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Abstract: In this paper, we introduce the notion of the semi-symmetric metric connection in the
Heisenberg group. Moreover, by using the method of Riemannian approximations, we define the
notions of intrinsic curvature for regular curves, the intrinsic geodesic curvature of regular curves on
a surface, and the intrinsic Gaussian curvature of the surface away from characteristic points in the
Heisenberg group with the semi-symmetric metric connection. Finally, we derive the expressions
of those curvatures and prove the Gauss—Bonnet theorem related to the semi-symmetric metric
connection in the Heisenberg group.

Keywords: Heisenberg group; Gauss—Bonnet theorem; semi-symmetric metric connection; sub-
Riemannian geometry

1. Introduction

The Heisenberg group is a non-commutative nilpotent Lie group, which is a special
structure of Lie groups. It usually consists of third-order upper triangular matrices whose
elements can be taken from some kind of commutative ring, such as the ring of numbers
or the ring of integers. The Heisenberg group is a population structure in the space of
three-dimensional real numbers, and the product operation is defined as

1
(x1,¥1,21) * (X2, Y2,22) = (¥1 + X2, 1 + Y2, 21 + 22 — E(xm — X1Y2)).

The special nature of its structure enables this group to play an important role in mathe-
matics. In 2003, Semmes introduced the notions of the Heisenberg group in analysis and
geometry [1]. Subsequently, many researchers began to work in the Heisenberg group.
In 2004, Pauls characterized minimal surfaces in terms of a sub-elliptic partial differential
equation and proved an existence result for the Plateau problem. Further, he investigated
the minimal surface problem in the three-dimensional Heisenberg group [2]. In 2010, Onda
calculated the Ricci tensor of the Heisenberg group with the left invariant Lorentz metric
g1 and proved that g; satisfies the Ricci soliton equation [3]. In 2013, Yoon and Lee defined
translation surfaces in the three-dimensional Heisenberg group Hj obtained as a product of
two planar curves lying in planes, which are not orthogonal, and studied minimal transla-
tion surfaces in H3 [4]. In 2016, Zhao used the tent spaces on the Siegel upper half space to
introduce the Hardy-Hausdorff spaces in the Heisenberg group. Finally, the author proved
that the predual spaces of Q spaces are the Hardy—Hausdorff spaces in the Heisenberg
group [5]. In 2021, Wang proved Gauss—-Bonnet theorems associated with two kinds of
canonical connections in the Heisenberg group [6]. In the same year, he also proved that
the Gauss—Bonnet theorem is associated with two kinds of Schouten—Van Kampen affine
connections in the Heisenberg group [7]. All the above studies have achieved good results,
and we have found that there are many studies on the sub-Riemannian geometry of curves
and surfaces in the Heisenberg group.
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On the other hand, the use of semi-symmetric metric connections is very widespread.
In [8], Hayden defined the notion of a semi-symmetric metric connection on a Riemannian
manifold. Later, Yano investigated a Riemannian manifold endowed with a semi-symmetric
metric connection whose curvature tensor vanishes if and only if the Riemannian manifold
is conformally flat [9]. In [10], Imai introduced a hypersurface with the semi-symmetric met-
ric connection and obtained the Codazzi—Ricci equations with respect to the semi-symmetric
metric connection. In [11], Klepikov and Rodionov classified invariant Ricci solitons on
three-dimensional Lie groups with left-invariant Riemannian metrics and semi-symmetric
connections. It has been proven that there are invariant Ricci solitons with non-conformal
Killing vector fields in this case. According to the relevant studies described above, there
is little research on the geometric properties related to semi-symmetric connections in the
Heisenberg group. The research on the Gauss—-Bonnet theorems related to different connec-
tions on between Lie groups can be found at the following references ([12-18]). Under the
influence of the above work, this paper attempts to research geometric properties related
to the semi-symmetric connection in the Heisenberg group by employing the method of
the Riemannian approximation scheme. In this paper, we introduce the sub-Riemannian
geometry of curves and surfaces in the Heisenberg group with a semi-symmetric metric
connection and we use the Riemannian approximation scheme to compute sub-Riemannian
limits of the Gaussian curvature for a Euclidean Cy-smooth surface in the Heisenberg group
away from characteristic points and signed geodesic curvature for Euclidean Cy-smooth
curves on surfaces. On this basis, we prove the Gauss—Bonnet theorem related to the semi-
symmetric metric connection in the Heisenberg group. For future research directions, we
want to conduct research related to the different connections of the Gauss-Bonnet theorem
on Lie groups.

The paper is organized as follows. In Section 2, we briefly introduce the concept of
semi-symmetric metric connection and calculate the corresponding connection components
and curvature components in the Heisenberg group. In Section 3, we calculate the sub-
Riemannian limit of curvature of curves in the Heisenberg group. In Sections 4 and 5,
we compute sub-Riemannian limits of the geodesic curvature of curves on surface and
the Riemannian Gaussian curvature of surface in the Heisenberg group with the semi-
symmetric metric connection. In Section 6, we prove the Gauss—-Bonnet theorem related to
the semi-symmetric metric connection in the Heisenberg group. Finally, we summarize the
main results and discuss future research directions in Section 7.

