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Abstract: Surface gravity inversion attempts to recover the density contrast distribution in the 3D
Earth model for geological interpretation. Since airborne gravity is characterized by large data
volumes, large-scale 3D inversion exceeds the capacity of desktop computing resources, making it
difficult to achieve the appropriate depth/lateral resolution for geological interpretation. In addition,
gravity data are finite and noisy, and their inversion is ill posed. Especially in the absence of a
priori geological information, regularization must be introduced to overcome the difficulty of the
non-uniqueness of the solutions to recover the most geologically plausible ones. Because the use
of Haar wavelet operators has an edge-preserving property and can preserve the sensitivity matrix
structure at each level of the multilevel method to obtain faster solvers, we present a multilevel
algorithm for large-scale gravity inversion solved by the re-weighted regularized conjugate gradient
(RRCG) algorithm to reduce the inversion computational resources and improve the depth/lateral
resolution of the inversion results. The RRCG-based multilevel inversion was then applied to synthetic
cases and airborne gravity data from the Quest-South project in British Columbia, Canada. Results
from synthetic models and field data show that the RRCG-based multilevel inversion is suitable for
obtaining density contrast distributions with appropriate horizontal and vertical resolution, especially
for large-scale gravity inversions compared to Occam’s inversion.

Keywords: extension equivalent geometric framework; rapid forward; multilevel; large-scale
inversion; Haar wavelets

1. Introduction

Airborne gravity surveys are characterized by very large data volumes, typically
containing hundreds to thousands of kilometers of data lines with points every few
meters, covering areas of thousands of square kilometers [1]. However, due to the limited
computing resources of desktop equipment and the high computational cost of forward
and inverse algorithms, large-scale gravity field inversions cannot achieve the appropriate
resolution and level of detail required for geological interpretation [2,3]. There are two main
ways to acquire forward operators (Jacobi, kernel, or sensitivity matrix) for gravitational
fields. Firstly, the forward operator can be constructed directly from the discretized
integral equations/integral equations, which are Poisson’s integral approach [4], Green’s
integral approach [5], radial multipole approach [6], point-mass approach [7], and single-
layer approach [8]. The 2D/3D Earth model is discretized into simple geometries such
as triangles [9], rectangles [10], tetrahedrons [11], point masses [12], right rectangular
prisms, or right polygonal prisms [13], which have analytical solutions that are used to
compute self-induced gravity effects and gravity gradients. Contributions from anomaly
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sources are obtained using the discretized integral equations/integral equations based on
the principle of superposition [14–16]. Secondly, the forward operator of gravitational
fields can be recovered indirectly based on partial differential equations (PDEs), such as
the finite-difference method [17,18], the finite-element method [19], and the finite-volume
method [20]. The gravitational field is acquired using PDEs; then, the gravitational
anomalies and higher-order derivatives of the gravitational field are calculated using
first-order and high-order difference operations. However, the right-hand-side term of
Poisson’s equation becomes more complicated during the inverse iteration as the number
of prismatic cells with non-zero density increases, and its computation time increases
sharply with the number of prismatic cells or observation points. Therefore, the forward
modeling algorithm via discretized integral equations/integral equations is often used for
the inversion of gravity/tensor gravity data. The computational cost of optimizing the
objective function established by the physical property inversion is considerable in the face
of requirements such as 3D fine geotectonic studies at large scales, multiple areas, and large
volumes of data [1,21–23].

To meet the needs of large-scale fast 3D inversion, the current fast inversion research
is mainly carried out by dimensionality reduction and improving the computational
performance of the equipment. First, dimensionality reduction methods are used to reduce
the memory consumption of the kernel matrix and improve the computational efficiency,
i.e., using techniques such as equivalent geometric framework [24], wavelet transforms [3],
footprint inversion [1] and fast Fourier transform (FFT) [25], and planting inversion to
change the implementation of the kernel matrix, which can significantly improve the
efficiency of the inversion implementation while reducing the required memory space
of the kernel matrix. However, all these methods have some limitations, such as the
fact that the equivalent geometric framework depends on the symmetry of the potential
field, the wavelet algorithm may reduce the computational accuracy, and the planting
inversion is overly dependent on the inversion parameter settings. Second, large-scale
parallel acceleration research is being carried out on multi-core CPU, cluster computer,
and GPU platforms to improve the ability of computing devices to process massive matrix
operations, thereby effectively reducing inversion computation time [2,26,27]. However,
its hardware and software access threshold is relatively high, and only a few research
results have been published. Third, the constraint function speeds up the convergence of
the inversion iteration. For example, the reconstruction density contrast distribution is
optimized by the depth-weighting function [28] and the fast convergence of the objective
function is ensured by applying the preprocessing matrix [29].

Similar to other geophysical inversion methods, the current gravity and magnetic
inversion methods and their gradient/tensor inversion methods mainly face the problem
of the non-uniqueness of the solution. To make the ill-conditioned problem converge to
a well-conditioned system, the constraint function is generally constructed by imposing
regularization terms on the objective function, such as L0- [30], L1- [31], L2- [28,32],
and LP- [33] norm minimization, to impose a priori geological information to obtain a
density contrast distribution close to the actual situation. However, due to the lack of
a priori geological information, the inversion results mainly depend on the choice of
the constraint function. For example, affected by the smoothing effect, the traditional
property inversion method based on a minimization of sum-of-squares, or L2-norm, is
smooth in both the vertical and horizontal directions [34]. In order to accurately highlight
the geological structure and meet the needs of 3D delicate structure inversion, various
methods have been developed and have achieved certain results, such as total variation
regularization inversion [35,36], focusing inversion [37], sharp boundary inversion [38],
and steep boundary inversion [39]. Tikhonov regularization based on the L2 norm has the
advantages of fast imaging speed and a stable solution; however, there are existing problems,
e.g., the imaging effect is not good, poor resolution, and difficulty distinguishing between
adjacent abnormal sources [28]. Total variation regularization based on the L1 norm can
make the boundary between the target area and the background area of the reconstructed
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image clearer [40]. However, there are some shortcomings, such as insufficient convergence
of the objective function and inaccurate positioning of the target area [41]. Sharp boundary
inversion [38,42] has shortcomings, e.g., inaccurate inversion of deep structure and difficulty
adding constraints. However, it can achieve excellent inversion results when the geological
prior information is sufficient. These methods all have a certain emphasis, i.e., they have
a single advantage for the corresponding problems. Then, in the face of more complex
geological structures, this advantage will become a deficiency. In addition to the problems
described above, focusing inversion can generally obtain better depth resolution.

Regardless of the inversion technique used, all geological constraints manifest them-
selves as a regularization that can be quantified by an a priori model, data weights, model
weights, upper and lower bounds [43–46], and the type of stabilizing function [47–49].
The stabilizing function should be chosen by the user, taking into account geological
knowledge, as well as information about the class of models from which a unique solution
is sought [1,50]. In order to reconstruct a feasible geological image of the subsurface, it
is common practice to place lower and upper bounds on the variables while managing
the ambiguity of the geophysical potential field inversion problem [37,51,52]. A priori
information on the density distribution serving as the inversion bounds is critical when
using focusing inversion [12,53]. Different results are obtained when different upper and
lower density bounds are used [54]. Numerical tests show that focusing inversion produces
a stable solution, but tends to produce the smallest possible anomalous domain. It also
makes the image look unrealistically sharp [37], i.e., overfocused. Therefore, in order
to avoid the overfocused phenomenon, in the focusing inversion algorithm verification,
the upper density bound is usually the maximum value of the model parameters, and the
lower density bound is the background value of the model [37]. In practical applications,
geological data or human judgment has often been used to determine the upper and lower
density bounds [50,55]. Essentially, each method has a different physical basis. That is, it
has a single significant advantage for the corresponding problem, and, in the face of more
complex geological structures, this advantage turns into an over-regularization effect [37].

Therefore, in the present work, to avoid over-regularization effects, we introduce
the wavelet transform into the large-scale potential field inversion to extract geotectonic
boundaries. In general, the wavelet transform can only reflect the singularity and non-
singularity of zero-dimensional data, making it difficult to characterize high-dimensional
data [56–58]. Therefore, the characteristics of discontinuous strata may be blurred in 3D
inversion after wavelet transform filtering (a transform-based method) [59]. To overcome
this difficulty of wavelet transforms, some multi-scale analysis methods have been devel-
oped in recent years, such as ridgelets, curvelets, and so on. Li and Hu [60] improved the
image denoising method for synthetic aperture radar images using the curvelet wavelet
transform for the inherent defects, which make it difficult for the wavelet transform to
express the directional characteristics of image edges, which significantly improves the
effect and processing speed of noise suppression. Compared with wavelet analysis, the 3D
discrete curvelet transform has directional characteristics, which can better describe the
singularity of the edge surface and has better sparse performance [61]. To obtain a clear and
undistorted geological interface, Liu et al. [62] subtracted the extracted background field
from the magnetotelluric observation data to obtain a residual field containing local details.
The thresholding technique eliminates high-frequency noise from the wavelet decomposi-
tion resulting from the residual field to preserve its higher energy components to generate
the local details. The focusing inversion characterizes the local details, and the inversion
smooths the background field to reduce the computational time of the inversion. Like
geophysical inversion, image multi-scale target detection methods based on a multi-scale
pyramid divide the original image/data into multiple scales. It can detect the target without
prior knowledge. Then, through integration/fusion of the detection results of each scale,
the detection accuracy is improved [63]. However, for massive data, similar to algebraic
multigrid, the traditional pyramid method is time-consuming and inefficient [64].
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It is widely acknowledged that the multilevel method represents the optimal approach
for addressing a range of geophysical challenges [65,66]. Currently, the multilevel method
is one of the most important methods to deal with ill-posed problems in the field of
geophysics [67–71]. However, the classical multilevel method can no longer be applied
to solve ill-posed problems. Consequently, researchers have initiated efforts to identify
novel avenues for advancement. The characteristics of multilevel methods have enabled
the achievement of some breakthroughs and research results in image denoising, signal
reconstruction, and edge preservation. For example, based on the multigrid method,
Buccini and Donatelli [67] propose a denoising method combining L2-regularization and
an iterative soft threshold algorithm that uses a fast Fourier transform for frequency
filtering, and the reconstruction of sparse signals is completed in the wavelet domain.
In this process, the multigrid method is used to ensure the stability of convergence and
denoising. The advantage of this method is that it can be employed as a post-smooth soft
thresholding for denoising, i.e., it can provide high-precision signal reconstruction for a
variety of different scenarios without setting any parameters. Chu et al. [70] proposed
new extrapolation economy cascadic multigrid method, which provides a more accurate
initial value for the fine grid layer by combining the new extrapolation formula with
the quadratic interpolation and is applied to solve the image restoration model. This
method not only removes the noise while maintaining the image edge but also reduces the
number of iterations and the staircase effect while ensuring accuracy, which can improve
computational efficiency and have better recovery quality.

