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Abstract: In this paper, we extend the invariant subspace method to a class of short pulse-type
equations. Complete classification results with invariant subspaces from 2 to 5 dimensions are
provided. The key step is to take subspaces of solutions of linear ordinary differential equations as
invariant subspaces that nonlinear operators admit. Some concrete examples and corresponding
reduced systems are presented to illustrate this method.
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1. Introduction

The short pulse (SP) equation

uxt = u +
1
6
(u3)xx (1)

can be used to display the propagation of ultra-short optical pulses in silicon fiber, where
u = u(x, t) represents the magnitude of the optical field. SP and two-component SP
equations are obtained as special integrable cases in the negative WKI hierarchy for the
first time in Refs. [1–3].

In Ref. [4], the authors present a classification of the following SP-type equations

uxt = u + β0u2 + β1uux + β2uuxx + β3u2
x + γ0u3 + γ1u2ux + γ2u2uxx + γ3uu2

x. (2)

Because of these constants {β j, γj, j = 0, 1, 2, 3}, the dispersion relationship will have
variable speeds, and solitons can change the speed, for example, through accelerating.
Equation (2) may be a good candidate for accelerating ultra-short optical pulse applications.
The purpose of this article is to classify Equation (2) by using the invariant subspace method.
In addition, in Ref. [5], the authors considered Lie symmetry analysis for some special
SP-type equations.

The invariant subspace method is powerful for studying nonlinear partial differential
equations (PDEs). Various invariant subspaces to a number of nonlinear PDEs have
been obtained (see [6–22], as well as the references therein). Accordingly, exact solutions
stemming from this method play important roles in the study of their asymptotical behavior,
blow up and geometric properties, etc. It turns out that the invariant subspace method is
closely related to the Lie-Bäcklund symmetry and the conditional Lie-Bäcklund symmetry.

Let us introduce the invariant subspace method briefly [6–22]. Consider the following
nonlinear PDEs

ut = F(x, u, ux, uxx, . . . , ukx), (3)
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where F[u] ≡ F(x, u, ux, · · · , ukx) is a sufficiently smooth function of its arguments and
ujx = ∂ju

∂xj (j = 1, 2, · · · , k). Let { f j(x), (j = 1, 2, · · · , n)} be a finite set of linearly in-
dependent functions and Wn denote their linear span Wn = L{ f1(x), f2(x), · · · , fn(x)}.
The subspace Wn is said to be invariant under the given nonlinear operator F, namely, F is
said to preserve Wn if F(Wn) ⊆ Wn; this means

F

[
n

∑
j=1

cj f j(x)

]
=

n

∑
j=1

Ψj(c1, c2, . . . , cn) f j(x) (4)

for any (c1, c2, · · · , cn) ∈ Rn. It follows that if the linear subspace Wn is invariant with
respect to F, then Equation (3) has exact solutions of the form

u(x, t) =
n

∑
j=1

Cj(t) f j(x), (5)

where the coefficients {C1(t), C2(t), · · · , Cn(t)} satisfy the following dynamical system

C′
j(t) = Ψj(C1(t), C2(t), · · · , Cn(t)), j = 1, 2, · · · , n. (6)

Let Wn be defined as the space of solutions to a linear nth-order ordinary differential
equation (ODE),

L[y] ≡ y(n) + an−1y(n−1) + · · ·+ a1y′ + a0y = 0, (7)

then, the invariant condition with respect to nonlinear operator F takes the form

L[F[u]]
∣∣
[H]

= 0, (8)

where [H] denotes equation L[u] = 0 and its differential consequences with respect to x.
Of course, Equation (7) can also be an equation with variable coefficients.