2. Riemannian Approximates of (H, g1)

In this section, we introduce concepts of the Heisenberg group, the semi-symmetric
metric connection, and curvature associated with the semi-symmetric metric connection.
We also calculate the corresponding expressions.

Firstly, we recall the structure of the Heisenberg group in [6]. Let H be the Heisenberg
group R3, where the non-commutative group law is given by

1
(x1,y1,21) * (X2, ¥2,22) = (%1 +x2,¥1 + V2,21 + 20 — E(Xzyl —x1Y2)),

and with the Riemannian metric g given by ¢ = dx? + dy? + (dz + J (ydx — xdy))?, where
(x,y,z) are the standard coordinates of R3,
Let X;, X, and X3 be the vector fields on H given by

X, = oxp — %axaf Xp = 0xp + %axal X3 = dxs, 1)

and span{xvl , Xa, 5(\_;,} = T(H). One can check the following brackets

X1,%| = X5, [%, %] = 0,[X1, %3] =0. 2)
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LetH =s pan{jivl, }?2} be the horizontal distribution on H. If we let

1
w1 = dx1,wy = dxy, w3z = dxs + E(de)q — xlde), (3)
then H = kerw. To describe the Riemannian metric on H, let L > 0 and define a metric

8L = w1 ®@wy +wr ®@ws + Lws ® ws, 4)

so that X7, Xp, Zo,L = L_%}A(; are the orthonormal basis on T(H) with respect to g;.. We
denote the Riemannian approximants to H by (H, g1 ).

Next, let ¢ = g1 represent the Riemannian metric on H. If V¢* = 0, then V* is called a
semi-symmetric metric connection on H. Following [9], a semi-symmetric metric connection
V? on H is given by N N o o

VLY = VEY +¢(Y, X3)X — g(X,Y)Xs,
for any vector fields X and Y on H. Let VE be the Levi-Civita connection on H with respect
to g1, which is determined by Lemma 2.1 in [7], where V»LX«X]- =0,1<j<3, V% X, = X5,
j 1
vlle =-1X;, v%& = v%sxl =-L1X,, v%z)g = vfgxz = —LXj. So we have
Lemma 1. Let H be the Heisenberg group, then
ViR, = X5, Vi X = %5, V5 K = LK, — 2%,
X 1= 3/ X 2—2 37 X 3 = 1 22/
—~ 1~ —~ ~ ~ L~
s _ _ = S_ — S_ [
V)ZX1 = 2X3’VX2X2 = —X3, VX2X3 = 2X1 + LX,, )
—~ L~ ~ L~ ~
s _ = s _ b s _
Proof. We will only compute V%(vli(vl as an example. Firstly,
Vi X1 = Vi X1 +g(X1, X3) X1 — g(X1, X1)Xs,
next, we compute
Ly _
VE« X1 =0,
8(X1,X3)X1 =0,
(X1, X1)Xs = Xs,

and therefore, we obtain VS/XVz = —)73. Other cases can be calculated using the same
1
method. O
Finally, we finish the curvature of the connection V° by R*(X,Y)Z = V%V%Z -
V@VSXZ — VE}?,Y]Z’ where X, Y, Z € H, we obtain the following proposition.

Proposition 1. Let H be the Heisenberg group, then

e e TLe e e T o e~
R (Xq,X2) Xy = ZXZ; R (X1, X2)Xp = _ZXLRS(XLXZ)XB» =0,

e e Le e e L o~ L
R (Xq,X3)X1 = —ZXsf R (X1, X3)Xp = —§X3, R*(Xq,X3)X3 = TXZ +—X;, (6

o o L oo o L o [P [P
R (Xz, X3)X1 - EX?)/R (X21X3)X2 = —ZX:;,R (X2/ X3)X3 = ZXZ — 7}(1



Symmetry 2024, 16, 762

4 0f 20

Proof. We will only compute R*(X;, X3)X; as an example. Firstly, we list the formula
based on the curvature associated with the semi-symmetric metric connection

RY(X,Y)Z = VyVSZ - VyV3Z — v%mz.

For example, we compute
~ 1 ~ L~
S El — — —
v%vgxl = 2(LX1 2X2),

— | —

— L~
S § - _
Vmm = %
therefore, we obtain RS(E, X5)X1 = ZLX;. Other cases can be calculated by using the

same method. [

3. The Sub-Riemannian Limit of Curvature of Curves in (I, g1)

In Section 3, we will compute the sub-Riemannian limit of curvature of curves in
(H, g1.). Our approach is to define sub-Riemannian objects as limits of horizontal objects in
(H, g1.), where a family of metrics gy is essentially obtained as an anisotropic blow-up of
the Riemannian metric g. At the heart of this approach is the fact that the intrinsic geometry
does not change with L. Let y : [a,b] — (H, g1 ) be a regular curve, where [a, b] is an open
interval in R.