The structure of the paper is as follows. In Section 2, we first briefly describe the
principles of the forward and inversion problems, and Occam’s inversion for gravity/tensor
gravity data. In Section 3, we propose a new extension technique that exploits the
translational equivalence of gravitational fields to avoid relying on the symmetry of
potential fields, to efficiently perform the forward modeling of gravity/tensor gravity
data. In Section 4, concerning the work of Español and Kilmer [68], we outline a generic
multilevel algorithm for large-scale gravity inversion, propose an efficient construction
method for restriction operators, and address some of the inversion issues of recovering
depth resolutions. Sections 5 and 6 analyze the computational performance of the rapid
forward method. In Section 7, we constructed a set of synthetic models to verify the
correctness of the RRCG algorithm used in this paper. Sections 8–11 contain numerical
results. In Section 12, we conducted a model plausibility analysis, i.e., utilize histograms to
assess the reasonableness of the recovered models, and Section 13 summarizes conclusions
and suggestions.

2. Principles of Regularized Inversion of Gravity/Tensor Gravity Data

In Figure 1, there are two 3D Cartesian coordinate systems: the ξ and x axes point
northward; the η and y axes point eastward; and the ζ and z axes point positively
downward. In the 3D property inversion, the 3D interpretation model is discretized into
prismatic cells (blue wireframe) with homogeneous density, whose side lengths are ∆x, ∆y,
and ∆z, respectively. Their sections along the three axes are nx, ny, and nz, respectively.
The coordinates of the centroid of a prismatic cell Q (see Figure 2) are denoted as (ξ, η, ζ),
and its corresponding index is ⟨l, m, n⟩. The coordinates of the observation point P are
denoted as (x, y, z), and its corresponding index is

〈
p, q, t

〉
.
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Figure 1. A 3D interpretation model is discretized into prismatic cells (blue wireframe) with
constant density.

Figure 2. Gravitational attraction at observation point P is due to a prismatic cell Q with a
constant density.

Using discrete model parameters and discrete data, the forward modeling operator for
the gravity field can be expressed in matrix form:

d = Gm (1)

where d is a vector of the observed data vector, such as gx, gy, gz, gxx, gxy, gxz, gyx, gyy,
or gyz, and its order is Nd; m is an Nm order vector of model parameters (i.e., densities ρ);
the size of the sensitivity matrix G is Nd ×Nm. Here, the number of prismatic cells is
Nm = nx × ny × nz and the number of observation points Nd = nx × ny.

According to potential theory, the gravitational contribution of all prismatic cells with
densities at the i-th observation point is given by

di =

Nm∑
j=1

Gi jρ j (2)

where the kernel function Gi j corresponds to the gravitational effect induced by the j-th
prismatic cell with density ρ j at the i-th observation point. i = p + (q− 1)nx + (t− 1)nxny,
1 ≤ p ≤ nx, 1 ≤ q ≤ ny, 1 ≤ t ≤ nt; j = l + (m− 1)nx + (n− 1)nxny, 1 ≤ l ≤ nx, and
1 ≤ m ≤ ny, 1 ≤ n ≤ nz.
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The inverse problem of gravity/tensor gravity data is ill posed, i.e., the solution may
be non-unique and unstable. Therefore, the methods of regularization theory are usually
used to solve this problem. For simplicity, the solution of the linear inverse problem (1) is
replaced by the minimization of the Tikhonov parametric function

Pα(m) = ϕd(m) + αϕm(m) = min (3)

where the regularization parameter α (α > 0) is essential and is determined using the general-
ized cross-validation with the random trace estimation method [3], ϕd(m) = ||Wd(Gm− d)||2

represents a data misfit (a data misfit is defined by a least-squares measure) functional,
which is determined as the square norm of the observed and predicted data discrepancies;
the model misfit function ϕm(m) is also known as the model roughness, and Wd is the data
weighting matrix.

Due to their algorithmic stability and smooth results, Occam’s-style algorithms are
used to solve Equation (3). Occam’s inversion is a practical algorithm that utilizes model
roughness to construct an objective function Pα(m) to generalize smooth models from
geophysical data [32]. The problem of minimizing the objective function is solved by
making the derivative of Pα(m) concerning ∆m equal to 0, which yields[

WT
d GTGWd + α(WT

z RT
mRmWz)

]
∆m = GT∆d (4)

where ∆m = m − mre f , ∆d = d − Gmre f , mre f is the reference model, and RT
mRm =

αsRT
s Rs + αxRT

x Rx + αyRT
yRy + αzRT

z Rz. Here, T is the matrix transposition operation and
flatness αs, αx, αy, and αz are coefficients that affect the relative importance of different terms
in the objective function. The diagonal matrix Rs is the identity matrix for the reference
model mre f , and the sparse matrices Rx, Ry, and Rz are the difference operators along the

x-, y-, and z-axes, respectively. The depth matrix diag(Wz) = (z + z0)
−β/2 counteracts the

natural decay of the sensitivity matrix, so that the inversion yields depth information. Here,
z is the centroid depth of the prismatic cells, and the decay index β depends on the potential
field. The prismatic cell size and the observation height determine the scalar z0. The main
diagonal Wd contains the total absolute error:

Wd = diag
(
(|d| · SD(d)+ε)−1

)
(5)

where diag () represents the input of a vector, which will result in a diagonal matrix
(i.e., sparse matrix) with this vector as the main diagonal element; SD(d) is the standard
deviation of the observed data, and ε is a tiny constant that prevents the inversion from
placing too much weight on very low amplitude data. Equation (4) is a large system of linear
equations for geophysical inversion. To obtain m, this system must be solved iteratively
until the convergence condition is satisfied. Thus, the number of kernel functions for the
sensitivity matrix G that needs to be stored is given by

N1
G = Nd ×Nm=

(
nx × ny

)
×

(
nx × ny × nz

)
(6)

Since surface gravity data contain no or little depth resolution information [28],
and Occam’s-style algorithms, such as smooth inversion, marquardt inversion, and Occam’s
inversion [28,72], which have difficulty recovering depth resolution information even if
the depth-weighting function is used. To overcome this difficulty, the multilevel inversion,
in conjunction with the re-weighted regularized conjugate gradient (RRCG), is proposed
in Section 4 to recover the resolution of the interpretation model in both vertical and
horizontal directions.
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3. Forward Calculation Technology of Gravity/Tensor Gravity Data
3.1. Analytical Solution of Gravity/Tensor Gravity Data

For completeness, we briefly introduce gravity and full tensor gravity (FTG) for
constructing the forward modeling operators (see Equation (1)). The gravity field g satisfies
equations in gravity surveys [73]:

∇ · g = −4πυρ,∇× g = 0 (7)

where υ = 6.672× 10−11 N·m2/kg2 is gravitational constant. According to ∇× g = 0 in a
region, g is an irrotational field, that is, a vector field is irrotational over the region if its curl
vanishes at every point in the region.

The gravity vector (gx, gy, and gz) is the spatial rate of change in gravitational
acceleration. The FTG is the spatial rate of change of gravity vectors, which can also be
measured by a gravity gradiometer and is denoted as

Γ =


gxx gxy gxz
gyx gyy gyz
gzx gzy gzz

 (8)

Since, in source-free space [74], the potential field is irrotational [75], that is,∇× (∇ · g) = 0
(see Equation (7)), and the potential’s tensor is symmetric and traceless due to Laplace’s
equation, that is, gxx + gyy + gzz = 0, gxy = gyx, gxz = gzx, and gyz = gzy. Therefore, Γ has
only five independent components, i.e., gxx, gxy, gxz, gyy, and gyz, as shown in Equation (8).

Taking the calculation of the forward modeling of gravity anomalies as an example,
as shown in Figures 1 and 2, the analytical solution for gravity anomalies at an observation
point P due to a prismatic cell Q with density ρ(ξ,η,ζ) is [13]

gz = −υρ(ξ,η,ζ)
2∑

i=1

2∑
j=1

2∑
k=1
µi jk ×

[
xiln

(
y j + ri jk

)
+ y jln

(
xi + ri jk

)
+ zktan−1(

zkri jk
xi y j

)
]

(9)

where µi jk = (−1)i+ j+k, xi = x− ξi, y j = y− η j, zk = z− ζk, and ri jk =
√

x2
i
+ y2

j
+ z2

k
.

