. Firstly, based on non-dominated
sorting, non-dominated sets for different layers are obtained. Then, when screening com-
munity centers, crowding non-dominated sorting method is used. Through two different
sorting processes, all community centers are ultimately obtained.

① Nondominated
Sorting

② Crowding Degree 
Sorting

① ②

Rejected

1F
Centers

V
2F

Figure 1. Selection Process of Community Centers.

4.2. Process of Community Detection

After the community centers are determined, other nodes will be allocated to the center
node a labeling algorithm. The community with center ci is denoted as Ci, i = 1, 2, · · · , s.
To achieve this, two parameters are defined to determine which set would be most suitable
for a node to add in among C1, C2, · · · , Cs.

Suppose that v is a node, H is a subset of V. The distance between v and H is defined
as dis(v, H) = min

w∈H
{dis(v, w)}. If dis(v, H) = 1, then v has at least one neighbor node in H.

Also note that for v′ ∈ H, dis(v′, H) = 0.
If dis(v, H) = 1, let A(v, H) = N(v) ∩ H, which is called the attachmentof v at H.

a(v, H) = |A(v, H)| is called the fitness of node v to set H, indicating the number of
neighbors of node v in H. The greater the fitness, the tighter the connection between node
v and set H.

The process of generating Ci is shown as Algorithm 2, which is mainly implemented
through a labeling process. The input of the algorithm is graph G and the set of community
centers C = {c1, · · · , cs}.

The label p(v) represents the minimum distance from v to all communities. First,
lines 1–8 regard each central node as a community and set the label values of the center
nodes as 1, and that of other nodes as ∞.

Lines 9–24 assign all other nodes to the community with the highest fitness. Belong
records the community code with the highest fitness for each node. Lines 20–22 update the
label values of the neighbor nodes.

Theorem 1. Suppose that G is a connected network. In Algorithm 1, if R ̸= ∅, there is at least one
v ∈ R and Ci, so that dis(v, Ci) = 2.
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Proof. Assume that the theorem does not hold. For any v ∈ R, let d = dis(v,Ci) = min
1≤k≤s

{d(v,Ck)}.
According to the assumption, 2 ≤ d < ∞. So there is a path of length d, denoted as
v1, · · · , vd, such that v1 ∈ R, · · · , vd−1 ∈ R, vd ∈ Ci. Then, dis(vd−1, vd) = 1 contradicts
the hypothesis.

Algorithm 2 Community Detection
Input: G = (V, E), C
Output: Community division result C1, · · · , Cs.
1: p(v) = ∞, ∀v ∈ V;
2: for i = 1 to s do
3: Ci = {ci};
4: p(ci) = 0;
5: for v ∈ N(ci)&p(v) ̸= 0 do
6: p(ci) = 1;
7: end for
8: end for
9: R← V \ {c1, · · · , cs};

10: while R ̸= ∅ do
11: for v ∈ R&p(v) = 1 do
12: Belong(v) = 0;
13: for i = 1 to s do
14: if a(v, Ci) > Belong(v) then
15: Belong(v) = i;
16: end if
17: CBelong(v) = CBelong(v)

⋃{v};
18: end for
19: R = R− v;
20: for u ∈ N(v)&p(u) ̸= 0 do
21: p(u) = 1;
22: end for
23: end for
24: end while
25: Output C1, · · · , Cs.

Theorem 1 guarantees that the algorithm will not fall into a dead cycle for a connected
graph. After the algorithm, all nodes are divided into s sets, that is, s communities are
obtained. But when the network is disconnected, it is difficult to guarantee. In general,
determining whether a network is connected also requires a lot of computation. So, we
proposed a refinement for the algorithm.

4.3. Algorithm Refinement

In many cases, community-detection algorithms deal with networks that are not
connected. If none of the nodes in a certain connected component is selected as the
center of community, the nodes in that connected component cannot be classified into
any community. At the same time, the algorithm will be stuck in a dead loop because
there are always nodes that have not been classified into communities. In response to this
scenario, algorithm augmentation and refinement have been undertaken. The fundamental
idea involves recursively decomposing subgraphs not assigned to communities using the
same method.