Definition 1. Let y : [a,b] — (H, 1) be a Euclidean C'-smooth curve. We say that vy is reqular
if v # 0 for every t € [a, b]. Moreover, we say that <y(t) is a horizontal point of -y if

w(3(0) = 28~ 420 =0,

where y(t) = (y1(t), v2(t), v3(t)).

As is well known, if -y is a curve with arc length parametrization, then the standard

L:

definition of curvature for 7 in Riemannian geometry is k;; H ViﬂH If 7y is a curve with

an arbitrary parametrization, then we give the definitions as follows:

Definition 2. Let y : [a,b] — (H, 1) be a Euclidean C?-smooth regular curve in the Riemannian
manifold (H, g ). The curvature R of <y at y(t) can be defined as

Vs . 2 VS . . 2

L. H WHL_< W'7>L

Ky == 4 6
lkedlFs 717

@)

Proposition 2. Let 7y : [a,b] — (H, g1) be a Euclidean C?>-smooth reqular curve in the Rieman-
nian manifold (H, g1), then
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< [11(t)% + 72(#)* + La(
— {1 (O)[¥1(t) + Lw(7(t)
+ F2(8) [¥2(f) + Lw(7(t)) (1

+ Lo (7(1) =11 (t)* — 72
< [71(8)2 + (1) + Lw(y(t

®)

In particular, when «y(t) is a horizontal point of vy, then

={[71(0% + 72(8)* + L(=71(8)* = 12(1)* + %(w(ﬁr(t)))]z
X [11( + 72(6)%] 7% = [11 () F2(8) + T2 () F2)] x [1.(8)* + T2(1)*] 7} 2

)

Proof. By v(t) = (71(t), 72(t), 73(t)), we have
F(1) = 71 () X1 + T2(6) Xa + @ (7()) Xs. (10)
By (5), we have
V5X1 = 1OV X1+ 72() Vi X2 + w(7(1) Vi X3

= (D%~ 310 — 5 (@(7()Ka,

V%E:’h(f)v‘%qg*F’Yz( Vi X2+w( (VL Xz
= (0% — 72 %5 + %( (), a
V5X; = ’h(f)vi?lg +T2(t) Vi Xa +w(7(1) V% Xa

= (LXi ~ SR+ <§xl LX) (1),
By (11), we obtain
Vit =i (0% + 120 %2 + (7)) %s
=71(H)X1 +71()VEXT +92(0) X2 + T2(H) V5 X, + %( (7(6)) X3 + w(7(t)) V5 X3
=1 (%5 + 7 (~Fytat) — 5 Kialt) — 5 Kalw((1)))
0205 + 120 (X (0Fta(t) + 5 % (@) )
A )X+ w(GO)LK — SR () + (551 + LEa)ia(0)],
=[1(6) + Lo (H(0) (1 () + 72(8)) Ko
+ [F2(8) + Law(5(8) (52() — $1(1))] X2

(0 = 1t + T (@ (3(0)]
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By (7) and (10), we have

|95 =051 + Lo 0)(n(6) + Lae)) 2
+ [F2() + Lao(F(D)) (2(t) = L (1) (13)

0 — (P + @),
912 = [ (02 + 3202 + Lo 1)

(V314 =101 (0 + Lol () (1 () + La(1)]
+3a(0)Fa(t) + Leo(F(0) (alt) — Lin (1) (15)
+ Lol 11 (12~ () + (@ (i(1)])?

and
918 = [91(6) + F2(£)? + Law(3(4)) 2.

By Definition 2, we obtain Proposition 2. [

Definition 3. Let y : [a,b] — (H, 1) be a Euclidean C?>-smooth reqular curve in the Riemannian
manifold (H, g1.), the intrinsic curvature K5 of vy at y(t) is defined as

[

e 1341 L
y = lim %

Looo [V

if the limit exists.

We introduce the following notation: for continuous functions f1, f : (0, +) = R,

f(L) ~ fo(L), asL — +o0 & ngrolo QEB —1.

Proposition 3. Let v : [a,b] — (H, g1) be a Euclidean C?-smooth regular curve in the Rieman-
nian manifold (H, g1 ).

(1)  When w(y(t)) # 0, we have

o + G2(t)?)
7 ECO (1€)

(2)  When w(y(t)) = 0and %(w("y(t))) = 0, we have

o _ T1(H)T2(t) = F2(H)71(H)]
N T A O 47
(3) When w((t)) = 0and %(w(”y(t))) # 0, we have
fim g wm) (18)

Lseo VL 1 (D2 + 72 (02]

Proof. When w(¥(t)) # 0, we have

|39 ~ 20055217 + 3212 a5 L — 4o,

913 ~ Lo(H(0), (V57,7); ~O(12) as L -+,
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therefore
[V, | atneremer,,
17117 w(1()?
2
(V3,7
S Il 0asL — +oo,
7117

=0 _ |91 (£)y2(t) — ’Yz(f)7|1(t)|. (19)

T ()2 4 9a(t)?
When w(¥(t)) = 0 and %(w(')'/(t))) = 0, we have

HVSIYH ~ L[;t( ("Y(lf)))}2 as L — +oo,

2
1917 = (11 (02 + 72 (022, (V33,7) ~0(1) as L — +oo.