3.2. Rapid Forward Modeling of Gravity/Tensor Gravity Data
3.2.1. Equivalent Geometric Framework

Figure 3 shows two surveys available for the 3D inversion of potential field data.
A traditional survey employs single-layer observation points (e.g., black dots in Figure 1,
and those dots form blue surfaces in Figure 3a) across all prismatic cells of a 3D interpretation
model. Additionally, the equidimensional inversion is created by multi-layer observation
points across all prismatic cells of the 3D interpretation model [76]. The inversion synthesizes
the potential field data at different heights in order to improve the depth resolution of the
inversion results. Taking the first survey scheme in Figure 3a as an example, according to
Equation (6), NG = Nd ×Nm = (1024× 1024)× (1024× 1024× 1) ≈ 1.1× 1012. It is impossible
to store the kernel matrix on an existing PC, regardless of whether it is stored in double or
single precision. To overcome this problem, Yao et al. [24] found that kernel functions have
translation, symmetry, and interchange equivalence. Then, Equation (9) is decomposed

into the density ρ(ξ,η,ζ) and the geometric structure K(x,y,z)
(ξ,η,ζ)

, which is a kernel function due

to a prismatic cell Q at an observation point P. The geometric structure K(x,y,z)
(ξ,η,ζ)

of gz can be
expressed as

K(x,y,z)
(ξ,η,ζ)

= −υ
2∑

i=1

2∑
j=1

2∑
k=1
µi jk ×

[
xiln

(
y j + ri jk

)
+ y jln

(
xi + ri jk

)
+ zktan−1(

zkri jk
xi y j

)
]

(10)
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(a) (b)

Figure 3. Two surveys. (a) Generalized inversion; (b) equidimensional inversion [76].

According to Equations (2) and (10), K(x,y,z)
(ξ,η,ζ)

is rewritten as K⟨p,q,t⟩
⟨l,m,n⟩ with the corre-

sponding indices
〈
p, q, t

〉
and ⟨l, m, n⟩ to describe more clearly the relationship between

the i-th observation point P and the j-th prismatic cell Q. The kernel function has
the following identity:

Ki, j
≡ K⟨p,q,t⟩

⟨l,m,n⟩ ≡ K(x,y,z)
(ξ,η,ζ)

(11)

where x = (p− 1/2)∆x, y = (q− 1/2)∆y, z = − t∆z + H, H is the height of the last
observation surface in Figure 3b, ξ = (l− 1/2)∆x, η = (m− 1/2)∆y, and ζ = (n− 1/2)∆z.

The interchange equivalence of K(x,y,z)
(ξ,η,ζ)

means that when the spatial positions of the
observation point P and the prismatic centroid of Q are exchanged, these two kernel
functions remain unchanged. This property can be expressed as follows [24]:

K(x,y,z)
(ξ,η,ζ)

= K(ξ,η,ζ)
(x,y,z)

(12)

or
K⟨p,q,t⟩
⟨l,m,n⟩ = K⟨l,m,n⟩

⟨p,q,t⟩
(13)

Symmetric equivalence means that, if two observation points (x, y, z) and (x′, y′, z′)
are symmetric about the plane passing through the center of the prismatic cell (ξ, η, ζ) and
parallel to the X-axis, then these two kernel functions are equal, which can be written as [24]

K(x,y,z)
(ξ,η,ζ)

≡ K(x′,y′,z′)
(ξ,η,ζ)

= K(2ξ−x,y,z)
(ξ,η,ζ)

(14)

or
K⟨p,q,t⟩
⟨l,m,n⟩ ≡ K⟨p

′,q′,t′⟩
⟨l,m,n⟩ = K⟨2l−p,q,t⟩

⟨l,m,n⟩ (15)

Similarly, if two observation points (x, y, z) and (x′, y′, z′) are symmetrical about the
plane passing through the center of the prismatic cell (ξ, η, ζ) and parallel to the Y-axis,
they will yield
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K(x,y,z)
(ξ,η,ζ)

≡ K(x′,y′,z′)
(ξ,η,ζ)

= K(x,2η−y,z)
(ξ,η,ζ)

(16)

or
K⟨p,q,t⟩
⟨l,m,n⟩ ≡ K⟨p

′,q′,t′⟩
⟨l,m,n⟩ = K⟨p,2m−q,t⟩

⟨l,m,n⟩ (17)

where the corresponding indices of (x′, y′, z′) are
〈
p′, q′, t′

〉
.

Translational equivalence means that, if the relative spatial positions of the observation
point P and prismatic cell Q do not change, these two kernel functions remain unchanged,
no matter where observation point P or prismatic cell Q is moved to [24]:

K⟨p,q,t⟩
⟨l,m,n⟩ = K⟨p+1,q,t⟩

⟨l+1,m,n⟩ = · · · = K⟨p+∆p,q,t⟩
⟨l+∆p,m,n⟩

K⟨p,q,t⟩
⟨l,m,n⟩ = K⟨p,q+1,t⟩

⟨l,m+1,n⟩ = · · · = K⟨p,q+∆q,t⟩
⟨l,m+∆q,n⟩

K⟨p+∆p,q+1,t⟩
⟨l+∆p,m+1,n⟩

= K⟨p+∆p,q+2,t⟩
⟨l+∆p,m+2,n⟩

= · · · = K⟨p+∆p,q+∆q,t⟩
⟨l+∆p,m+∆q,n⟩

· · ·

(18)

where 1 ≤ ∆p + p ≤ nx, 1 ≤ ∆p + l ≤ nx, 1 ≤ ∆q + q ≤ ny, and 1 ≤ ∆q + m ≤ ny.
To describe the equivalent geometric framework in more detail, we consider the

conventional survey (see Figure 3a), consisting of a single layer of observation points
⟨1, 1, 1⟩ and a 3D interpretation model S, as an example. We suppose that an arbitrary
observation point P is moved along the green path to the observation origin point ⟨1, 1, 1⟩,
as shown in Figure 4. Meanwhile, a complementary interpretation model S′ (green dashed
line) is created by shifting S to the observation origin point and consists of S1, S2, S4, and S3
blocks, which are obtained by subtending the model S′ by ⟨1, 1, 1⟩. The kernel functions
at P, due to cells (S2) in the first quadrant of S′, can be obtained directly. For other cells
(S1,S3,and S4) located in other quadrants, the kernel functions at P cannot be obtained
directly. However, by applying absolute value operations, i.e., mathematically exploiting
the symmetry of the potential field, these kernel functions are obtained. Following Yao
et al. [24], the equivalent geometric framework can be rewritten as follows:

K⟨p,q,t⟩
⟨l,m,n⟩ = K⟨1,1,1⟩

⟨|l−p|+1,|m−q|+1,n−t+1⟩
(19)

The gravitational contribution at the observation point P due to the 3D interpretation
model S is equal to the gravitational contribution at ⟨1, 1, 1⟩ induced by the new 3D
interpretation model. Since Equation (19) takes advantage of the absolute value operation,
the three newly introduced blocks, S

′

1, S
′

3, and S
′

4, are obtained by symmetrizing the blocks
S1, S3, and S4 about the X-axis, the Y-axis, and the origin, respectively. In order to avoid
overlapping curves and to better describe the relationship between these blocks, only S

′

1 is
drawn, and the outlines of the blocks, S1, S2, S3, S4, and S

′

1 are slightly offset from their
centroid, as shown in Figure 4 in vertical view.

Figure 4. Diagrammatic sketch of equivalent geometric framework in vertical view.
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Under the equivalent geometric framework, all observation points can be shifted to the
origin point ⟨1, 1, 1⟩, according to Equation (19). The sensitivity matrix of gravitational fields
can then be calculated by accumulating the kernel function values at the observation origin
point ⟨1, 1, 1⟩ concerning all prismatic cells. Therefore, based on the equivalent geometric
framework, the number of kernel functions that have to be stored for the sensitivity matrix is

N2
G = Nm ×Nd =

(
nx × ny × nz

)
× 1 (20)

3.2.2. Extension Translational Equivalence Technique

However, since Equation (19) takes advantage of the absolute value operation, the sen-
sitivity matrix relies on the symmetry property of gravitational fields. As shown in Figure 5,
to avoid relying on the symmetry of the gravitational field, the improved 3D interpretation
model V consists of the original interpretation model and three new interpretation models
(with easily visible dotted lines), formed by symmetry S about the original point and the X-
and Y-axes, respectively.

Figure 5. Diagrammatic sketch of extension translational equivalent geometric framework in
vertical view.

As shown in Figure 5, a new interpretation model S′ (red line) can be constructed by
shifting S along the red paths. The gravitational contribution at P due to each prismatic cell
of the S is then calculated by adding the gravitational effects at ⟨1, 1, 1⟩ for each prismatic
cell of the S′. Therefore, it is based on translational equivalence only and is called the
extension translational equivalence technique. Based on Equation (19), the kernel function
obtained by using the extension translational equivalence technique can be expressed as

K⟨p,q,t⟩
⟨l,m,n⟩ = K⟨1,1,1⟩〈̃

l,m̃,n−t+1
〉 (21)

where l̃ = l− p + 1, m̃ = m− q + 1, −nx + 1 ≤ l̃ ≤ nx, and −ny + 1 ≤ m̃ ≤ ny.
According to Equations (1) and (21), the number of kernel functions to be stored for the

sensitivity matrix of gravitational fields based on the extension translational equivalence
technique is

N3
G = Nm ×Nd =

(
(2nx − 1) ×

(
2ny − 1

)
× nz

)
× 1 (22)
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3.2.3. Rapid Algorithm Implementation by the Extension Translational
Equivalence Technique

According to Equations (2) and (11), Equation (1) can be expressed in matrix form:

K1,1
· · · K1, j

· · · K1,Nm

...
. . .

...
. . .

...
Ki,1

· · · Ki, j
· · · Ki,Nm

...
. . .

...
. . .

