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Abstract: We discuss the consequences of the unique symmetry of de Sitter spacetime. This symmetry
leads to the specific thermodynamic properties of the de Sitter vacuum, which produces a thermal
bath for matter. de Sitter spacetime is invariant under the modified translations, r → r − eHta, where
H is the Hubble parameter. For H → 0, this symmetry corresponds to the conventional invariance
of Minkowski spacetime under translations r → r − a. Due to this symmetry, all the comoving
observers at any point of the de Sitter space perceive the de Sitter environment as the thermal bath
with temperature T = H/π, which is twice as large as the Gibbons–Hawking temperature of the
cosmological horizon. This temperature does not violate de Sitter symmetry and, thus, does not
require the preferred reference frame, as distinct from the thermal state of matter, which violates de
Sitter symmetry. This leads to the heat exchange between gravity and matter and to the instability of
the de Sitter state towards the creation of matter, its further heating, and finally the decay of the de
Sitter state. The temperature T = H/π determines different processes in the de Sitter environment
that are not possible in the Minkowski vacuum, such as the process of ionization of an atom in the de
Sitter environment. This temperature also determines the local entropy of the de Sitter vacuum state,
and this allows us to calculate the total entropy of the volume inside the cosmological horizon. The
result reproduces the Gibbons–Hawking area law, which is attributed to the cosmological horizon,
Shor = 4πKA, where K = 1/(16πG). This supports the holographic properties of the cosmological
event horizon. We extend the consideration of the local thermodynamics of the de Sitter state using
the f (R) gravity. In this thermodynamics, the Ricci scalar curvature R and the effective gravitational
coupling K are thermodynamically conjugate variables. The holographic connection between the
bulk entropy of the Hubble volume and the surface entropy of the cosmological horizon remains
the same but with the gravitational coupling K = d f /dR. Such a connection takes place only in the
3 + 1 spacetime, where there is a special symmetry due to which the variables K and R have the
same dimensionality. We also consider the lessons from de Sitter symmetry for the thermodynamics
of black and white holes.

Keywords: de Sitter expansion; local temperature; local entropy; holography; de Sitter decay;
cosmological constant
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1. Introduction

We consider the local thermodynamics of the de Sitter stage of the expansion of the
universe. The term “local” means that we consider the de Sitter vacuum as the thermal
state, which is characterized by the local temperature. This consideration is based on
the observation that matter immersed in the de Sitter vacuum feels this vacuum as a
heat bath with the local temperature T = H/π, where H is the Hubble parameter. This
temperature has no relation to the cosmological horizon or the Hawking radiation from
the cosmological horizon. However, it is exactly twice the Gibbons–Hawking temperature,
TGH = H

2π . The reason for such a relation is the symmetry of de Sitter spacetime with
respect to the combined translations. In the Minkowski vacuum, this symmetry becomes
the conventional invariance of under-translations.

The existence of the local temperature suggests the existence of the other local thermo-
dynamic variables that participate in the local thermodynamics of the de Sitter state. In
addition to the local entropy density, s, and the local vacuum energy density, ϵ, there are
also the local thermodynamic variables related to the gravitational degrees of freedom.

Although the local temperature is twice as large as the Gibbons–Hawking temperature
assigned to the cosmological horizon, there is a certain connection between the local
entropy, s, and the global entropy usually attributed to the event horizon. It appears that
the total entropy of the de Sitter state in the volume VH bound by the cosmological horizon
coincides with Gibbons–Hawking entropy, which is proportional to the area, A, of the
horizon, sVH = A

4G . Such holographic bulk–surface correspondence takes place only in
3 + 1 spacetime. Although the peculiarity of 3 + 1 spacetime may be related to the special
symmetry that connects the local thermodynamic variables, the origin of the holography is
still not very clear. That is why we extended the consideration of the local thermodynamics
to the f (R) gravity and checked the bulk–surface correspondence in this modified version
of general relativity.