For nonlinear PDEs uxt = F(x, u, ux, uxx, . . . , ukx), there will be a different set of
constraint equations. That is, substituting Equation (5) with (7) and (8) into these equations,
we can obtain

n

∑
j=1

C′
j(t) f ′j (x)−

n

∑
j=1

Ψj(C1(t), C2(t), . . . , Cn(t)) f j(x) = 0. (9)

It is not difficult to notice that f ′j (x) = αjk fk(x) + αjl fl(x). So, the coefficients
{C1(t), C2(t), · · · , Cn(t)} satisfy the following system

Φl(C1(t), C2(t), . . . , Cn(t)) = 0,

C′
j(t) = Φj(C1(t), C2(t), . . . , Cn(t)), j ∈ {1, · · · , l − 1, l + 1, · · · , n}. (10)

Comparing Equations (6) and (10), we can find that by means of the invariant subspace
method, (1 + 1)-dimensional nonlinear equation ut = F[u] is reduced to a dynamical system,
while the other equation uxt = F[u] is reduced to a one-dimensional system of equations,
which includes constraint equations and a dynamical system. In other words, we extend the
application range of solving nonlinear equations by using the invariant subspace method.

There is an important proposition, that is, the maximum dimension estimation of
invariant subspaces. Namely, if a linear subspace Wn derived from Equation (7) is invariant
under a nonlinear operator F of order k, then

n ≤ 2k + 1.
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In Refs. [7,8,10], the authors have extended the estimation of the maximal dimension of
invariant subspaces to nonlinear vector operators.

2. Invariant Subspaces of the SP-Type Equations

For SP-type Equation (2), we only need to consider cases W2, W3, W4, and W5, which
are obtained by linear ODE (7).

We first analyze the case of W2. Let

L[y] ≡ y′′ + a1y′ + a0y = 0, (11)

and

F = u + β0u2 + β1uux + β2uuxx + β3u2
x + γ0u3 + γ1u2ux + γ2u2uxx + γ3uu2

x, (12)

a direct computation by using symbolic computation softwares such as Maple. From the
invariant condition (8), we have

L[F[u]]|[H] = (2a2
0γ2 + 2a2

0γ3 − 2a0γ0)u3

+ (6a0a1γ2 + 4a0a1γ3 − 6a0γ1)uxu2

+ (4a2
1γ2 + 2a2

1γ3 − 6a0γ2 − 6a0γ3 − 4a1γ1 + 6γ0)u2
xu

+ (a2
0β2 + 2a2

0β3 − a0β0)u2 + (3a0a1β2 + 4a0a1β3 − 3a0β1)uux

+ (−2a1γ2 − 4a1γ3 + 2γ1)u3
x

+ (2a2
1β2 + 2a2

1β3 − 2a0β2 − a0β3 − 2a1β1 + 2β0)u2
x

= 0.

(13)

To remove all the coefficients of Equation (13), we obtain the following over-determined system,

2a2
0γ2 + 2a2

0γ3 − 2a0γ0 = 0,

6a0a1γ2 + 4a0a1γ3 − 6a0γ1 = 0,

4a2
1γ2 + 2a2

1γ3 − 6a0γ2 − 6a0γ3 − 4a1γ1 + 6γ0 = 0,

a2
0β2 + 2a2

0β3 − a0β0 = 0,

3a0a1β2 + 4a0a1β3 − 3a0β1 = 0,

− 2a1γ2 − 4a1γ3 + 2γ1 = 0,

2a2
1β2 + 2a2

1β3 − 2a0β2 − a0β3 − 2a1β1 + 2β0 = 0.

(14)

By solving the above system (14), we have four cases,

Case 1 : a0 = 0, β0 = −a2
1β2 − a2

1β3 + a1β1, γ0 = a2
1γ3, γ1 = a1γ2 + 2a1γ3.

Case 2 : a1 = 0, β0 = a0β2, β1 = 0, β3 = 0, γ0 = a0γ2 + a0γ3, γ1 = 0.

Case 3 : β0 = a0β2, β1 = a1β2, β3 = 0, γ0 = a0γ2, γ1 = a1γ2, γ3 = 0.