...
KNd,1

· · · KNd, j
· · · KNd,Nm





ρ1
...
ρ j
...
ρNm


=



d1
...

di
...

dNd


(23)

As shown in Figure 6, the black line represents all observation points on the q-th survey
line, and the red line represents all prismatic cells in the m-th column of the first layer of the
3D interpretation model. These two lines are parallel to the X-axis.

Figure 6. The Line–Line survey scheme and the Layer–Layer survey scheme.

As a Line–Line survey scheme, take the q-th survey line (black star points) and the
m-th column of prismatic cells (red rectangular prisms), we imitate Equation (23), and then
yield 

Ki+1, j+1
· · · Ki+1, j+∆m

· · · Ki+1, j+ny

...
. . .

...
. . .

...
Ki+∆q, j+1

· · · Ki+∆q, j+∆m
· · · Ki+∆q, j+ny

...
. . .

...
. . .

...
Ki+ny, j+1

· · · Ki+ny, j+∆m
· · · Ki+ny, j+ny





ρ j+1
...

ρ j+∆m
...

ρ j+ny


=



di+1
...

di+∆q
...

di+ny


(24)

Or,
G̃q,mρ̃m = d̃q (25)

where G̃q,m is the sensitivity matrix for the Line–Line survey scheme, ρ̃m is the den-
sity vector for the m-th column prismatic cells, d̃q is the observation vector due to the
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m-th column prismatic cells on the q-th survey line, i = (q− 1) × nx + (t− 1) ×Nd, and
j = (m− 1) × nx + (n− 1) ×Nd.

According to Equations (18) and (21), any observation point P on the q-th survey line
and any prismatic cell Q in the m-th column can be shifted by a step of ∆q and ∆m along
the X- and Y-axes, respectively, such as ∆q = 1 and ∆m = 1, yielding

Ki+1, j+1 = Ki+2, j+2 = · · · = Ki+∆q, j+∆q= · · · = Ki+∆m, j+∆m = Ki+ny, j+ny (26)

So, it is found that the main diagonal elements of G̃q,m have the same value. Or, ∆q = 1
and ∆m = 2:

Ki+1, j+2 = Ki+2, j+3 = · · · = Ki+∆q, j+∆q+1= · · · = Ki+∆m, j+∆m+1 = Ki+ny−1, j+ny (27)

Similarly, for other diagonals of G̃q,m, their elements have the same value. Therefore,
G̃q,m can be written as

G̃q,m =



a0 a1 · · · · · · any−1

a−1 a0 a1
...

... a−1 a0
. . .

...
...

. . . . . . a1
a1−ny · · · · · · a−1 a0


(28)

where
[
a0, a−1, a−2, · · · , a1−ny

]T
and

[
a0, a1, a2, · · · , any−1

]
correspond to the first column and

the first row of G̃q,m, respectively. G̃q,m can be expressed with 2ny − 1 elements.
According to the definition of the Toeplitz matrix [77], G̃q,m is a Toeplitz matrix

(see Figure 7), which is also closely related to the Fourier series. The product of the matrix
G̃q,m and the vector ρ̃m can be written as

G̃q,mρ̃m = F

(
F
(̃
aT

)
· F

([
ρ̃m
0

]))
(29)

where F and F represent the Fourier transform and inverse Fourier transform, respectively;
the part ã that needs to be stored for G̃q,m is

ã =
{ [

a0, a1, a2, · · · , any−1
]

0 F

([
a−1, a−2, · · · , a1−ny

]) }
(30)

Similar to Equation (24), the relationship between other survey lines and other column
prismatic cells can be constructed. As shown in Figure 6, we take the t-th layer observation
points and the corresponding n-th layer prismatic cells of the 3D interpretation model as
the Layer–Layer survey scheme. Mimicking Equations (23), (24), and (28), the sensitivity
matrix Gt,n for the Layer–Layer survey scheme can be written in matrix form with the
submatrices G̃q,m, which are the sensitivity matrices of the Line–Line survey schemes:

Gt,n =



G̃1,1 G̃1,2 · · · · · · · · · G̃1,ny

G̃2,1 G̃2,2
...

...
. . . . . .

...
...

. . . G̃q,m
...

...
. . . G̃ny−1,ny

G̃ny,1 · · · G̃ny,ny−1 G̃ny,ny


(31)

According to the extension translational equivalence technique and the definition of
the block–Toeplitz–Toeplitz–block (BTTB) matrix [77], Gt,n is a BTTB matrix (also a kind of
Toeplitz-like matrix, see Figure 7). Therefore, the number of kernel functions that need to be
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stored for the sensitivity matrix G of the traditional survey scheme based on the extension
translational equivalence technique is

N4
G = Nm ×Nd = (2nx − 1) ×

(
2ny − 1

)
× nz × 2 (32)

Equation (28) is suitable for rectangular survey grids, and Equation (31) is suitable for
square survey grids. In fact, by expanding the observation data matrix into a square matrix
using zero matrices, Equation (28) can also be used to achieve rapid forward modeling of
gravity fields for rectangular survey grids.

(a) (b)

Figure 7. The diagrammatic sketch of sensitivity matrix gxx of one-layer observation points is due to
single-layer prismatic cells. (a) Gt,n; (b) G̃q,m.

The sensitivity matrix G of the traditional survey scheme is composed of single-layer
observation points (t = 1) due to the multi-layer prismatic cells of the 3D interpretation
model. According to Equations (1) and (31), the sensitivity matrix G is composed of several
Gt,n submatrices:

G =
[

G1,1 G1,2 · · · G1,n · · · G1,nz

]
(33)

For the equidimensional inversion survey scheme shown in Figure 3b, the sensitivity
matrix G is composed of several Gt,n matrices:

G =



G1,1 G1,2 · · · · · · G1,nz

G2,1 G2,2 · · ·
...

...
... Gt,n

. . .
...

...
. . . . . . Gnt−1,nz

Gnt,1 · · · · · · Gnt,nz−1 Gnt,nz


(34)

4. Multilevel Algorithm

The overall idea of the multilevel method follows the classical multigrid method [16],
such as the multilevel method implementation process described by Español and Kilmer [68].
Based on the rapid forward modeling algorithm of gravity fields proposed in this article,
this section details multilevel inversion of large-scale gravity and tensor gravity data.

4.1. Basic Framework

Following Español and Kilmer [68], Sima et al. [78], and Yao et al. [24], a new 3D
inversion of large-scale gravity and tensor gravity data based on the multilevel method
is introduced by defining a sequence of sensitivity matrices of decreasing size based on
Equation (1) to obtain faster solvers.

Gkmk = dk, 0 ≤ k ≤ nlevel (35)

where the superscript k denotes the k-th level, and k = 0 and k = nlevel correspond to the finest
and coarsest levels, respectively. In particular, the 3D interpretation model is constructed
using nx = ny = 2nmax and nlevel ≤ nmax as constraints in the gravity forward/inversion.
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The restriction operator R and the interpolation operator P define the transitions from
finer to coarser grids and vice versa. The transformation between two neighboring levels is
defined by

Gk+1 = RkGkPk (36)

4.2. Haar Decomposition

Since the Haar wavelet has the advantage of being able to preserve the Toeplitz matrix
structure between two neighboring levels, this study uses the Haar wavelet operator to
replace R and P operators:

WT =
1
√

2



1 1 0 0 . . . . . . 0 0
0 0 1 1 . . . . . . 0 0
...

...
...

...
. . . . . .

...
...

0 0 0 0 . . . . . . 1 1
1 −1 0 0 . . . . . . 0 0
0 0 1 −1 . . . . . . 0 0
...

...
...

...
. . . . . .

...
...

0 0 0 0 . . . . . . 1 −1


=

[
WT

1
WT

2

]
(37)

Then, our problem Gm = d can be written in the wavelet domain as

Gm = d (38)

where W and WT are Haar wavelet transform pairs, then G = WTGW, m = WTm, and
d = WTd.

In this study, Equation (38) can be split into several block matrices by using W1 and
W2 to obtain the following problem:[

G11 G12

G21 G22

][
m1
m2

]
=

[
d1

d2

]
(39)

where Gi j = WT
i GW j, mi = WT

i m, and di = WT
i d, for i, j = 1, 2. Gi j can be proved to be

typical Toeplitz-like matrices, as by Equation (28); for convenience, G could be expressed in
matrix form as follows:

G =



s0 s−1 s−2 · · · s−(o−1)
s1 s0 s−1 · · · s−(o−2)
s2 s1 s0 · · · s−(o−3)
...

...
...

. . .
...

so−1 so−2 so−3 · · · s0


(40)

Here, s =
(
s−(o−1), · · · , s−1, s0, s1, · · · , so−1

)T
is a Toeplitz vector of G. According to

Lemma 8.5.3 [79], we have

vec
(
WT

i GW j

)
=

(
WT

i ⊗W j

)
vec(G) (41)

where E⊗ F denotes the Kronecker product of E and F, and vec(E) unstacks the matrix E by
columns to produce a column vector. Since Toeplitz matrices are circulant matrices, we use
only two columns of G to generate the Toeplitz vector s of G. Then, Equation (41) can be
rewritten in MATLAB notation as

s =
(
φT

i ⊗W j

)
vec(G(:, 1:2))

≡

(
φT

i ⊗W j

)
vec

([
s; s([2, 1:m− 1])T

])
≡

(
φi ⊗WT

j

)
vec

([
s; s([2, 1:m− 1])T

]) (42)
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where φi is the wavelet basis of the operator Wi. Therefore, Gi j can be obtained using the
Toeplitz vector s of G directly, which avoids storing the kernel matrices at each level of the
multilevel inversion. Equation (42) is more concise than the solution to the computational
issue in the paper of Español and Kilmer [68].