The f (R) gravity in terms of the Ricci scalar R is one of the simplest geometrical
models that describe the dark energy and de Sitter expansion of the universe [1–7]. It
was used to construct an inflationary model of the early universe—Starobinsky inflation,
which is controlled via the R2 contribution to the effective action. This class of models,
f (R) ∝ R−R2/M2, was also reproduced in so-called q-theory [8,9], where q is the 4-form
field introduced by Hawking [10] for the phenomenological description of the physics of
the deep (ultraviolet) vacuum (here, the sign convention for R is opposite to that in Ref. [2]).
The Starobinsky model is in good agreement with these observations. However, despite the
observational success, the theory of Starobinsky inflation is still phenomenological. Due to a
rather small mass scale M compared with the Planck scale, it is difficult to embed the model
into a UV-complete theory [11–19]. But we used this model only for the generalization of de
Sitter thermodynamics and the consideration of the validity of the holographic principle.

The f (R) theory demonstrates that the effective gravitational coupling K (it is the
inverse Newton constant, K = 1

16πG ) and the scalar curvature R are connected via equation
K = d f /dR. This suggests that K and R are the thermodynamically conjugate vari-
ables [20,21]. This pair of the non-extensive gravitational variables is similar to the pair of
the electrodynamic variables: the electric field E and electric induction D, which partici-
pate in the thermodynamics of dielectrics. They are also similar to the pair of magnetic
thermodynamic variables: magnetic induction B and the magnetic field H.

In de Sitter spacetime, the local temperature does not depend on the theories of general
relativity and, thus, has the same value, T = H/π. Using the local thermodynamics with
this temperature, we obtained the general result for the total entropy of the Hubble volume,
Sbulk = sVH = 4 πKA = A/4 G = Shor, where K = d f /dR is the effective gravitational
coupling, and R = −12 H2. This supports the holographic bulk–surface correspondence in
3 + 1 spacetime.

Note that 3+1 spacetime has a special symmetry that is absent from the other dimensions.
The thermodynamically conjugate variables have the same dimensionality: all of them have
dimensionality of the square of the inverse length: [K] = [R] = [1/l2], [B] = [H] = [1/l2]



Symmetry 2024, 16, 763 4 of 38

and [D] = [E] = [1/l2]. It appears that this symmetry is important for the validity of the
holographic correspondence.

Since the de Sitter state has thermal behavior, it serves as the thermal bath for matter.
The matter violates the de Sitter symmetry; as a result, the energy exchange between
vacuum and matter leads to the decay of the de Sitter state.

The format of this paper is as follows.
In Section 2, we show that the de Sitter vacuum serves as the thermal bath for matter

immersed in the de Sitter environment. Our approach differs from the traditional consider-
ation of the vacua of the quantum fields in de Sitter spacetime, which uses the Euclidean
action method. An example of the influence of the de Sitter vacuum on immersed matter is
an atom in the de Sitter environment (Section 2.1). As distinct from the atom in flat space,
the atom in the de Sitter vacuum has a certain probability of ionization. The rate of ioniza-
tion is similar to the rate of ionization of an atom in flat spacetime in the presence of the
thermal bath with temperature T = H/π [22–26]. In Section 2.2, it is shown that the same
temperature determines the other activation processes that are energetically forbidden in
Minkowski spacetime but allowed in the de Sitter background. Examples are the splitting
of the heavy particle with mass m to two particles with masses m1 + m2 > m [27,28] and the
radiation of electron–positron pairs via the electron at rest. In Section 2.4, it is shown that
the local temperature, T, also determines the Gibbons–Hawking temperature of radiation
from the cosmological horizon TGH = T/2 without using the Euclidean action.

Section 3 is devoted to the local thermodynamics of the de Sitter state, which is
determined by the local temperature, T = H/π. The local temperature leads to the
local entropy of the de Sitter thermal bath (Section 3.2) that, when integrated over the
Hubble volume, reproduces the Gibbons–Hawking entropy of the cosmological horizon
(Section 3.4).