Case 4 : a0 =
2a2

1
9

, β0 =
2
9

a2
1β2 +

4
9

a2
1β3, β1 = a1β2 +

4
3

a1β3, γ0 =
2a2

1γ2

9
,

γ1 = a1γ2, γ3 = 0.

Let us consider each of these cases in turn.
Subcase 1.1: a1 = 0. Substituting a1 = 0 into Case 1, the corresponding solution can be

easily obtained and listed as the first entry in Table 1.
Subcase 1.2: a1 ̸= 0.
Subcase 1.2.1: γ3 = 0, then γ0 = 0. If γ2 ̸= 0, it is easy to obtain a1 = γ1

γ2
and

β0 = − γ2
1

γ2
2

β2 −
γ2

1
γ2

2
β3 +

γ1
γ2

β1, which is represented as the second entry in Table 1. If γ2 = 0,
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it is easy to see that γ0 = γ1 = γ2 = γ3 = 0. Then, from (β2 + β3)a2
1 − β1a1 + β0 = 0, we

have three choices,

β2 = −β3, β1 = 0, β0 = 0.

β2 = −β3, β1 ̸= 0, a1 =
β0

β1
.

β2 ̸= −β3, a1 =
β1 ±

√
β2

1 − 4β0(β2 + β3)

2(β2 + β3)
.

The results are listed as the fourth to sixth entries of Table 1.
Subcase 1.2.2: γ3 ̸= 0. The corresponding classification result is listed as the third

entry in Table 1.
In Cases 2 to 4, we obtained equations using similar calculations, which are listed in

Table 1, Equations with invariant subspaces W3, W4, W5 are listed in Table 2. It is obvious
that when β3 = 0, Case 4 becomes Case 3.

Table 1. Classifications of W2 generated by linear ODE (7) for Equation (2).

No. Operator F ODE (7)

1 F = u + β1uux + β2uuxx + β3u2
x + γ2u2uxx + γ3uu2

x y′′ = 0

2
F = u + (−

γ2
1

γ2
2

β2 −
γ2

1
γ2

2
β3 +

γ1
γ2

β1)u2 + β1uux + β2uuxx + β3u2
x

+ γ1u2ux + γ2u2uxx

γ2 ̸= 0 y′′ + γ1
γ2

y′ = 0

3
F = u + (−γ0

γ3
β2 −

γ0
γ3

β3 ±
√

γ0
γ3

β1)u2 + β1uux + β2uuxx + β3u2
x

+ γ0u3 ±
√

γ0
γ3

(γ2 + 2γ3)u2ux + γ2u2uxx + γ3uu2
x

γ3 ̸= 0, γ0
γ3

> 0 y′′ ±
√

γ0
γ3

y′ = 0

4 F = u − β3uuxx + β3u2
x β3 ̸= 0 y′′ + a1y′ = 0

5 F = u + β0u2 + β1uux − β3uuxx + β3u2
x β1 ̸= 0 y′′ + β0

β1
y′ = 0

6 F = u + β0u2 + β1uux + β2uuxx + β3u2
x β2 ̸= −β3 y′′ + β1±

√
β2

1−4β0(β2+β3)
2(β2+β3)