4.3. Algorithm Details

To solve for m1 from the first block equation of Equation (39), we have

G11m1 = d1 −G12m2 (43)

While m2 is unknown, we try to find an approximation of m∗1 to replace m1 by using
pre-smoothing inversion. Then, Equation (43) can be rewritten as

G11m∗1 = d1 (44)

Equation (44) is suitable for solving the pre-smoothing problem and the coarsest grid
correction problem defined in Español and Kilmer [68]. To recover this density contrast
distribution with depth resolution, we solved a regularized problem:

minm∗1

{∥∥∥∥Wd
(
G11m∗1 − d1

)∥∥∥∥2

2
+ λ

∥∥∥∥WzWm
(
m∗1 + m1,re f

)∥∥∥∥2

2

}
(45)

where m1,re f is the wavelet domain reference model, updated in real time during the
inverse iterations.

To solve for m2 from Equation (39), according to Equation (44), we have[
G12

G22

]
m2 =

[
d1

d2

]
−

[
G11

G21

]
m∗1 (46)

This step is called residual correction [68]. To solve this problem, Equation (46) is
regularized by minimizing the Tikhonov functional to reduce the uncertainties associated
with estimating geophysical variables, which then yields

minm2


∥∥∥∥∥∥Wd

([
G12
G22

]
m2 −

([
d1

d2

]
−

[
G11

G21

]
m∗1

))∥∥∥∥∥∥
2

2

+λ
∥∥∥∥WzWm

(
m2 + m2,re f

)∥∥∥∥2

2

}
(47)

where m2,re f is a wavelet domain reference model that is updated in real time during
inverse iterations.

Following Español and Kilmer [68], Sima et al. [78], and Yao et al. [24], according
to Equations (45) and (47), a new multilevel algorithm for 3D inversion of gravity/tensor
gravity data is as specifically in Algorithm 1.

The Haar wavelet of multilevel inversion acts only in the horizontal direction of the
interpretation model to distinguish between neighboring anomaly sources but not in the
vertical direction of the 3D interpretation model. Due to algorithmic stability and smooth
results, Occam’s-style algorithms are used to solve Equations (45) and (47). The RRCG is the
most widely used solver in focusing inversion and can obtain better depth resolution [55,80].
Considering the above two points, following Zhdanov [81,82], the RRCG algorithm is
used as the solver for the multilevel algorithm in this paper. In order to meet the needs
of comparison, Occam’s inversion and multilevel inversion are utilized for comparative
analysis in subsequent model experiments and field examples.

In Algorithm 2, n is the number of inversion iterations, and a series of diagonal weight

matrices are defined as follows: Wd = diag
(
GGT

)1/2
, Wm = diag

(
GTG

)1/2
, the minimum

support functional We = diag
((

m−mre f
)2
+ e2

)−1/4
, and e is a very small positive number,

especially in this paper, where e = 0.015.
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Algorithm 1: Multilevel algorithm for 3D inversion of gravity/tensor gravity
data: 3DML algorithm

Require: Gi, di, mi
re f

Ensure: mi

1: if i = n
2: mi = solve Equation (42), in coarsest-grid level
3: else
4: if i , 1
5: mi

pre = solve Equation (42), in pre-smoothing step
6: ri

new = di
−Gi

11mi
pre

7: d
i+1

= WT
1 ri+1

new
8: elseif i = 1
9: mi

pre = 0, mi+1
re f = 0, d

i+1
= WT

1 di

10: end
11: mi

re f = WT
1

(
mi

re f + mi
pre

)
12: G

i
11 = WT

1 G
i
11W1

13: mi+1
1 = 3DML

(
G

i
11, d

i+1
, mi

re f

)
14: mi

re f = WT
1

(
mi

re f + W1mi+1
1

)
15: mi

new = mi
pre ++W1mi+1

1

16: mi
2 = solve Equation (44), for residual correction step

17: mi = mi
new + W2mi

2
18: end

Algorithm 2: The algorithm of the RRCG method
Require: G, d, mre f
Ensure: mn+1

1: rw
n = Gw(mwn

n ) − dw = WdG
(
W−1

m W−1
en mwn

n

)
−Wdd

2: Iαn
wn = Iαn

wn
(mwn

n ) = GT
wrw

n + α
(
mwn

n −mwn
re f

)
3: βαn

n =
∥∥∥Iαn

wn

∥∥∥2
/∥∥∥∥Iαn−1

w(n−1)

∥∥∥∥2

4: Ĩαn
wn = Iαn

wn + β
αn
n Ĩαn−1

wn−1
, Ĩα0

w0
= Iα0

w0

5: kαn
n =

(̃
Iαn
wn

)T
Iαn
wn

/[(̃
Iαn
wn

)T(
GT

wGw + αI
)̃
Iαn
wn

]
6: mwn

n+1 = mwn
n − kαn

n Ĩαn
wn , mn+1 = W−1

m Wwn
en mwn

n+1

7: mwn+1
n+1 = WmWe(n+1)mn+1, swn+1

n+1 =
(
mwn+1

n+1 −mwn+1
re f

)
8: γ =

∥∥∥∥swn+1
n+1

∥∥∥∥2/∥∥∥swn
n

∥∥∥2
,

9: αn+1 = αn, if γ ≤ 1, and αn+1 = αn/γ, if γ > 1

10: α′n+1 = qαn+1, q < 1,
∥∥∥rw

n

∥∥∥2
−

∥∥∥∥rw
n+1

∥∥∥∥2
< 0.01

∥∥∥rw
n

∥∥∥2

5. Calculation Accuracy of the Rapid Forward Algorithm

The following 3D interpretation model is constructed to verify the correctness of
the rapid algorithm proposed in this paper. There is an anomalous body with a size of
300 m × 300 m × 300 m and a density of 0.3 g/cm3. Its roof and bottom depths are 500 m
and 800 m, respectively. The projection of the centroid of the anomalous body on the
ground is taken as the origin of the Cartesian coordinate system; nx, ny, and nz are 40,
40, and 30, with a 50 m grid spacing, respectively. The number of observation points is
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40 × 40 = 1600, and the observation height is 50 m above the ground surface. The 3D earth
model is discretized into 40 × 40 × 30 = 48,000 cubic cells with a side length of 50 m. The
forward results of the rapid algorithm are shown in Figure 8.

Figure 8. Rapid algorithm’s forward results for different components (a) gxx, (b) gx, (c) gz, (d) gxy,
(e) gyy, (f) gy,(g) gxz, (h) gyz, and (i) gzz.

Figure 9 shows the relative error of the forward results between the rapid algorithm
and the analytical solution proposed by Li and Chouteau [13]. It can be seen that the
forward result are very smooth with no ambiguity points and are close to zero, which is
several orders of magnitude smaller than other algorithms. The rapid algorithm proposed
in this paper has exceptionally high precision.

Figure 9. The relative error of forward results between the rapid algorithm and analytical solution [13]
for different components (a) gxx, (b) gx, (c) gz, (d) gxy, (e) gyy, (f) gy,(g) gxz, (h) gyz, and (i) gzz. E
stands for Eotvos, which is standard for characterising how sensitive different gravity gradiometers
(1 Eotvos = 10−9s−2).
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6. Performance of the Rapid Forward Algorithm

A series of different-sized models, with a square grid (nx ≡ ny) and cubic cells, were
constructed to verify the effectiveness of the rapid algorithm proposed in this paper by
comparing it with the other two algorithms, those of the traditional analytical method
and the equivalent geometric framework, implemented according to the works of Li and
Chouteau [13] and Yao et al. [24]. The parameters nx, ny, and nz of these models were set
to exponential powers of 2. The square observation grids and corresponding geophysical
models were constructed with integer powers from 2 to 9, respectively. A total of 36 models
were constructed, as shown in Figures 10 and 11. The smallest model had nx, ny, and nz of
8, 8, and 8 (Nd = 64 and Nm = 256), respectively, while the largest model had nx, ny, and nz
of 256, 256, and 32 (Nd = 65,536 and Nm = 2,097,152), respectively. The densities of cubic
cells in these models are set to a random value to represent complex geological structures.

We then compared these forward modeling algorithms’ time and peak memory
consumption for gz with different-sized 3D models. On an Ubuntu 18.04 LTS operating
system with an Intel® Xeon® Gold 5117 CPU @2.00 GHz and 120 GB of memory, the pcode
function in MATLAB 2018a was used to compile the codes of the forward modeling
algorithms into P-code files. The following computation times and peak memory usage
are statistical averages obtained by averaging five runs. With OpenMP 56 threads and
MATLAB mixed programming methods, the rapid algorithm achieved a better acceleration
factor. Several models where the logarithm of the observation grid size was greater than
nine were not computed because the computation time was too long.

Figure 10. Peak memory usage to calculate gz fields with different-sized models (Nm = NG/Nd,
nx ≡ ny = sqrt(Nd), and Nz = Nm/Nd).

In Figure 10, if the color and the corresponding value NG of the point are known, it
can be determined that Nm = NG/Nd, nx ≡ ny = sqrt(Nd), and Nz = Nm/Nd. The same
color markers have the same observation grid size. When comparing the same color
markers among different algorithms, the log–log plot of the peak memory usage versus
the size of the sensitivity matrix shows an excellent linear relationship. The peak memory
usage of these algorithms increases sharply with model size. Due to the steepness of the
slope, several data points overlap. The order of magnitude among the three algorithms is
consistent with the number of kernel functions that need to be stored for the sensitivity
matrix in Equations (6), (20), and (32). Because it holds fewer intermediate variables in
memory, the rapid algorithm with OpenMP technologies consumes less memory than the
rapid algorithm without OpenMP technologies. The same conclusion applies to the other
components of gravitational fields.
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Figure 11. Calculation time obtained by performing gz fields with different sizes of models.