Firstly, the initial graph is subjected to community detection using Algorithm 2. Af-
ter the number of iterations in Algorithm 2 exceeds the number of nodes, which means the
algorithm enters a dead cycle, the algorithm terminates and outputs the set of undivided
nodes, denoted as R. Take the nodes in R and edges between nodes to form a subgraph
and apply Algorithm 2 for community detection within this subgraph. This process will
continue recursively until all nodes are assigned to communities.
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4.4. Overall Process

At this point, all the steps of this community-detection algorithm have been designed.
The entire algorithm process includes four steps: node influence ranking, community center
determination, community division and algorithm refinement. Given this, we denote the
method proposed in this paper as the ICDR. The overall process of the proposed method is
shown in Figure 2.

① Nondominated Sorting ② Crowding Degree Sorting ③ Community Detection

F1F2

F3

F4

Centers

④ Refinement

v1

v2 v3

v4

v5

v7
v8

v6

v10

v9

v1

v2 v3

v4

v5

v7
v8

v6

v10

v9

v1

v2 v3

v4

v5

v7
v8

v6

v10

v9

v1

v2 v3

v4

v5

v7
v8

v6

v10

v9

Figure 2. Overall process of the proposed method.

Step 1 divides the nodes in V into several layers according the influence vector. The in-
fluence matrix of the 10 nodes in the mini network shown in Figure 1 is as follows:

IV =



0.75 0.00 0.39
0.75 0.00 0.39
0.75 0.00 0.39
1.00 0.33 0.54
1.00 0.35 0.54
0.67 0.00 0.36
0.75 0.01 0.39
0.67 0.00 0.36
1.00 0.00 0.11
1.00 0.00 0.11


As can be seen from matrix IV, v5 is a non-dominated node in V. So F1 = {v5}.

After removing v5 from V, the non-dominated node in V\{v5} is v4. So F2 = {v4}.
Similarly, F3 = {v7, v9, v10}. If we intend to divide all nodes into four layers, then
F4 = {v1, v2, v3, v6, v8}.

Step 2 determines the community centers by simultaneously considering node influ-
ence and crowding degree. First, v5 is selected as the first center from F1. Because F1 only
has one node, then we will consider F2. Thus, v4 is selected as the second center. If we
only consider the non-dominated nodes in the first two layers, the selection process of
community centers is over. If we consider the third layer of non-dominated nodes, v9 or v10
will be selected as the third center. The result in Figure 1 only considers the first two layers.

Step 3 divides the remaining nodes into various communities in sequence using the la-
beling algorithm. From Figure 1, we can see that C1 = {v5, v6, v7, v8} and C2 = {v1, v2, v3, v4}.
However, because nodes v9 and v10 are not connected to the other nodes, they will not be
assigned to the above two communities.

Step 4 will modify the results if there are nodes that have not been divided into any
community. We can see from Figure 1 that nodes v9 and v10 form a subgraph. Applying
the same method, these two nodes will be divided into the same community.

In the above example, if we use the first three layers of nodes to determine the
community centers, the refinement process will not be used, because we can run the
algorithm to partition all nodes at one time.

4.5. Case Study

Random networks are also commonly used as test objects to evaluate algorithm
performance [10]. We used a random network to illustrate the implementation process of
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our method and preliminarily verified its effectiveness. The network is shown in Figure 3,
which contains 20 vertices and has three distinct community structures.

Firstly, using node influence analysis, we can obtain the first layer of non-dominated
nodes as F1 = {13, 16, 20}. From Figure 3, we can see that these three nodes do occupy
important positions in the network. Similarly, the second layer of non-dominated nodes is
F2 = {2, 3, 4, 9, 10, 11, 12, 15, 18, 19}. The remaining nodes form the third layer F3.

Figure 3. Example network.

Using the selection method of community centers in this paper, we first select node
13 from F1 as the community center. Since the crowding degree of nodes 16 and 20 is 0.5,
we chose one of them as the community center. Suppose that we chose node 20. Next, we
will make the selection in the second layer F2. Taking into account both node influence and
crowding degrees, we ultimately chose node 11 as the third community center. We can see
from Figure 3 that these three nodes are exactly located in different communities, so the
selected result is reasonable.

Then, we use labeling algorithms to sequentially partition all vertices into differ-
ent communities.

Through this example, we can see that using only the nodes in the first layer to select
community centers may result in biased results. Neglecting crowded degree can also lead
to the consequences of having too many community centers.

5. Experiment
5.1. Experimental Subjects

To verify the effectiveness of our method, we selected seven classic real world networks
for experiments, whose information is listed in detail in Table 1. Except for Dolphin
amd Polbboks, all the data about these networks can be downloaded from the website
http://snap.stanford.edu/data/ (accessed on 15 April 2024). Four of these networks have
ground-truth community structures, but the remaining ones do not.