When w(¥(t)) = 0 and %(w("y(t))) # 0, we obtain

O

4. The Sub-Riemannian Limit of Geodesic Curvature of Curves on Surfaces in (I, g1.)

In this section, we define the notions of geodesic curvature, intrinsic geodesic cur-
vature, signed geodesic curvature and intrinsic signed geodesic curvature for Euclidean
C2-smooth regular curves in (H, g1 ) and calculate their expressions.

We will determine that a surface ©! C (I, g1 ) is regular if ©! is a Euclidean C2-smooth
compact and oriented surface. In particular, we will assume that there exists a Euclidean
C2-smooth function u : H — R, such that

> ={(x,y,2) €G:u(x,yz) =0},
and u,dx + uydy + 1:9; # 0. Let V5,u(X) = X3(u)X; + Xo(u)Xs. A point x € Tl is
referred to as characteristic when V$,u(x) = 0. Next, we define the characteristic set by

C(xh) = {(xy,2) € |V}u(x,y,2) = 0}.

Our computations will be local and will be distanced from feature points of ©.!. We begin

by defining a := 5(v1u,b = }Eu and r := ngLu. Let

=Va2+ 02,1 = Va?+b>+r2,a:= %,

a b r (20)
T

W‘\
-
=
\
=
-,
|

. — 72 c . . . .
In particular, @° + b~ = 1. Atevery non-characteristic point, these functions are well defined.
Let

. I S A
vp =ar X, + b X +?LX3L,€1 =bX1 —aXy,e0 =7aX] + 70X — TX3L, (21)
L

where v} is the Riemannian unit normal vector to X! and e;, e, form the orthonormal basis
of X1, Using TX!, we define a linear transformation J; : TE! — TX! such that
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Ju(e1) :=ep, Jr(e2) := —ey. (22)

1
For every U,V € T!, we have Vﬁ Y = ViV where 7 : TH — Tx! is the projection.
So VZ'5 is the semi-symmetric metric connection on 2! with respect to the metric ¢; and

VZ = (Vitenrer + (Vit.e)rer, (23)

we obtain

VE'S =Bl (1) + Lo (D) (1 (1) + 72(8))]

— () + Lo (1) (3a(t) — ()] }er
+{7raly1(t) + Lw (7 (8) (11(t) + F2(t)] (24)
+7LB[a(t) + L (3(6) (hat) — (1))
L@ - 02+ L)

L
If w(§(t)) = 0, then
V' = (b (t) —anat)}er
p (25)

HATR() + bR () — L1 — 120 + @O

Definition 4. Let =1 C (H, g1) be a regqular surface and « : [a,b] — X be a Euclidean C?-smooth
reqular curve. We define the geodesic curvature ?c's 1 Of v at y(t), then

rls >ls
~L L \l ||v ’YHZI L <V ’)’/ r)/>):1 L (26)

1 -
e EIEY 1S, ,

Definition 5. Let &' C (H, g1 ) be a reqular surface and 7y : [a,b] — X be a Euclidean C2-smooth
reqular curve. The intrinsic geodesic curvature K°° o of v at y(t) is defined as

~00 ~L
K = lim %
7! L—+co V7 zv

if the limit exists.

Proposition 4. Let 2! C (H,g1) be a regular surface and vy : [a,b] — ! be a Euclidean
C2-smooth reqular curve.

(1)  When w(y(t)) # 0, we have

wo (1 (8) +T2(8) +a(7a(t) = 71 (1))
v = WG] ' )

(2)  When w((t)) = 0and %(w("y(t))) = 0, we have

’7{?21 - 0
(3)  When w((t)) = 0and % (w((t))) # 0, we have

. %,ylzl _ |%(W(7(t)))|
Lot VL [0 (t) — a7 (8]

(28)



Symmetry 2024, 16, 762

9 of 20

Proof. By (10) and 7 € TX!, we have
F() = 71(8) X1 + 72(8) Xz + w(7(£) X3
By (23), we have
Y(t) = mey + ney
= m(b%; — a%a) + n(ra%s + 7B — 1 Xa')
L
_ —~ o i —
= (mb + Tl?Lﬁ)Xl + (—md + n?Lb)Xz - ;l/lfLi%Xg,
L
Comparing the above equations, we obtain

{ mb +n7ra = y1(t),

—ma + nrpb = ’j/z(t),

from which

¥ = (11(D)8 — Fa(H)a)er — ELEw(F(t))er, (29)

by (24), we have

(I3 54112 ={Bl1 (1) + Lo (H(5) (11.(t) + T2(t)]
= aly2(t) + Lw(¥(6) (12(t) = 1 (1)}
H{rLali () + Lo (v (0) (118 + 72(8))]