As shown in Figure 11, when comparing different algorithms for the same color
maker, the log–log plot of computation time versus model size shows an excellent linear
relationship, and all curves increase dramatically with increasing model size. For the
calculation times of different forward modeling algorithms, the traditional analytical
method is the longest, which increases sharply with model size; the equivalent geometric
architecture is about an order of magnitude smaller than the traditional analytical methods.
According to the curves of different forward modeling algorithms, the traditional analytical
methods are sharp, the equivalent geometric architecture is second, and the rapid algorithm
is gentler than others. It is shown that the quick method has a remarkable capacity for
acceleration, which increases with the model size. The rapid algorithm using OpenMP
technology achieves two orders of magnitude more acceleration than the rapid algorithm
using 56 threads. For other FTG components, the computational time is related to the
computational complexity [13]. For large interpretation models, there is insufficient system
memory when the peak memory usage is greater than the physical memory of the computing
equipment. As a result, not all available virtual addresses of the MATLAB process could
be mapped, significantly reducing computational efficiency and dramatically increasing
computation time.

7. The Verification of the RRCG Algorithm

To verify the correctness of the RRCG algorithm used in this paper, a set of synthetic
models was constructed (see Figure 12). Each synthetic model consists of two cube anomaly
sources of size 200 m × 200 m × 200 m, with a residual density of 1.0 g/cm3. Furthermore,
32, 32, and 10 for nx, ny, and nz, respectively, were present in the subsurface, with an
observation point height of 25 m and an observation point spacing of 50 m. In this paper,
all 2D images of observation data and 2D/3D slices of the models were plotted using
MATLAB’s imagesc and slice functions, respectively.

In Figure 12, the forward results are contaminated by zero-mean Gaussian noise with a
standard deviation equal to 3% of the maximum peak-to-peak amplitude of the components,
as shown in Figure 12a,c,e,g. The response of the anomaly sources is simulated at different
depths. The deeper the source, the less it weighs in the gravity field. At this point, it is
similar to the response generated by two anomalies with different densities. We moved the
left anomaly sources downward at ∆z = 0, 100, 200, and 300, as shown in Figure 13. Then,
following the paper of Portniaguine and Zhdanov [37], the RRCG inversion was employed
to invert noisy data, and the resulting figures are presented in Figure 13b,d,f,j.

As illustrated in Figure 12, with increasing depth the contribution of the left anomaly
source gradually decreases until the gravity peak on the left side of Figure 12g is completely
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absent at ∆z = 300. A similar phenomenon is observed in the data residuals of the RRCG
inversion. As the ∆z increases, the left peak in the residual gradually fades, and, even
at ∆z = 300, both peaks disappear. Examining Figure 13b,d,f,j, it can be observed that
at ∆z = 0 and ∆z = 100, the density value of the reconstructed density model is mainly
influenced by the upper limit (1.0 g·cm−3).

Figure 12. Gravity data. The first and second columns are noise-contaminated gravity data and
residual data of the RRCG inversion, respectively. The columns from top to bottom are ∆z = 0, 100,
200, and 300, respectively.
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When ∆z = 200 and 300, the density value of the left reconstructed density model
decreases significantly, which is speculated to be the reason for the disappearance of
the peak value in Figure 12f,j. However, with the change in the gravity contribution of
two adjacent anomalies, the reconstructed density model of the relatively strong anomaly
source response obviously moves down. Conversely, the reconstructed density model of
the relatively weak anomaly source response exhibits a significant upward shift (∆z = 300,
with a tendency to shift outward, but still able to generally mark the location of the anomaly
source). This experiment demonstrates that the RRCG algorithm is highly adaptive.

Figure 13. The slices of density models. The first and second columns represent forward and inversion
models, respectively. The columns from top to bottom are ∆z = 0, 100, 200, and 300, respectively.
mmin = 0 and mmax = 1.0 g/cm3.
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8. Model Studies

To validate the principle of the multilevel inversion proposed in this paper, we inverted
the noise-corrupted data in Figure 12a and compared them using Occam’s inversion. In
Figure 14, by following the paper about Occam’s inversion [28,72], the decay index of the
depth-weighting function β = 1.8. The flatness ax = 1, ay = 1, and az = 1 in the x, y, and z
directions, respectively, and as = 0.0005. Readers are referred to Li and Oldenburg [28] for
further details. The lower and upper bounds of the density constraint were set to 0 and
1.0 g/cm3, respectively. Following Zhdanov [81,82], the RRCG-based multilevel inversion
had density constraints of lower and upper bounds by mmin = 0 and mmax = 1.0 g/cm3.
Generally speaking, for 3D inversion of actual data, the upper and lower bound densities
are determined by the lithology analysis of the survey area [55].

The inversion density slices were obtained using Occam’s inversion, as shown in
Figure 14. The density value of the inversion density contrast distribution decreases with
increasing depth z, which makes it difficult to identify the basement of anomalous sources
with the help of Occam’s inversion result. Due to volume effects, this ultimately results in a
3D density distribution whose density values are far from reality [83].

Figure 14. Inversion density slices obtained using Occam’s inversion.

Figure 15 shows inversion density slices for multilevel inversion. The RRCG algorithm’s
overfocusing phenomenon leads to higher internal density values in the inversion density
model for multilevel inversion [84]. Additionally, the kernel function decreases sharply
with depth, resulting in lower density values at the top than those at the bottom. Compared
to Occam’s inversion results shown in Figure 14, the multilevel inversion results show a
clear roof and floor in the depth direction of the model, demonstrating that the RRCG-
based multilevel inversion method can better extract depth-resolved information; in the
horizontal direction, compared with Occam’s inversion results, in which distinguishing
neighboring anomaly sources effectively is difficult, multilevel inversion results differentiate
the two neighboring sources.

Occam’s inversion is a smooth inversion, and its result and corresponding prediction
data are also smooth. Due to the small range of the survey grid, the data residuals
(see Figure 16a) have a random (similar) Gaussian noise distribution. The multilevel
inversion solver is a focusing inversion solver, i.e., RRCG, so the inversion result is focused,
which causes the residual to show two peaks above the anomaly, and the amplitude is
larger than the residual of Occam, as shown in Figure 16b.
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Figure 15. Inversion density slices obtained using multilevel inversion.

As shown in Figure 17, the data residuals from Occam’s inversion are minimal and
can be quickly stabilized (see Figure 16). For the multilevel inversion, the corresponding
data misfit curves in different levels are significantly different due to the differences in the
data used for the inversion processed by the Haar wavelet in different levels. For example,
in Algorithm 1, there is no pre-smoothing inversion for i = 1, and, thus, there is no data
misfit curve plotted in Figure 16; in the pre-smoothing inversion for i = 2, the part of the
data extracted by the Haar wavelet for the inversion that is low-frequency has a large
amount of energy, resulting in a large amplitude of the corresponding data misfit curve; in
the coarse-grid correction for i = 3, the data misfit decays rapidly into a steady state with
the inversion iteration, just like other levels of the inversion. Like other levels, the data
misfit quickly decays to a steady state with the inversion iteration. Since the data to be
corrected are in the high-frequency part, the residual correction manifests as a very small
data misfit, consistent with that described in Algorithm 1.

Figure 16. Residuals between observed and predicted data obtained by (a) Occam’s inversion, and
(b) multilevel inversion.
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Figure 17. Data misfit obtained by Occam’s and multilevel inversion.

Compared to the forward model in Figure 13a, it can be found that the inversion
density model of multilevel inversion has a high degree of matching with the forward
model. This indicates that compared multilevel inversion has a substantial advantage over
an Occam’s-style algorithm in both the depth resolution of extracted anomaly sources and
the ability to distinguish neighboring anomaly sources. It also shows that the RRCG-based
multilevel inversion proposed in this paper is correct. Under the same computing platform,
Occam’s inversion calculation in Figure 14 takes 329 s, while the multilevel inversion
algorithm in this paper adopts the rapid forward calculation method, resulting in an
inversion calculation time of only 27 s.

9. Sensitivity of Multilevel Inversion to Gaussian Noises

To verify the adaptability of the proposed algorithm to noise, we increased the noise
level in Figure 12b from 3% to 8%, as shown in Figure 18a. Subsequently, the multilevel
inversion algorithm was employed to obtain the reconstruction density model and the
corresponding data residuals, as shown in Figure 18b,c.

Figure 18. Example of multilevel inversion for noise-corrupted data (8%), (a) noise-corrupted data,
(b) reconstructed density model, and (c) residual data.

Compared to the noise-corrupted data (3%) in Figure 12a, the noisy data (8%) in
Figure 18a are more chaotic. However, as shown in Figures 15 and 18b, there is no
discernible difference between the inversion results of the two noisy data sets (3% and
8%). The reconstruction density model derived from the noisy data (8%) shows some
perturbation at its top and bottom. At the same time, an examination of Figures 17 and 19
shows that the amplitude of the fit curve of the inversion data with noise data (8%) is higher
than 3%. Furthermore, in the subsequent correction inversion, the value of the data misfit
does not tend to 0, which is also reflected in the corresponding data residual map of the
two, as shown in Figures 16b and 18c. This demonstrates that the multilevel inversion
method proposed in this paper can be applied to high-level noise data.
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Figure 19. Data misfit obtained by multilevel inversion for noise-corrupted gravity data (8%).

The Haar wavelet was employed to divide the input data into two distinct categories:
high-energy, low-frequency signals and low-energy, high-frequency noises, under the
framework of multilevel inversion. Subsequently, the inversion algorithm proposed in this
paper was used to process the low-frequency, high-energy signals of the data. This ensured
that a better reconstruction model could be obtained. Finally, the low-energy, high-frequency
noises were inverted in the subsequent residual correction. Due to the low amplitude of
this portion of the signal, the use of the previous pre-smoothed inversion results as the
reference model effectively eliminated the influence of low-energy, high-frequency noise
on the inversion results. Nevertheless, these factors may result in the subsequent residual
correction inversion becoming unstable.