Section 4 describes the attempt to obtain the de Sitter thermal states from the general
principles of thermodynamics of many-body systems. We consider multi-metric gravity,
which can be viewed as an ensemble of the sub-universes, each being described using its
own metric, gµν(n) (or tetrads, ea

µ(n)), by its own gravitational coupling, Kn, and by the
cosmological constant Λn. The heat exchange between the sub-universes leads to their
thermalization—the formation of the universe in which the sub-universes have the common
Hubble parameter and, thus, a common temperature.

Section 5 is devoted to the thermodynamics of de Sitter in f (R) gravity. f (R) gravity
contains the pair of thermodynamically conjugate variables K and R (Section 5.1). These
variables, together with the local temperature and local entropy, provide the generalization
of the Gibbs–Duhem relation for the de Sitter state (Section 5.2). The confirmation of
the holographic result for the total entropy of the Hubble volume in the f (R) gravity
is obtained in Section 5.3: Sbulk = sVH = 4πKA = Shor. The quadratic gravity and its
symmetry are discussed in Section 5.4.

Section 6 is devoted to de Sitter decay due to the thermalization of matter via the de
Sitter heat bath and the thermal fluctuations of the de Sitter state. These two mechanisms
lead to different power laws of decay, which may correspond to two different epochs.

Sections 7 and 8 demonstrate how the local entropy of the de Sitter state allows us to
consider the thermodynamics of the Schwarzschild black hole. The starting point of our
consideration in Section 7.3 is that the black hole can be obtained from the relaxation of the
gravastar object—a black hole that has the de Sitter core. It is important that the de Sitter
interior of the gravastar is represented by the contracting de Sitter state. The contracting
de Sitter in Section 7.2 has a negative Hubble parameter, H < 0, and, thus, the negative
temperature T = H/π < 0 and negative entropy. The contracting and expanding de Sitter
states can be considered two phases obtained from the symmetric state of the Minkowski
vacuum via the spontaneous breaking of the time-reversal symmetry. These phases transform
into each other under the time reversal, t → −t. In this sense, the Hubble parameter, H, can
be considered the order parameter of the symmetry-breaking phase transition.
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Since, in the considered gravastar object, the cosmological horizon and the black hole
horizon cancel each other, the gravastar has zero entropy. In the process of relaxation of the
gravastar to the black hole, the de Sitter core, with its negative entropy, shrinks. This results
in the Hawking–Bekenstein entropy of the black hole horizon (Section 7.4). The negative
entropy of the white hole is considered in Section 7.5. The heat exchange between black
holes in multi-metric gravity is discussed in Section 7.8. Section 8 provides the alternative
derivation of the thermodynamics of black and white holes using macroscopic quantum
tunneling.

Finally, the conclusion is presented in Section 9.

2. de Sitter State as Heat Bath for Matter
2.1. Atom in de Sitter Environment as Thermometer

We consider the de Sitter thermodynamics using the Painlevé–Gullstrand (PG)
form [29,30], whose metric is

ds2 = −dt2 + (dr − v(r)dt)2 . (1)

Here, v(r) is the shift velocity, which in condensed matter plays the role of the velocity
of the inviscid superfluid component of the liquid (the velocity of the “superfluid quantum
vacuum” [31]). In the de Sitter expansion, the velocity of the “vacuum” is v(r) = Hr, and
the metric is

ds2 = −dt2 + (dr − Hrdt)2 + r2dΩ2 . (2)

The PG metric is stationary, i.e., it does not depend on time, and it does not have
the unphysical singularity at the cosmological horizon. That is why it is appropriate
for consideration of the local thermodynamics both inside and outside the horizon. It
also allows us to consider two different phases of the vacuum with broken time-reversal
symmetry. These are the expanding de Sitter universe with H > 0 and the contracting
de Sitter universe with H < 0. These two phases transform to each other under the time
reversal, t → −t. In this sense, the Hubble parameter, H, can be considered the order
parameter of the symmetry-breaking phase transition from the symmetric state of the
Minkowski vacuum.