y′ = 0

7 F = u − γ3u2uxx + γ3uu2
x γ3 ̸= 0 y′′ + a0y = 0

8 F = u + γ0u3 + γ2u2uxx + γ3uu2
x γ2 ̸= −γ3 y′′ + γ0

γ2+γ3
y = 0

9 F = u + β0u2 + β2uuxx +
β0
β2
(γ2 + γ3)u3 + γ2u2uxx + γ3uu2

x β2 ̸= 0 y′′ + β0
β2

y = 0

10 F = u + β0u2 + β1uux + β2uuxx +
β0
β2

γ2u3 +
β1
β2

γ2u2ux + γ2u2uxx β2 ̸= 0 y′′ + β1
β2

y′ + β0
β2

y = 0

11 F = u + γ0u3 + γ1u2ux + γ2u2uxx γ2 ̸= 0 y′′ + γ1
γ2

y′ + γ0
γ2

y = 0

12 F = u + β0u2 − 4
3 β3uuxx + β3u2

x β3 ̸= 0, β0
β3

> 0 y′′ ± 3
√

3
2

√
β0
β3

y′ + 3β0
2β3

y = 0

13 F = u +
2β2

1
9(β2+

4
3 β3)2 (β2 + 2β3)u2 + β1uux + β2uuxx + β3u2

x β2 ̸= − 4
3 β3 y′′ + β1

β2+
4
3 β3

y′ + 2β2
1

9(β2+
4
3 β3)2 y = 0

14
F = u + (

2γ2
1

9γ2
2

β2 +
4γ2

1
9γ2

2
β3)u2 + (

γ1
γ2

β2 +
4γ1
3γ2

β3)uux + β2uuxx + β3u2
x

+
2γ2

1
9γ2

u3 + γ1u2ux + γ2u2uxx

γ2 ̸= 0 y′′ + γ1
γ2

y′ + 2γ2
1

9γ2
2
y = 0
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Table 2. Classifications of Wn (n = 3, 4, 5) generated by linear ODE (7) for Equation (2).

No. Operator F ODE (7)

1 F = u + β2uuxx + β3u2
x − 2γ3u2uxx + γ3uu2

x y′′′ = 0

2 F = u − γ0
γ3
(β2 + β3)u2 + β2uuxx + β3u2

x + γ0u3 − 2γ3u2uxx + γ3uu2
x γ3 ̸= 0 y′′′ − γ0

γ3
y′ = 0

3 F = u + β0u2 + β2uuxx + β3u2
x β2 ̸= −β3 y′′′ + β0

β2+β3
y′ = 0

4 F = u − β3uuxx + β3u2
x y′′′ + a1y′ = 0

5 F = u + β0u2 − 4
3 β3uuxx + β3u2

x β3 ̸= 0, β0
β3

> 0 y′′′ ± 3
√

3
2

√
β0
β3

y′′ + 3β0
2β3

y′ = 0

6 F = u + ( 4
9 β3 +

2
9 β2)

β2
1

(β2+
4
3 β3)2 u2 + β1uux + β2uuxx + β3u2

x β2 ̸= − 4
3 β3 y′′′ + β1

β2+
4
3 β3

y′′ + 2β2
1

9(β2+
4
3 β3)2 y′ = 0

7 F = u + β0u2 + β1uux + β2uuxx β2 ̸= 0 y′′′ + β1
β2

y′′ + β0
β2

y′ = 0

8 F = u +
4β2

1
β3

u2 + β1uux − 3
2 β3uuxx + β3u2

x β3 ̸= 0 y(4) − 4β1
β3

y′′′ − 4β2
1

β2
3

y′′ + 16β3
1

β3
3

y′ = 0

9 F = u + β0u2 − 4
3 β3uuxx + β3u2

x β3 ̸= 0 y(5) − 15β0
4β3

y′′′ + 9β2
0

4β2
3
y′ = 0

3. Some Concrete Examples

In this section, we provide several specific examples to demonstrate the classification
results derived from the invariant subspace method.

Example 1. We consider the following SP-type equation

uxt = u + β0u2 + β1uux − β3uuxx + β3u2
x, β0 ̸= 0, β1 ̸= 0, (15)

which is located in the fifth row of Table 1. The operator F = u + β0u2 + β1uux − β3uuxx + β3u2
x

admits W2 = L{1, e−
β0x
β1 }, which is generated by the linear ODE

y′′ +
β0

β1
y′ = 0.

Thus, an exact solution is provided by

u(x, t) = C1(t) + C2(t)e
− β0x

β1 ,

where C1(t) and C2(t) satisfy the following reduced system

C1β2
1(C1β0 + 1) = 0,

C′
2 =

1
β0β1

C2((β2
0β3 − β0β2

1)C1 − β2
1).