Table 1. Information of real world networks.

Network Node Number Edge Number Community Number

Dolphin [39] 62 159 2
Polbooks [8] 105 441 3

Facebook 4039 88,234 /
Ca-GrQc 5242 14,496 /

Feather-lastfm-social 7624 27,806 /
DBLP 317,080 1,049,866 13,477

Amazon 334,863 925,872 75,149

http://snap.stanford.edu/data/
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5.2. Evaluation Indicator

Since four networks have ground-truth community structures, we adopt generalized
Normalized Mutual Information (NMI) and F1 score to evaluate the performance of the
proposed algorithm.

NMI: This indicator is used to measure the similarity between the detected commu-
nity structures and the ground-truth community structures, whose definition is given as
follows [40]:

NMT(C|C ′) = 1
2
(H(C|C ′) + H(C|C ′)) (6)

where C and C ′ are two matrices that represent the detected community structures and the
ground-truth community structures, respectively. The k-th rows Ck and C ′k represent the
node distribution of community C and C ′, respectively. H(C) and H(C|C ′) are, respectively,
the entropy of C and the conditional entropy of C with respect to C ′.

The value of NMT is between 0 and 1, and the higher the value, the better the perfor-
mance of the algorithm.

F1 score: This indicator measures the closeness between the community structures
discovered by the algorithm and the ground-truth community structures, which is given
by the following formula [41]:

F1 =
1
2

(
1
|C| ∑
Ci∈C

Fit(Ci, C ′ρ(i)) +
1
|C ′| ∑

C ′j∈C ′
Fit(Cρ′(j), C ′j)

)
(7)

where C and C ′ are the detected and ground-truth communities, respectively. ρ(i) =
argmaxjFit(Ci, C ′j), ρ′(j) = argmaxiFit(Ci, C ′j) and Fit(Ci, C ′j) is the harmonic mean of Preci-
sion and Recall, i.e.,

F1(Ci, C ′j) = 2 ·
precision(Ci, C ′ j) · recall(Ci, C ′ j)

precision(Ci, C ′ j) + recall(Ci, C ′ j)

where

precision(Ci, C ′j) =
∣∣Ci ∩ C ′ j

∣∣
|Ci|

and

recall(Ci, C ′j) =
∣∣Ci ∩ C ′ j

∣∣∣∣C ′ j∣∣
Modularity is an indicator used to measure the degree of modularity in a network

structure, which can help us evaluate the quality of community partitioning. The calculation
formula for modularity is as follows [20]:

Q =
1

2m ∑
i,j
[aij −

d(vi)d(vj)

2m
]δ(Ci, Cj) (8)

where Q represents the modularity, m is the edge number of the network, aij refers to the
connection strength between nodes ni and nj, di and dj, respectively, represent the degrees
of nodes vi and vj, Ci and Cj are the modules to which nodes vi and vj belong, and δ(Ci, Cj)
equals 1 when Ci and Cj are equal; otherwise, it equals 0.

For all networks, we use modularity to measure the quality of community detection.
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5.3. Experimental Results and Analysis
5.3.1. Correlation Analysis of Different Indicators

In order to verify the rationality of the centrality measurement indicators selected in
this paper, we analyzed the correlation between different indicators. In addition to the
three metrics we used, we also add the closeness centrality.

We generated 10 random networks, each containing three communities with varying
numbers of nodes. Then, we calculate the node influence of each network separately.
The final result is shown in Figure 4, in which, CC1 refers to clustering coefficients and CC2
refers to closeness centrality.
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Figure 4. Correlation analysis of different indicators.
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By analyzing the correlation, we find that there is a significant correlation between
indicators CC1 and CC2. Combining other indicators and their correlations, we conclude
that the three indicators we have chosen are quite reasonable.

5.3.2. Analysis of the Changing Trend of Non-Dominant Nodes

We obtain the number of non-dominated nodes η for the Erdös–Rényi random graph
of different node sizes n but fixed edge existence probability p = 0.3.

From Figure 5, it could be seen that as the network size n continues to increase,
the quantity of non-dominant nodes η tends to grow roughly in a logarithmic fashion.
To test the conjecture, a linear regression experiment is now performed on these data,
with log n as the predictor variable and η as the response variable. The result of the linear
regression model shows that the adjusted R2 criterion is 0.9326 and the p-value for the
F-statistic is 3.5× 10−15. This shows that our model explains the relationship between n
and η well. Overall, the number of non-dominated nodes is approximately linearly related
to the log of the network size, i.e., η ∈ O(log n). This result justifies our assumptions in
the complexity analysis about the trend in the number of non-dominated nodes and the
correctness of the algorithm’s complexity in the average case.