+7Lb[¥2(t) + Lw(7(8)) (12(t) — 11(8))] (30)
I

~ L (2 = a0+ L @O
L
~b(F1(t) + F2() — a(F2(t) — 11(8)Pw((t))*L?
+ Fra(in(t) + 72(8)) +7Lb(72(t) — 11 (8)]w (7(£)) L%

Similarly, when w(¥(t)) # 0, we have

il = /(08— 12(02) + (E2La(3(0)

~ L2 |w(§(t))| as L — +oo,

(31)

by (24) and (28), we obtain
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<v§1'w,v>zl,L :<z‘w'1<t> Ta() (B (1) + Lao(1(0) (1 (1) + T2(6)]
<>+Lw T (2(8) — 11 ()]}

7% W1 () {FLali () + Lo (i (t) o)

782 (8) + Lo (1(0) (2(t) — 31(1))]

— P =102 — 0 + 2 @ (O]}

~MyL,

t

(11(8) + 72(#))]

where My does not depend on L. So, we have

k®, = lim kE
2 L—+o0 7!

_ B((8) +92(8) +@(31(t) = F2(1))]
w(7(8))] '

When w(§(t)) = 0 and %(w("y(t))) = 0, we have

||V§l ||21 L =071(t) — 42(#)) + [Fraya (t) + FLba(t) — éL%(—‘h(f)z —72(t))]

(33)
~[by1(t) — a2 (t)]* as L — +oo
and )
[¥llg1p = [by1(t) — ag2(t)]. (34)
Let P = by1(t) — at2(t), Q = by1(t) — a¥2(t), then
(V5 4, 9)g L = PQ, (35)
we obtain
o P2 pZQZ
K')//Zl - @ - Q6 - 0

When w(¥(t)) = 0 and %(w('y(t))) # 0, we have

V5412, | ~ L O ~ L ()2
¥ 1L l% dt dt ’

so, we obtain

Therefore, proposition 4 holds. [

Definition 6. Let =! C (IH, g1) be a reqular surface. Let vy : [a,b] — £ be a Euclidean C2-smooth
reqular curve. The signed geodesic curvature ’Ksszl of v at «y(t) is defined as

~Ls . <V217/1L(')>21,L

K =
%):1 Hr)/HzlL

7

where |1 is defined by (22).
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Definition 7. Let &' C (H, g1 ) be a reqular surface. Let 7y : [a,b] — X! be a Euclidean C?-
smooth regular curve. We define the intrinsic geodesic curvature %:’;gl of 7y at the non-characteristic

point y(t) as
~00,5 ~L s
K2, = lim
7E! L—+o0 'Y x

if the limit exists.

Proposition 5. Let ¥! C (H, gr) be a regular surface. Let i : [a,b] — X! be a Euclidean
C2-smooth regular curve.

(1)  When w((t)) # 0, we have

(2)  When w((t)) = 0and %(w(”y(t))) = 0, we have

(3)  When w(y ())—Oand 7 (w((t))) # 0, we have

)
oo _(@T2(t) — b1 (8) (—71(8)* — 72(£)* + & (w(¥(1))))
rEL T | )

Proof. By (22) and (29), we obtain

Next, we have

(VE 4, L(9) TL L2 (F()B[1 (1) + Leo(F() (11 (1) + F2(t))

= al¥a(t) + Lw(7(8)) (12(8) = 71(H)]}
{{r.a [ 1(#) + Lw(7(5) (11(8) + 72(£))]

(
FLBa(6) + La((8)) (alt) — 1 (1)
L (67 + L@ (O]}

+ +
ﬁ &I

N\»—l

- [—’h(t)z %

P‘

~—
)
[S[e8)

~Lp

; W(F(0))?[B(F1(t) +F2(t)) +a(q1(t) — F2(t))]as L — +o0.

So, we obtain
sls . .
L (P L)
’Y’):l H’)/Hzl L

:L%w("y(t))z[b('h(t) +2(t) +a(i(t) = F2(H)]
L2 |w (7 (1)

Moreover,
2005 i FLS (71 (t) +F2(t) +a(11(t) = F2(t))]
72 T S W) |
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When w(¥(t)) = 0and %(w(”y(t))) = 0, we obtain

(V359 JL () L =b11(8) — @i (D) [Frada (£) +Fba(t)
I 1
— L2 (=71 (H)* = 12(H?)]
L
~MoL "2 as L — +co.