(16)

For ease of understanding, these special parameters β0 = 2, β1 = β3 = 1, have an exact solution of
u = − 1

2 + ce−2x−t, which is drawn in Figure 1.

Example 2. Here, we consider the following SP-type equation

uxt = u + γ0u3 + γ2u2uxx + γ3uu2
x, γ2 ̸= −γ3. (17)

The operator F = u + γ0u3 + γ2u2uxx + γ3uu2
x admits the invariant subspace W2 generated by

the linear ODE
y′′ +

γ0

γ2 + γ3
y = 0.
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Case 1: Renaming s = γ0
γ2+γ3

, when s < 0, from y′′ + sy = 0, we have the invariant subspace

L{e−
√
−sx, e

√
−sx}.

Thus, an exact solution is provided by

u(x, t) = C1(t)e−
√
−sx + C2(t)e

√
−sx,

where C1(t) and C2(t) satisfy the dynamical system

C′
1 =

−4
(γ2 + γ3)

√
−s

(γ0γ3C1C2 +
1
4

γ2 +
1
4

γ3)C1,

C′
2 =

4
(γ2 + γ3)

√
−s

(γ0γ3C1C2 +
1
4

γ2 +
1
4

γ3)C2.
(18)

Case 2: When s > 0, from y′′ + sy = 0, we have the invariant subspace

L{sin (
√

sx), cos (
√

sx)}.

Thus, an exact solution is provided by

u(x, t) = C1(t) sin (
√

sx) + C2(t) cos (
√

sx),

where C1(t) and C2(t) satisfy the dynamical system

C′
1 =

1
(γ2 + γ3)

√
s

C2(γ0γ3C2
1 + γ0γ3C2

2 + γ2 + γ3),

C′
2 = − 1

(γ2 + γ3)
√

s
C1(γ0γ3C2

1 + γ0γ3C2
2 + γ2 + γ3).

(19)

Let these special parameters γ0 = 2, γ2 = γ3 = 1, have an exact solution

u = cos(
3
√

2
2

t + c)cos(

√
2

2
x) + sin(

3
√

2
2

t + c)sin(

√
2

2
x)

= cos(
3
√

2
2

t −
√

2
2

x + c),

which is drawn in Figure 2.

Figure 1. An exact solution of Equation (15) with c = 1.
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Figure 2. An exact solution of Equation (17) with c = 1.

Example 3. Let us consider the following SP-type equation

uxt = u + β2uuxx + β3u2
x − 2γ3u2uxx + γ3uu2

x, (20)

where the operator F = u + β2uuxx + β3u2
x − 2γ3u2uxx + γ3uu2

x admits W3 = L{1, x, x2}
determined by the linear ODE

y′′′ = 0.

Thus, an exact solution is provided by

u(x, t) = C1(t) + C2(t)x + C3(t)x2,

where C1(t) and C2(t) satisfy the following reduced system

C1 =
γ3C2

2 + 2β2C3 + 4β3C3 + 1
4γ3C3

,

C′
2 = (−4γ3C2

1 + 2β2C1)C3 + (γ3C1 + β3)C2
2 + C1,

C′
3 = (−2γ3C1 + β2 + 2β3)C2C3 +

1
2
(γ3C3

2 + C2).

(21)

Example 4. We consider the following SP-type equation

uxt = u + β0u2 + β2uuxx + β3u2
x, β2 ̸= −β3. (22)

The operator F = u + β0u2 + β2uuxx + β3u2
x admits the invariant subspace W3 determined by the

linear ODE
y′′′ +

β0

β2 + β3
y′ = 0.

Case 1: Renaming p = β0
β2+β3

, when p < 0, from y′′′ + py′ = 0, we have an invariant subspace

L{1, e−
√−px, e

√−px}.