Now, let us consider an atom at the origin r = 0. The atom is the external object in de
Sitter spacetime that violates de Sitter symmetry. It plays the role of the detector (or the
role of the static observer) in this spacetime. The electron bound to an atom may absorb
the energy from the gravitational field of the de Sitter background and escape from the
electric potential barrier. If the ionization potential is much smaller than the electron mass
but much larger than the Hubble parameter, H ≪ ϵ0 ≪ m, one can use the nonrelativistic
quantum mechanics to estimate the tunneling rate through the barrier.

Let us consider an electron on the n-th level in the hydrogen atom. Under the de Sitter
gravitational field, this electron can escape from the atom with the conservation of energy,
which in the classical limit given via the classical equation

p2
r

2m
+ prv(r) = −En , En =

me4

2h̄2
1
n2 . (3)

Here, pr is the momentum of the electron in the radial direction, v(r) = Hr, and prv(r)
is the Doppler shift, which allows for the electron to reach the negative energy −En when
it escapes from the atom. The corresponding radial trajectory pr(r) for the escape of an
electron from the atom is as follows:

pr(r) = −mv(r) +
√

m2v2(r)− 2mEn . (4)
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The integral of pr(r) over the classically forbidden region, 0 < r < rn =
√

2En/mH2,
gives the ionization rate in the semiclassical WKB approximation:

w ∼ exp (−2 Im S) =

= exp
(
−2

∫ rn

0
dr
√

2mEn − m2H2r2
)
= exp

(
−πEn

H

)
= exp

(
−En

T

)
. (5)

This ionization rate is equivalent to the rate of ionization in the flat Minkowski
spacetime in the presence of the heat bath with temperature T = H/π.

This heat bath temperature is twice the Gibbons–Hawking temperature, TGH, usually
attributed to the cosmological horizon, T = 2 TGH. Moreover, the electron trajectory is well
inside the horizon since rn ≪ rH = 1/H, and thus, this process has no relation to Hawking
radiation. However, in Section 2.4, we show that the relation between the temperature of
ionization and the Gibbons–Hawking temperature, T = 2 TGH, is the property of the de
Sitter symmetry.

Since the process of ionization takes place well inside the cosmological horizon, one can
use the conventional static metric with the gravitational potential U(r) = −mH2r2/2 [26].
Then, the bound state decays via quantum tunneling from the point r = 0 to the point
r = rn, at which the electron level −En matches the de Sitter gravitational potential,
U(rn) = −mH2r2

n/2. The radial trajectory, pr(r), is obtained from the classical equation

p2

2m
− 1

2
mH2r2 = −En , (6)

which gives, for the radial trajectory, the following:

pr(r) =
√

m2H2r2 − 2mEn . (7)

The imaginary part of the action at this trajectory again gives Equation (5) for the WKB
tunneling rate.

2.2. Decay of Composite Particles in de Sitter Spacetime

The same local temperature, T = H/π, describes the process of the splitting of
the composite particle with mass m into two components with the larger total mass
m → m1 + m2 > m, which is also not allowed in the Minkowski vacuum [23,32–34].

It is instructive to derive the rate of this process using the semiclassical tunneling
picture also. For simplicity, we consider the creation of particles with equal masses,
m1 = m2 > m/2. The trajectory of each of the two particles with mass m1 moving in
the radial direction from the origin at r = 0 is obtained from equation

E(pr, r) =
√

p2
r + m2

1 + pr Hr =
m
2

. (8)

We took into account the fact that each of the two particles carries one half of the
energy of the original particle, i.e., E = m/2. The momentum along the trajectory is

pr(r) =
1

1 − H2r2

[
−m

2
Hr +

√
m2

4
− m2

1 + m2
1H2r2

]
. (9)

This momentum is imaginary in the classically forbidden region r < r0, where

r0 =
√

1 − m2/4m2
1/H. This gives the following imaginary contribution to the action:

ImS = Im
∫

dr pr(r) =
m1

H

∫ r0

0
dr

√
r2

0 − r2

r2
H − r2

=
π

4
(2m1 − m). (10)
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where, as before, rH = 1/H is the position of the de Sitter horizon. We must take into
account that, due to momentum conservation, the two particles tunnel simultaneously in
opposite directions. Such a coherent process of co-tunneling adds a multiplier of 2 to the
argument of the exponent. As a result, one obtains the rate of the decay of the composite
particle into two particles, which is again governed by the temperature T = H/π:

Γ(1 → 2) ∝ exp(−4 ImS) = exp
(
−π(2m1 − m)

H

)
. (11)

In a general case, when m2 ̸= m1, the rate of the decay of the composite particle in the
limit m ≫ H is determined by the same temperature:

Γ(1 → 2) ∼ exp
(
−π(m1 + m2 − m)

H

)
= exp

(
−m1 + m2 − m

T

)
. (12)

2.3. Triplication of Particles in de Sitter Spacetime

In the same way, massive fermions can be reproduced in the de Sitter environment.
For example, the electron at r = 0 can create an electron-positron pair, with electron and
positron moving in opposite directions.In this process, the fermion is triplicated with the
rate given by the following:

Γ(1 → 3) ∼ exp
(
−π(3m − m)

H

)
= exp

(
−2m

T

)
. (13)

Since the created electron and positron move in opposite directions, they are detected
via two different detectors. Each of the two detectors can detect only a single particle,
and thus, for each detector, the radiation rate looks thermal with the Gibbons–Hawking
temperature TGH = T/2:

Γ(1 → 3) ∼ exp
(
−2m

T

)
= exp

(
− m

T/2

)
= exp

(
− m

TGH

)
. (14)

However, in this process, two particles are created simultaneously and coherently (the
so-called co-tunneling process). That is why the temperature, which describes such a co-
tunneling process of the radiation of the pair, is twice the Gibbons–Hawking temperature.
The same connection between the local temperature and the temperature of the Hawking
radiation from the cosmological horizon is discussed in Section 2.4.

It is important that each of the three particles (the original electron + the electron–
positron pair, which is created in the process of Equation (13)) is able to create the other three
particles, and then the triplication process continues further. After n replications, there will
be 3n fermions ((3n + 1)/2 electrons and (3n − 1)/2 positrons). Such a creation of multiple
particles from a single particle immersed in the de Sitter environment demonstrates that
the de Sitter vacuum is unstable towards the creation of matter. The consequence of such
instability is discussed in Section 6.

Similar processes take place in the so-called Cosmological Collider [27,28], where the
new particle created by Hawking radiation plays the role of the external object that produces
the heavy particles. In this case, we have two different physical processes: the Hawking
radiation from the cosmological horizon and the further local process—the splitting of the
created particles, which is determined by the local temperature.

2.4. Connection between the Local and Hawking Temperatures

The local temperature T = H/π also determines the process of the Hawking radiation
from the cosmological horizon and the Gibbons–Hawking temperature TGH = T/2 = H

2π .
The reason is that, in the Hawking process, two particles are created coherently (this is
the analog of cotunneling): one particle is created inside the horizon, while its partner is
simultaneously created outside the horizon [35]. The rate of the coherent cotunneling of
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two particles, each with energy E, is w ∝ exp(− 2E
T ). However, the observer who uses the

Unruh–DeWitt detector can detect only the particle created inside the horizon. For this
observer with limited information, the creation rate w ∝ exp(− 2E

T ) is perceived as

w ∝ exp
(
− E

T/2

)
= exp

(
− E

TGH

)
, (15)

with the Gibbons–Hawking temperature TGH = T/2 = H
2π .

The similar scenario of doubling the Hawking temperature was suggested for the
black hole horizon [36,37]. In this case, the partner of the created particle is in the mirror
image of the spacetime that replaces the coordinate singularity. Although the existence of
such a quantum clone of the black hole is problematic, the consideration of the coherent
creation of two partners on the two sides of the cosmological horizon is applicable to the
de Sitter vacuum.

On the contrary, in the local process of the decay of an atom, which is not related to
the cosmological horizon, only a single particle (electron) is radiated from the atom. This
process is fully determined by the local temperature, w ∝ exp(− En

T ).