Figure 5. The changing trend of non-dominated nodes with network size.

5.3.3. The Community-Detection Results of Our Method

We used the method in this paper to divide the selected network into communities,
and visualized partitioning results are shown as Figures 6 and 7, in which different colors
represent different communities. It should be noted that due to the large number of
networks DBLP and Amazon, we are unable to display the detection results of the entire
network, but only visualize the results of partial nodes (104). However, the entire network
was divided in the experiment.
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(a) (b)

Figure 6. Community-detection results for small real world networks. (a) Dolphin; (b) Polbooks.

(a) (b) (c)

(d) (e)

Figure 7. Community-detection results for real world networks. (a) Facebook; (b) Ca-GrQc;
(c) Feather-lastfm-social; (d) DBLP; (e) Amazon.

5.3.4. Comparison with Other Methods

To verify the effectiveness of the proposed algorithm, three classic community-detection
algorithms are selected to compare with the algorithm proposed in this paper (ICDR): Gir-
van’s algorithm [8], CIDLPA [28] and CNLLP [20]. The final results of these four algorithms
on four networks with ground-truth community structures are listed in Table 2.

From Table 2, it can be seen that among the four comparative algorithms, our method
(ICDR) achieves the highest NMI value and F1 score in all networks. Among the other
three algorithms, CNLLP is superior to CIDLPA, while CIDLPA is superior to Girvan’s
algorithm. The experimental results fully demonstrate the superiority of the proposed
method. In addition, all algorithms have better F1 scores than NMI values. Moreover, all
algorithms achieve better results in network Amazon compared to network DBLP.
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Table 2. NMI and F1 score of different methods on two networks.

Network
Girvan’s Algorithm CIDLPA CNLLP ICDR

NMI F1 Score NMI F1 Score NMI F1 Score NMI F1 Score

Dolphin 0.521 0.631 0.489 0.526 0.637 0.674 0.889 0.982
Polbooks 0.535 0.628 0.612 0.634 0.482 0.491 0.507 0.775
DBLP 0.274 0.335 0.316 0.347 0.336 0.453 0.492 0.523
Amazon 0.336 0.387 0.353 0.416 0.373 0.584 0.452 0.632

Average 0.305 0.361 0.335 0.382 0.355 0.519 0.396 0.535

The results on modularity for all networks are listed in Table 3.
From Table 3, it can be seen that the overall modularity obtained by our method is the

highest, and our results are the best for most networks. The experimental results indicate
that the community-detection method proposed in this paper can effectively reveal the
community structure of the network.

Table 3. Modularity of different methods on all networks.

Network Girvan’s Algorithm CIDLPA CNLLP ICDR

Dolpin 0.501 0.592 0.384 0.374
Polbooks 0.518 0.563 0.566 0.450
Facebook 0.463 0.624 0.635 0.688
Ca-GrQc 0.524 0.536 0.572 0.684
Feather-lastfm-social 0.455 0.463 0.416 0.633
DBLP 0.574 0.642 0.682 0.674
Amazon 0.636 0.725 0.711 0.791

Average 0.530 0.598 0.603 0.665

6. Conclusions

Community structure is an important feature of complex networks. Mining com-
munities can help analyze the structural features and functions of complex networks,
and therefore has important theoretical and practical significance. Although various
community-partitioning methods have been proposed, most of them often rely on the
selection of seed nodes.

In view of this, this article proposes a complex network community-partitioning
method based on node influence analysis. Firstly, this article uses Pareto dominance to
divide nodes into several Zeng. Then, we use node influence and crowding to determine the
community center. Finally, we use a labeling algorithm to divide the network into several
communities. Finally, the method proposed in this article is applied to several practical
networks. The comparison results with other methods demonstrate the effectiveness of
this method.

Although the proposed method can effectively improve the efficiency and accuracy
of community detection, there are also some insufficiencies. Firstly, the determination of
some parameters involved in the algorithm still needs to be carefully studied. At present,
we mainly rely on experimental analysis to determine these parameters, and have not
conducted an in-depth analysis from a theoretical perspective. Secondly, the effectiveness
of the proposed method still needs to be promoted and applied in more practical networks
in order to comprehensively verify its performance.
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