Then, an exact solution is provided by

u(x, t) = C1(t) + C2(t)e−
√−px + C3(t)e

√−px,
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where C1(t), C2(t), and C3(t) satisfy the following reduced system

C1 = −β0C2
1 −

4β0β3C2C3

β2 + β3
,

C′
2 = −

√
− β2 + β3

β0

(β0(β2 + 2β3)C1 + β2 + β3)C2

β2 + β3
,

C′
3 =

√
− β2 + β3

β0

(β0(β2 + 2β3)C1 + β2 + β3)C3

β2 + β3
.

(23)

Case 2: When p > 0, from y′′′ + py′ = 0, we have an invariant subspace

L{1, sin(
√

px), cos(
√

px)}.

Then, an exact solution is provided by

u(x, t) = C1(t) + C2(t) sin(
√

px) + C3(t) cos(
√

px),

where C1(t), C2(t), and C3(t) satisfy the following reduced system

C1 = −β0C2
1 −

β0β3

β2 + β3
(C2

2 + C2
3),

C′
2 =

√
β2 + β3

β0

(β0(β2 + 2β3)C1 + β2 + β3)C3

β2 + β3
,

C′
3 = −

√
β2 + β3

β0

(β0(β2 + 2β3)C1 + β2 + β3)C2

β2 + β3
.

(24)

Example 5. We consider the following SP-type equation

uxt = u + 4u2 + uux −
3
2

uuxx + u2
x. (25)

The operator F = u + 4u2 + uux − 3
2 uuxx + u2

x admits W4 = L{1, e2x, e4x, e−2x} determined by
the linear ODE

y(4) − 4y′′′ − 4y′′ + 16y′ = 0.

The corresponding exact solution is provided by

u(x, t) = C1(t) + C2(t)e2x + C3(t)e4x + C4(t)e−2x,

where C1(t), C2(t), C3(t), and C4(t) satisfy the following reduced system

C1 = 12C2C4 − 4C2
1 ,

C′
2 = 2C1C2 − 18C3C4 +

C2

2
,

C′
3 = C2

2 − 3C1C3 +
C3

4
,

C′
4 = −C4

2
.

(26)

So, an exact solution of the SP-type equation can be obtained as

u(x, t) = −1
8
− e2x+ t

2

192c1
+

et+4x

13824c2
1
+ c1e−2x− t

2 ,

where c1 is an arbitrary constant.
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Example 6. We consider the following SP-type equation

uxt = u − u2 − 4
3

uuxx + u2
x. (27)

Here, the operator F = u− u2 − 4
3 uuxx + u2

x admits W5 = L{1, sin (
√

3x), cos (
√

3x), sin (
√

3x
2 ),

cos (
√

3x
2 )} , which is determined by the linear ODE

y(5) +
15
4

y′′′ +
9
4

y′ = 0.

Thus, an exact solution is provided by

u(x, t) = C1(t) + C2(t) sin (
√

3x) + C3(t) cos (
√

3x) + C4(t) sin (

√
3x
2

) + C5(t) cos (

√
3x
2

)

where {C1(t), C2(t), · · · , C5(t)} satisfy the following reduced system

C1 = C2
1 − 3C2

2 − 3C2
3 −

3C2
4

8
−

3C2
5

8
,

C′
2 =

√
3

24
(16C1C3 + 3C2

4 − 3C2
5 + 8C3),

C′
3 =

√
3

12
(−8C1C2 + 3C4C5 − 4C2),

C′
4 =

2
√

3
3

(3C2C4 − C5(C1 − 3C3 − 1)),

C′
5 =

2
√

3
3

((C1 + 3C3 − 1)C4 − 3C2C5).

(28)

4. Conclusions and Discussions

In this paper, we study SP-type equations by using the invariant subspace method. A
class of Equation (2) admitting invariant subspaces generated by Equation (7) are obtained
and listed in Tables 1 and 2. Some concrete examples and corresponding reduced systems
are presented to illustrate this method.

In the future, we will consider the classification of two-component SP-type equa-
tions. Of course, the extension to the case of nonlocal equations and the case of fractional
differential equations should be further investigated.
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