2.5. Two Detectors: Exited Atom vs. Ionized Atom

Note the main difference between the temperature measured by the observer using
the Unruh–DeWitt detector (see, e.g., Ref. [38] and references therein) and the temperature
measured by the observer using the ionization of an atom. The ionization process is possible
because the radiated electron moves far away from the atom to position r = r0, where its
negative gravitational energy compensates the ionization potential. In the Unruh–DeWitt
detector, which corresponds to the two-level atom interacting with a quantum field, the
electron in the atom is excited but remains in the same position in the same atom. That is
why such excitation of the electron may only come either via the Hawking radiation or via
the radiation of photons; see Section 2.6.

However, in the de Sitter case, there is no difference in temperatures measured via
the two detectors. If, in the Unruh–DeWitt detector experiments, the observer properly
interprets the result of the observations according to Equation (15), the measured tem-
perature of the Hawking radiation is also T = 2TGH. So, in spite of different physical
principles, both detectors in the de Sitter environment show the same physical temperature,
T = 2TGH. This also demonstrates the uniqueness of the de Sitter state with its symmetry
under generalized translations.

2.6. Radiation of Photons via Atom in de Sitter Environment

Instead of the radiation of the electron from the atom, one can consider the radiation
of the photon via the same atom. In both cases, the escape of the photon or electron from
the atom provides the negative gravitational energy. That is why these processes, which are
prohibited in Minkowski spacetime, are energetically possible in the de Sitter environment.
Let us consider the atom in the excited state with energy E0 + ϵ, where E0 is the ground
state energy of the atom. In the de Sitter environment, the radiation of the photon is possible
even if its energy, cp, exceeds the energy difference between the excited and the ground
state level, i.e., when cp > ϵ.

For the relativistic photon, the energy conservation Equation (3) takes the following
form (here, we use c = 1): √

p2
r + p2

⊥ + pr Hr = ϵ . (16)

This gives the following trajectory of the photon:

pr(r) =
1

1 − H2r2

[
−ϵHr ±

√
ϵ2 + p2

⊥(H2r2 − 1)
]

. (17)
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For cp⊥ > ϵ, the integration over the classically forbidden region, r < r0, where
H2r2

0 = 1 − ϵ2

c2 p2
⊥

, gives the following radiation rate of photon via the excited atom:

w ∼ exp (−2 Im S) = exp
(
−π(cp⊥ − ϵ)

H

)
, cp⊥ > ϵ . (18)

Since r0 < 1/H, the trajectory of the photon in this process is inside the cosmological
horizon, and the radiation rate is again determined by the local temperature T = H/π.

Equation (18) demonstrates that radiation takes place even if the atom is in the ground
state, i.e., when ϵ → 0. In this case, Equation (18) describes the process of radiation of a
single photon in the de Sitter environment:

w ∼ exp
(
− cp

T

)
, T =

H
π

. (19)

In this process, the atom in its ground state serves as an external object, which violates
the de Sitter symmetry and, thus, provides the nonzero matrix element for the radiation of
the photon. This process is certainly different from the Hawking process of radiation.

2.7. Accelerating Detector: Is There a Connection between the Local Process and Unruh Radiation?

In the same way as described in Sections 2.5 and 2.6, one may consider different
independent processes related to the accelerating detector. One of them is the Unruh
radiation measured via the Unruh–DeWitt detector, which could be linked to the apparent
event horizon in Rindler spacetime and the corresponding Unruh temperature TU = a

2π ,
where a is acceleration [39–41]. The other processes, such as the local process of ionization
of the accelerating atom [42], have no relation to the Rindler horizon.

Let us consider the process of ionization of an atom moving with acceleration. Similar to
Equation (6), the trajectory px(x) of the radiated electron is obtained from the classical equation

p2

2m
− max = −ϵ . (20)

Here, we used the equivalence between the acceleration of the reference frame and the
constant gravitational field, g = a; and ϵ is the ionization potential.