So, ?{':Ozsl = 0. When w(¥(t)) = 0and 4 (w((t))) # 0, we have

Lm0+ L))
L
~(E () ~ a2~ 1) (@ H0) = T2 = Ga(1) as L - +oo
We obtain
% = lim ’7%,21
x! L—+o ﬁ
_@(t) = B () (=1 (0 ~ (6 + § (w(5(1))))
b71(t) — a2 (t)[3
O

5. The Sub-Riemannian Limit of the Riemannian Gaussian Curvature of Surfaces
in (H, g1)
In this section, we will compute the sub-Riemannian limit of the Riemannian Gaussian

curvature of surfaces in (H, g1 ). To achieve this, we define the second fundamental form
IT* of the embedding of &' into (H, g1 ):

IIL _ <<V?10L,€]>L <VE]DL162>L>’
(Vi,oren)r (Vi,uLe)r

We have the following theorem.
Theorem 1. For the embedding of X! into (H, g ), the second fundamental form 11 of the

embedding of £ is given by
hi1 h
Ik = (M1 12) )
<h21 hyo

I oo o .
hiy = E(Xl(ﬁ) + Xa(b)) 7L,

where

l o ~. 1 _1
hip = —TL<€1,V§1Y_L>L +7r(bXy —aXp)—L"2,

~—

L
I 1
hy = e, Vi) + 571,
12 r ~L,_ B
ha = —17<€2r V?{(j))L + X5 (L) — 11>
I

Proof. Since {e1,v; ), = 0and (ep, v;); = 0, we have

<V(S:10L/ e1)r = —<V21€1,0L>L, <V§20L,€2>L = —<V§26’2, oL)L-
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Using the definition of the connection, we have
v2131 :V;}X\;fﬁi‘zl_jxl - ﬁXz
=b(X1(0)X1 + bV Xy — Xi(2)X2 —aV% X2)
—M&U&+M7xlimmz—w%%>
T
Zb[Xl (b)Xl + b(—Xg,) — Xl(ﬁ)Xz — a(2X3>]
— e T — e e __
= a[Xa(bX1 +b(—5X3) — Xa(2) X2 — X5(7) Xz — a(=X3)
—(5%(B) — 1% (5)) Xa — (B (2) — 1%5(2)) % — (B2 + %),
Since a2 + b2 = 1, we have aX;a + bX;b = 0,i = 1,2,3. Thus, bX;b = —aX3a and bX,b =

—aX,a, and we have
Vi,e1 = —a(X () + X5 (6) %1 — b(Xa (a) + X (B)) Xz — X,

Next, we compute the inner product of this with v, we obtain

hin = — (Vg e, oL)1
=a71(% () + Ka(B)) + Dby (R () + Ka(B)) + 71V
—€§EU+%@>§%xu+&uwmf’
@R + @+ )T + (V)
L (Ri(@) + %a(6)) + 71V

To compute 111, and hy1, using the definition of the connection, we have
Il B
Vﬁlez :vngliﬁxv;laxl +7bXy — EL 2X3
:E[Z (FLa) Xy + LAV, Xq + X1712X; +7Lavs§1)72
L1 1. _1_s &
—A[Xo(FLa) Xy + LAV Xy + XoF1aXo + LAV X
SRR - Libvs %)
207, 37, X, 3

= (B%(71) ~ aXa(71) ~ b()L} + 2a()LH Ry

I I
U =, - 1.1 - I &
+ (X (7Lb) — aXa(FLB) + 5B()L2 X + (1)L X
L L
o L I e N
= (bXq1(-)L72 —aXo(-)L72) Xs.
I I

Then, we calculate the inner product of this with v;. We use the product rule and the
identity bya = apb, we gain

<V§1€2, L)L :(ELI_?ﬁ + b_[‘EZ)X17L — (ELL_ZZ + Z_JLﬁZ_J)X27L + EL?LI_?X\Iﬁ
I 1

+ TLbbelb — T’Lﬂ(ﬂLX2a + bLX2b) — rL(le(l ) — ﬁXz(f

L
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To simplify this, we obtain

o ~ | S, 1 _1
<V2162, UL>L =b. Xq7p — ap Xofp — rL(bxl(—) - LZXz(f))L 2
I I
) l _ e 5, 1 _1
=1 (e Virme = Tulen, Vi () = 7% () —aXa ()L

And finally, we employ the identity (i - ITL)V;[?L =7 Vﬁ{(i) in the above equation:

(Vhen,ou)t =L er, Vira) — (B () —a%al )L,
So,
hip = — (Vg e2,01)1
=~ ey, Vi) + 70 (0% () — a%a(D)L,
next
V5,en :v;mmnézﬁr%%@z —aXy)
7%, (6K +B(~ %) — Ka(@) X2 ~2(3)]
FTBR(6)% +b(— — (@)%, —a(~%s)]
~ L AR6)K + B £ %) - K@) —a(5 %)
—[Ra%a(B) + FLBR(E) — (LA (b) + 5 (L%
- (A% (@) + 71b%a(@) ~ ()L A 00) - 5 ()L
- %?L}?;,.