10. Synthetic Gravity Data Experiment

To illustrate the performance of the rapid forward algorithm, we constructed massive
surface gravity data using the SEG/EAGE salt model [85,86], which is one of the classic
velocity salt dome models for seismic surveying research and was designed by SEG and
EAGE. The salt model is available at https://s3.amazonaws.com/open.source.geoscience/
open_data/seg_eage_models_cd/Salt_Model_3D.tar.gz (accessed on 6 January 2024) and
comprises the 3D subsurface velocity model, model surface, and grid information, as shown
in Figure 20a. The salt body was assumed to have a constant density contrast of −0.2 g/cm3.
An interpretation model was discretized into 95,964,960 = 676 × 676 × 210 cubic cells
with a 20 m edge along the x, y, and z directions, respectively. A rectangular survey grid
corresponding to the interpretation model was divided into 456,976 = 676 × 676 observation
points, with a 20 m space-sampling interval and a 10 m observation height. Then, we used
Occam’s inversion and multilevel inversion to invert gz data contaminated by zero-mean
Gaussian noise with a standard deviation σ equal to 3% of the maximum peak-to-peak
amplitude of the components, as shown in Figure 20.

Figure 20. SEG/EAGE salt dome model (a) the forward model; (b) the forward result of gz.

https://s3.amazonaws.com/open.source.geoscience/open_data/seg_eage_models_cd/Salt_Model_3D.tar.gz
https://s3.amazonaws.com/open.source.geoscience/open_data/seg_eage_models_cd/Salt_Model_3D.tar.gz
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The upper and lower bounds of the density constraint for the RRCG-based multilevel
inversion are set to 0.0 and −0.2 g/cm3, respectively. The parameters of Occam’s inversion
are: β = 1.8, ax = 1, ay = 1, az = 1, as = 0.0005, and mmin = −0.20 and mmax = 0.05 g/cm3.

Occam’s inversion is a smooth inversion that results in smooth density variations
between neighboring prismatic cells. As a result, density values are assigned to prismatic
cells that do not have density values in the forward model (see Figure 20a). Since the
gravity field results from the comprehensive reflection of underground geological structures,
i.e., the volume effect [83], this leads to small density values in the 3D density contrast
distribution obtained from Occam’s inversion. Similar to Occam’s inversion results in
Figure 14, Occam’s inversion results failed to effectively bring the depth resolution of the
salt dome model in Figure 21.

Figure 21. Result of inversion of gz using Occam’s inversion.

In Figure 22, the 3D density contrast distribution of the multilevel inversion gz data
has good depth resolution, and the density values at the roof and bottom follow a similar
trend as in Figure 15. To meet the requirements to use Haar wavelets in the multilevel
inversion for the field data, the taper2d function [87] was employed to perform a gradual
tapering by applying a cosine function to the four borders of the 2D input matrix of the
observation data to generate a new square matrix with a size of nx = ny = 2nmax . At the
end of the inversion process, the externally expanded data and models were removed to
ensure that the final inversion results were consistent with actual data. However, this
treatment can lead to some unstable bands at the boundaries of the data residuals, as shown
in Figure 23a. Compared with the results of Occam’s inversion, the multilevel inversion
has a good convergence trend; however, due to the influence of the Haar wavelet, its data
residuals are still significant in a small part of the region, which is consistent with its data
mismatch curve, as shown in Figures 23 and 24.

Due to the lack of depth resolution of potential field data, it is difficult to reconstruct the
vertical resolution in the inversion of physical properties, i.e., it is difficult to reconstruct the
deep anomaly in the southwest of the salt model (e.g., the similar situation in the inversion
of Y-dikes using Occam the article by Li and Oldenburg [28]), which, in turn, leads to the
reconstruction results showing a “spindle shape”. In effect, a “class” fault, stair, or step
is formed at the edge of the geophysical model. This phenomenon represents a banded
anomaly in the residual map of Occam’s inversion. Compared to Occam’s inversion results,
the multilevel inversion results are more concentrated due to the overfocusing effect of the
RRCG solver, resulting in the formation of a strip anomaly composed of multiple “peaks”
in the residual map. However, the residual amplitude caused by these two is very small,
which does not affect the convergence of the multilevel inversion.
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Figure 22. Result of inversion of gz using multilevel inversion.

Figure 23. Residuals between observed and predicted data obtained by (a) Occam’s inversion;
(b) multilevel inversion.

Figure 24. Data misfit obtained by Occam’s and multilevel inversion.

For the salt dome model example (see Figure 20a), on the same computing platform,
Occam’s inversion calculation took 28,262 s. However, the multilevel inversion algorithm
used the rapid forward calculation method proposed in this paper, resulting in a calculation
time of only 1557 s.
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11. Real Data Study

The survey area was located in the Quesnellia Region in British Columbia, Canada,
a region famous for copper and gold porphyry deposits. Several gold and silver (plus copper,
lead, and zinc) deposits have been mined in this area since 1884 [88–90]. The QUEST-South
project was designed and managed by Geoscience BC in 2007, and its main exploration and
mining area was the Quesnel Terrane [91]. It is a volcanic-arc terrane formed between the late
Paleozoic and Mesozoic periods, and then merged into the western margin of the ancestral
North American Craton through geological movements [92]. The porphyry copper-gold
mineralization in the Quesnel Terrane is related to magmatic events, which are related to
the late development of the terrane. Therefore, many experts and scholars have conducted
extensive research on the bedrock geology of the terrane. For example, Mitchinson [91]
and Sanchez et al. [93] successively evaluated the magnetic and electromagnetic data of the
Quesnel Terrane, focusing on the intrusive rocks that serve as the host of porphyry copper
deposits in the Quesnel Terrane, and completed the geological and structural interpretation
of this area. To date, the alkaline porphyry deposits mined in the Quesnel block include
Mount Milligan, Mount Polley, New Afton, and Copper Mountain deposits [91]. The region
is covered by a thick layer of sand and gravel left behind by the glaciers. Airborne gravity
surveys were used to identify potential targets and help understand the geology of this
area [94,95].

The project is located between 547,500 m and 769,000 m easting and 5,427,500 m and
5,798,000 m northing and covers an area of 45,000 km2 in south-central British Columbia
that extends south of Williams Lake to the US border, as shown in Figure 25. It aims to
provide comprehensive regional geochemical and geophysical information to local industry.
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Figure 25. Survey area map. The red line corresponds to the QUEST-South geophysical survey,
the light green blocks are Quaternary sedimentary strata, and the other colors are bedrock. Please see
Erdmer and Cui [96] for details.

The field data are airborne gravity data that contain seven sub-blocks collected by
Sander Geophysics in 2009 at a line spacing of 2000 m and corrected with a terrain correction
and Bouguer correction applied by Geoscience BC at a density of 2.67 g/cm3 in a gridded
format with a 500 m grid size [97], as shown in Figure 26. An interpretation model
was discretized into 444 × 742 × 44 = 14,495,712 cubic cells in the x, y, and z directions.
The length of the cubic cell edge is 500 m. A rectangular survey grid was divided into
444 × 742 = 329,448 observation points, with a 500 m space-sampling interval in both
the x and y directions. Then, multilevel inversion and Occam’s inversion were employed
to invert the upward continued data using the rapid forward algorithm proposed in
this paper. The parameters of Occam’s inversion were β = 1.8, ax = 1, ay = 1, az = 1,
as = 0.0005, and mmin = −0.30 and mmax = 0.30 g/cm3. The lower and upper bounds of
the density constraint for the RRCG-based multilevel inversion were set to −0.40 and
0.40 g/cm3, respectively.
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Figure 26. Residual gravity data provided by Sander Geophysics [97].

To facilitate further comparison, Mira Geoscience Limited [98] provided the inversion
density contrast distribution (see Figure 27) using the UBC-GIF inversion code, which
is based on an Occam’s-style approach [28,72]. The position of the vertical density slice
z = [500 m, 1300 m, 2100 m, 2900 m, 3700 m, 4500 m]. Due to the lack of depth resolution
in surface gravity data [28] and the limitations of an Occam’s-style algorithm in recovering
depth resolution, the density contrast distribution map becomes progressively less clear as
the depth z increases.

Figure 27. Inversion density distributions provided by Mira Geoscience Limited at different depths z:
(a) 500 m, (b) 1300 m, (c) 2100 m, (d) 2900 m, (e) 3700 m, and (f) 4500 m [98].
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Figure 28 shows that the value of 3D density contrast distributions ranging from 500 m
to 4500 m for a 220 km × 380 km area was obtained by carrying out Occam’s inversion
with the rapid forward algorithm. The 3D density distribution given in this paper is
compared with Figure 27, provided by Mira Geoscience Limited. Both are affected by the
volume effect [83], superposition principle [75], and skin effect [28,99], resulting in excess
smoothness in the horizontal direction. This leads to blurring between neighboring anomaly
sources, making it difficult to differentiate them. In the depth direction, the depth resolution
information of 3D density distributions is not efficiently obtained from either result.

Figure 29 shows the detailed density contrast distribution model of the QUEST-South
project obtained using the RRCG-based multilevel inversion. Compared with the 3D
density contrast distributions of Occam’s inversion in Figures 27 and 28, in the horizontal
direction and on different depth slices, the 3D density contrast distribution obtained using
the multilevel inversion has a better differentiation ability for neighboring anomaly sources.
At different depths, whether positive or negative anomalies, the 3D density contrast
distributions of the multilevel inversion have better depth resolution for neighboring
anomaly sources.