Then, we compute the inner product of this with v;.. Using the product rule and the identity
bpa = a; b, we obtain

e I _15- 1,1, 1
(Ve,er,o0) =ap[FraXq(b) +71bXa(b) — <E)L 2X3(b) + §<E)L%u]
o l - 1,1 -
— by [F1aXs (@) +71.bXa(a) — ()L™ 2 Xs{a) — 5 (7-)L2D]
Ir 2
1_
I oo = 1,
:fTL(Xﬂ?—Xz{Z) =1L
I 2
I 1

Therefore,

hyy = — (Veer,vL)L

I ) 1
S TL<e1, Vi) + Er%,
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because (V3,01 e2)1 = —(V¢,e2,01)1, using the definitions of connection, identities in (5),
and grouping terms, we obtain

N I N
Vs ,€2 =V (FraXy + 70X — fo%Xg)
PLAX +FLBXp— L 1%, I

P i

L lL

Taking the inner product with v}, yields

(VS,e2,00) =ap P XaF + apFiaxXa + a 7 baXofy + a2 bXpa

—a Lﬁfivr a rXa—ara(l)L%—ﬁ?E(i)L%
LﬁZL 3L — L\FLL?) LrLaty Lot
+ ELT_’LﬁE?lT_’L + erLale + bLT_’%E%T’L + EU_’%E%TJ
lbbL~ blfp . - o1 - - 1.1
1 — — L X3b— b7 L2 — b7 b(—)L2
R = PTEXoh b L~ hub(p)
P I I -1 I 15,1 1
+ 7L [FLaXy ()L 2 + FbXa ()L 72 — (L7 2X3(7 ) L—5 + 73,
Ir I I I 2
s 12 s SL,_. 4
(Ve,e2,0L)L :lj<€2r vH(j)>L — X3 (L) + 7.
L
We have
h s 12 s (1 o L =3
2 =—(Vee,vL)L = _E<e2/vH(7)>L + X3 (rL) — 1.
O
The Riemannian mean curvature H; of X! is defined by
Hy = tr(IIL)
[ N B s (T Ly 53
= E(Xl(ﬂ) + Xa(b)) +7LL7 — lj<€2/ VH(j))L + X3 (L) — 71,
L
the horizontal mean curvature Ho, of 2! € (H, g;) is given by
Heo = lim H; = X;(a) + X, (b).
L—oo
Let o ) _
K> (e1,e2) = (—R**(ey,e2)e1,e2)51 1, K- (e1,e2) = —(R¥(ey, e2)eq, €2) .-
By the Gauss equation, we obtain
KL (er,e5) = KL (e1,e2) + det (IT1). (36)

Proposition 6. Away from characteristic points, we have

Xau_\\ (Xau)?

|V§{u|)>_ 2 ,as L — +oco0.

KZ% (e1, e2) = —(e1, Vig(
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Proof. We compute

e — o A

R5(eq,e0)e; =R°( bXy — aX,, 7raXy +7.bXo — X) bX; —aX
(12)1 (l ZLlelL\/Z3(1 2)
152 — A\
R3(Xq, X3)X

L\/I (1 3)1

=1 abRH(Xy, X)X + 7B R (X, Xo)X1 — z
IZ%R(E >’<3)>’<i

R, X

— FLaBRY(Xp, X0 )X —FLab R, Xo)Xy +

- 7La213R5(?1, )Tl))?}—fLaEZRS(Yl, Yz)?ﬁl
L
LZTZERS(XE Xs)%

n ?Lzz?’RS(?AQ, ?1)?2 —H"LdZERS(%, ??2)372— l

7 ~ 7 o I 1~
= — T a —_ g — 1.2
4L7‘L11X1 + 4L7‘LbX2 + 4ZL L X3

and

ICL(e1,ez) = f<RL(61,62)6’1,€2>L

7 LI
:7L—2 772.
gt

By Theorem 1 and V3, (7) = L_%Vil(g%;') +O(L™1) as L — +o0, we get

det(HL) = hi1hpy — hiphy

= o, Vil gty ~ 3 + @) + o) +0(12),

O

6. A Guass—-Bonnet Theorem in (H, g1)

(37)

(38)

(39)

In this section, we will prove the Gauss-Bonnet Theorem in (H, g1). To prove the
Gauss-Bonnet theorem, we need to define the Riemannian length measure and the Riman-

nian surface measure.

We consider the case of a regular curve 7 : [4,b] — (H, g1). We define the Riemannian

length measure by
dsp = |7/ dt.

Lemma 2. Let v : [a,b] — (H, g ) be a Euclidean C?-smooth and regular curve. Let

ds = w(i(t)ldt,

B 1 1 . 2, . 2
s = -—+—~— | — t)” + t)°)dt.
> Ta ) (O 1))
Then, ,
lim — [ ds, :/ ds
L—oo L 04 a

When w(y(t)) # 0, we have

%dsL =ds+dsL™ '+ O(sz) as L — +oo0.

7
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When w(y(t)) = 0, we have

L = k\/—%(t)z + qa(t)%dt.

§

Proof. Since

1 1
3Bl = s = ﬁ¢ (2 + a0 + Lo (),
we have
. 1 7. .
Jim = [ 1)l (40)
1
=/, ngl(}oﬁh'(t)hdt
b 1 1
= [ Jim 0l = s = S <0 a0 Lo @)
b
= [ wtin)lar
b
= ds.

When w(§(t)) # 0, we have

— \/_’h (1) +72(t)* + Lw("y)zdt.

1 1
——ds; = VL Y5(t)|; = —=ds; =
L l7(t)[L L NG

VL VL

Using the Taylor expansion, we can prove

1 _ =7 —1 -2
\ﬁdsL—ds+dsL +O(L )asL—>+00.