Figure 28. Inversion density distributions using Occam’s inversion code at different depths z:
(a) 500 m, (b) 1300 m, (c) 2100 m, (d) 2900 m, (e) 3700 m, and (f) 4500 m.

Compared with the results of the two synthetic models, the multilevel inversion has
a good convergence tendency; however, due to the effect of the Haar wavelet, the data
residuals still only match the high-frequency part of the original data (see Figure 26) from
the appearance alone, so the low-energy, high-frequency noise does not affect the inversion
results, but it may lead to unstable convergence of subsequent residual-corrected inversions,
as shown in Figures 30 and 31.
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Figure 29. Inversion density distributions using the multilevel inversion at different depths z:
(a) 500 m, (b) 1300 m, (c) 2100 m, (d) 2900 m, (e) 3700 m, and (f) 4500 m.

Figure 30. Residuals between observed and predicted data obtained by (a) Occam’s inversion; and
(b) multilevel inversion.

Figure 31. Data misfit obtained by Occam’s and multilevel inversion.
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The “ripple” phenomenon in the residual map (see Figure 23a) does not appear in
Figure 30a. We speculate that a single anomalous source controls the former, while the latter
has multiple anomalous sources. Furthermore, similar to Figure 23a, there are boundary
band anomalies in Figure 30a. Similar to the results in Figure 23b, the multilevel inversion
results are more focused due to the influence of the overfocusing effect of the RRCG solver,
which leads to the formation of multiple "peaks" in the residual map. However, compared
with the observation data, the data residuals are smaller, which shows the correctness of
the algorithm proposed in this paper.

12. Model Plausibility Analysis

In order to enhance the credibility of the manuscript, we refer to related
articles [37,55,100,101] and utilize histograms to assess the reasonableness of the recovered
models. Due to the limited length of the paper, the histograms are employed only to analyze
the data residuals and the recovered model of the field data.

Figures 32 and 33 show a different distribution from the histogram results in
articles [37,55,100,101], which is due to the use of actual data and the interpretation
models with sizes of 1024 × 1024 and 1024 × 1024 × 24, with a large amount of sample
data involved in the analysis. Taking Figure 32 as an example, Occam’s inversion is a
smooth inversion, which means that the density values between adjacent physical units
are smooth, and the corresponding predicted data and data residuals are also gradual
(only when there are no jumps). Due to the smoothing effect, a large number of 0 values
will appear (as shown in Figures 32 and 33, where the mean and standard deviation tend
to be 0). Therefore, we plot the y-coordinate of the histogram in logarithmic form. At this
point, Figure 32a presents a normal distribution in a logarithmic state, while Figure 32b
shows several discontinuous values (in fact, the corresponding sample number is very
small), which is consistent with the ambiguous values appearing at the upper-left boundary
of Figure 30a. If these ambiguous values are excluded, Figure 32b can still be considered as
a normal distribution. Compared to Figure 32a, the histogram result in Figure 33a only
shows a peak in a range close to 0. Based on the analysis in Figure 29, we infer that this
is related to the ability of the Haar wavelet to distinguish adjacent anomalies, that is, the
Haar wavelet can effectively suppress small gradient values between adjacent anomalies,
thereby improving the ability to distinguish adjacent anomaly sources. This also causes
a large number of “ripples”, appearing in Figure 30b, leading to a larger corresponding
standard deviation. From the histogram results of the reconstructed density model and
the data residuals, compared to Occam’s inversion, it is reflected that there is no obvious
ambiguity in the multi-layer inversion, and it has a good ability to discriminate adjacent
anomaly sources.

Figure 32. Histogram of the recovered model (a) and the data residual (b) with corresponding mean
and standard deviation (std) for Occam’s inversion.
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Figure 33. Histogram of the recovered model (a) and the data residual (b) with corresponding mean
and standard deviation (std) for multilevel inversion.

13. Conclusions and Suggestions

Due to the use of forward and inverse operators based on the structure matrix,
the inversion method proposed in this paper is not suitable for terrain data; compared with
the traditional physical property inversion, the multilevel inversion has some difficulties in
implementation. For example, due to the different characteristics of different gravity field
components, there may be some differences in the transmission of the kernel matrix between
the two adjacent layers, so it is also necessary to handle the corresponding programming
work very carefully.

Compared with the physical property inversion method, the inversion method pro-
posed in this paper does not need to store and calculate the inversion kernel matrix, which
has extremely high execution efficiency and convergence speed. In comparison to the
smooth inversion based on the L2 norm, the proposed inversion method has good depth
and lateral resolution due to the use of the RRCG solver and Haar wavelet. The acqui-
sition of depth resolution information depends on the RRCG solver, and there is still no
good solution.

Due to the reliance on the symmetry of gravitational fields, the equivalent geometric
framework is difficult to generalize to forward modeling of the tensor gravity components.
Only translational equivalence is used to propose the extension equivalent geometric
framework technology. Rapid forward algorithms can take advantage of small memory
consumption to achieve significant acceleration capability, especially when using OpenMP
technology with 56 threads. The efficiency of multilevel inversion is very high due to
the use of a rapid forward algorithm and operator (Equation (42)). This operator is
more concise than the solution to the computational problem in Español and Kilmer [68],
and greatly solves the problem of kernel function transfer between different layers of an
algebraic multigrid.

The classical multilevel methods are not immediately applicable to ill-posed prob-
lems [102–105], i.e., the deblurring problem, which often occurs in the geophysical science of
forward/inverse. Therefore, to overcome this difficulty, we extended the multilevel methods
from 2D to 3D, and the numerical results show that the multilevel methods are efficient
solvers. Referring to Español’s PhD thesis [106], the extension of multilevel methods from
2D to 3D is also the goal of their research. Moreover, this extension is not direct. Due
to the influence of field source attenuation characteristics, the superposition effect, and
the equivalence principle, the skin effect of physical property inversion became more and
more severe. Even if the depth-weighting matrix was used, it was difficult to obtain the
depth resolution information. In addition, affected by the smoothing effect, the traditional
property inversion method based on the minimization of the sum-of-squares or L2 norm
was smooth in both the vertical and horizontal directions [107].

This paper proposes an inversion framework that is more efficient for inter-layer
transmission than the multigrid framework. In this paper, we solved the inversion problem
of large-scale gravity/tensor gravity data based on RRCG rather than the traditional
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regularization method. This allowed us to reconstruct the density distribution with good
depth resolution rather than being unable to distinguish adjacent anomalies and extract
geological structure boundaries with good lateral resolution.

To avoid the impact of the actual observation data of the irregular boundary in Figure 22
on the inversion of the 3D density distribution results, this paper used the taper2d function
to expand the data to grid data with nx = ny = 2nmax . Once the inversion process was
finished, the extended data and model were eliminated to ensure that the final inversion
results accurately reflected the actual situation.

In this paper, there was no prior input of a priori geological information in the
inversions of the two synthetic models and the actual data; the result of the previous stage
of the multilevel inversion was used as a reference model for the subsequent stage of the
inversion. If the previous results tend to be unstable, it will lead to the subsequent inversion
results also tending to be unstable. However, the inversion results were obtained by the
RRCG algorithm, and in the case where the RRCG algorithm was terminated by satisfying
the convergence condition, stable results were obtained most of the time; in the case where
the RRCG algorithm was terminated by not satisfying the convergence condition, at this
point, we forced the RRCG algorithm not to output the results, which then led to the
termination of the multilevel inversion. Due to the Haar wavelet, the high-frequency
noise was inverted in the residual correction. When using the results of the previous
pre-smoothing inversion as a reference model, these high-frequency noises with low energy
did not affect the inversion results. However, they may have led to an unstable convergence
of the inversion with the subsequent residual correction.

All the algorithms analyzed in this paper had several parameters that needed to be
fine-tuned, e.g., the regularization parameter α, the decay index β, the number of V-cycles
n, the coefficients of e, the minimum support functional We, and the number of iteration
terminations of RRCG. In future studies, a better understanding of these parameters and
the combination of the automatic selection function will be crucial for practical applications.

The Haar wavelet was introduced into our inversion, which can improve the lateral
resolution of the reconstructed density distribution while preserving the structural properties
of the kernel matrix. When considering the 2D case, it was very similar to the wavelet
transform processing image. After the wavelet decomposition, the four submatrices
of Equation (39) contained different frequency information from the original matrix.
Among them, G11 corresponded to low-frequency information, so its characteristics in
potential field inversion were very similar to the original matrix G. According to our limited
knowledge, there are many kinds of wavelets that can retain the structural characteristics
of the kernel matrix, such as the biorthogonal wavelet families: Biorthogonal Spline
and Reverse Biorthogonal Spline; and orthogonal wavelet families: Daubechies, Beylkin,
Coiflets, and Haar wavelets. For this reason, we suggest that interested readers can use the
multilevel inversion framework proposed in this paper to deal with other special structural
problems (e.g., Toeplitz structure, displacement structure) [108] with the help of the above
wavelet operators. While preserving the structural properties of the kernel matrix at each
level, other unique information is extracted, such as the faults, boundaries and directional
lines of geological structures, and so on.
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Symbol table
Gi j The kernel function
α The regularization parameter
ϕd(m) A data misfit (data misfit is defined by a least-squares measure) functional
ϕm(m) The model misfit function, also referred to as the model roughness
Wd Data weighting matrix
T The matrix transposition operation
β The decay index
v The gravitational constant
g An irrotational field
Ḡq,m The sensitivity matrix for the Line–Line survey scheme
Gt,n A BTTB matrix, also a kind of Toeplitz-like matrix
ρ̄m The density vector for the m-th column prismatic cells
d̄q The observation vector
W and WT Haar wavelet transform pairs
E⊗ F The Kronecker product of E and F
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