From the definition of ds; and w((t)) = 0, we get

1
—dsL \/ 1% + o () 2dt.
O

Proposition 7. Let ©! C (H, g ) be a Euclidean C?-smooth surface, &' = {u = 0} and dos |
denote the surface measure on L' with respect to the Riemannian metric gp . Let

_\2
Y. X3u
i} X 3 )
dos1 = (dwy — bwy) A w, dog: = Tg'uwl Awy — (212 (aw; — bwr) A w.
Then
L dog, = doys +dop L+ 0(L72), as L = +oo. (42)
VL =

IfE! = f(D) with f = f(u1,u2) = (f1, 2, f3) : D C R* — (H, g1), then

. 1
Jim = [ dow,
:/D{[fl[((fl)uZ(fS)ulz_ (fl)ul (f3)”2)] + (fz)ul (f3)u2]2
_ [fZ[((fl)llz(f3)ul

2_ (fl)m (f3)u2)] ]2+(fl)u1 (fz)uz - (fl)uz(fZ)ul]z}%dulduZ'
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Proof. Itis well known that
gu(X1,) = w1, g1(Xa, ) = wa, g1(X3,+) = Lw.
We define e := gr(eq,-), & := g1(e2,-), then
Elk = Ew1 — 4wy, EZK = 7rawy -I—T_’LECUZ - ZLL%CU.
L
Therefore,
LdU —LE*/\E*—i(dw —Ew)/\w—i—ifw Aw
\/Z Zl,L L 1 2 lL 2 1 \/Z L1 2.
Recalling
=~ 1
(Xgu)L_f
L =
N
\/112 +b2+ 11 (X3u>
and the Taylor expansion
1T 1 1,5 \2 =
LTI ﬁ(Xgu) L +O(L ) as L — +oo,
we have
fuy =(f1)u,0x1 4 (f2)u, 02 + (f3)u, 0x3
= ~ L
— ()Tt ()Xot VI gy - W 155t
Similarly,
o ~ ~L
fu, = (f2)u Xa+ (f2)u, X2 + \/E[(fzz)uzfz - (flz)uzfl + (f3)u] X5
Let
~ = L
i —-X3 X2 3
UL = (fl)ul (f2)u1 W 4 (43)
(), (f2)y, V
where
W= VI (f22)u1 fo— (f12)u2 f+(f3)u]
V= ﬁ[(f?uzﬁ - (flz)uzfl + (f3)us)-
We know that doy | = y/det(g;j)durduy, gij = g1 (fui,fuj> and
det(gi;) = [|oL||7 = — (o, 01). (44)

So, by using the Lebesgue Dominated Convergence, we obtain Proposition 7. [

Theorem 2. Let ' C (H, gr) be a reqular surface with a large but finite number of boundary
components (9X');, i € {1,---, n}, given by Euclidean C?-smooth regular and closed curves
v; 1 [0,271] — (9%1);. Suppose that the characteristic set C(X!) satisfies H'(C(Z')) = 0 where

HY(C()) denotes the Euclidean 1-dimensional Hausdorff measure of C(£!) and that || V%uu;
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is locally summable with respect to the Euclidean 2-dimensional Hausdorff measure near the
characteristic set C(Z1), then

/KZW@+E/“§m—0

Proof. Based on similar discussions in [12-18], we assume that all points satisfy w(¥;(t)) # 0
and %(w("yi(t))) # 0 on the curve ;. Since our proof of Proposition 6 is based on the
approximation argument relying on the Lebesgue Dominated Convergence Theorem,
the finite sets are negligible. So

R =R+ O( ) (45)

Using the Gauss—Bonnet theorem, we obtain

ICZ L g, +Z R —d o) 46
VL 1L %21 SL = 2T VL (46)

Let L reach infinity, and then, using the dominated convergence theorem, we obtain

[, ¥ doy + 2/ RS 1ds = 0.

O

7. Conclusions

This paper discusses the interesting question of the Gauss—Bonnet theorem in the
Heisenberg group in relation to the semi-symmetric metric connection from the Rieman-
nian approximation scheme. The primary result of this paper is Theorem 2, which is
Gauss-Bonnet type theorem related to the semi-symmetric metric connection in the Heisen-
berg group. To prove Theorem 2, we determine the sub-Riemannian limit of the curvature of
curves, sub-Riemannian limits of the geodesic curvature of curves on surfaces, and the Rie-
mannian Gaussian curvature of surfaces in the Heisenberg group with the semi-symmetric
metric connection.

In future work, we plan to study Gauss-Bonnet theorems in the Heisenberg group
with the semi-symmetric non-metric connection and other three-dimensional Riemannian
Lie groups which were classified in [19]. The Gauss—Bonnet theorem connects the intrinsic
differential geometry of a surface with its topology and has many applications. Therefore,
it will be interesting to extend the Gauss—-Bonnet theorem to other different Lie groups. We
believe that the results to be obtained will have some geometric applications.
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