In the WKB approximation and in the limit of slow acceleration, a ≪ ϵ ≪ m, the
classically forbidden trajectory of the electron escaping from the atom gives the radiation
rate [42], which is similar to the radiation rate in the electric field [43]:

w ∼ exp

(
−4

√
2

3
ϵ

a

( ϵ

m

)1/2
)

. (21)

In principle, one can introduce the effective temperature, which is similar to the
effective temperature Teff ∼ El of hopping electrons in a strong electric field, E, where
l is the localization length [44,45]. In our case, the analog of the localization length is
l = 1/

√
mϵ. But otherwise, the local process of ionization of the accelerated atom is

certainly non-thermal. Since ϵ ≪ m, the rate of ionization in Equation (21) essentially
exceeds the ionization rate in any thermal process that involves acceleration,
wthermal ∼ exp(−γϵ/a). This is very different from the ionization of the atom in the
de Sitter environment, which looks thermal.

With the same approach, one can also calculate the Unruh radiation of photons using
different arrangements of detectors. The state of the art in the theoretical understanding of
Unruh radiation can be found in Refs. [46–48] and the references therein. Our examples
demonstrate that the rate of Unruh radiation depends on the details of the considered
processes, and it is not necessarily thermal. The thermal behavior of the local and global
processes in the de Sitter environment is the result of the special de Sitter symmetry.
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3. Thermodynamics of the de Sitter State
3.1. de Sitter Symmetry and de Sitter Heat Bath

As distinct from the Unruh effect, different arrangements of detectors in the de Sitter
environment show the same temperature. This demonstrates the uniqueness of de Sitter
spacetime in producing a thermal bath with a local temperature. The reason for that is that
de Sitter spacetime is homogeneous under the combination of translation and the proper
conformal transformations [49,50]. In the PG metric, it is the invariance of the de Sitter
state under the modified translations r → r − eHta, which, for H → 0, corresponds to the
conventional invariance under translations r → r − a in Minkowski spacetime. Due to this
combined translational symmetry, all the comoving observers at any point of the de Sitter
space observe the same temperature, T = H/π. That is why one may conclude that the de
Sitter state is the heat bath produced by gravity.

The uniqueness of the de Sitter thermal state lies in the fact that its temperature does
not violate de Sitter symmetry and, thus, does not require the preferred reference frame.
This is distinct from the thermal state of matter, which always has a preferred reference
frame where matter is at rest. As a result, thermal matter violates de Sitter symmetry, which
leads to the heat exchange between the two thermal subsystems, gravity and matter, and
finally to the de Sitter decay.

3.2. From Local Temperature to Local Entropy

The gravity subsystem—the de Sitter quantum vacuum—has its own temperature and
entropy; see also Ref. [51]. On the other hand, de Sitter spacetime serves as the thermal
bath for matter. Then, the quasi-equilibrium states of the expanding universe can be
described with two different temperatures: the temperature of the gravitational vacuum
(temperature of dark energy) and the temperature of the matter’s degrees of freedom [52].
In this section, we discuss the pure de Sitter vacuum without the excited matter, ignoring
for the moment the thermally activated creation of matter from the vacuum. The excitation
and thermalization of matter via the de Sitter thermal bath are discussed in Section 6.

If the vacuum thermodynamics is determined by the local activation temperature
T = H/π, then, in Einstein gravity with a cosmological constant, the vacuum energy
density is quadratic in temperature:

ϵvac =
3

8 πG
H2 =

3 π

8 G
T2 . (22)

This leads to the free energy density of the de Sitter vacuum, F = ϵvac − Tsvac, which is
also quadratic in T, and thus, the entropy density svac in the de Sitter vacuum is linear in T:

svac = − ∂F
∂T

=
3 π

4 G
T = 12π2KT . (23)

Here, as before, K = 1
16πG is the gravitational coupling.

The temperature, T, and the entropy density, svac, are the local quantities that can be
measured by the local static observer.

3.3. de Sitter Vacuum, Fermi Liquid and Cosmological Constant Problem

Equation (23) demonstrates that the thermal properties of the de Sitter state are
similar to that of the non-relativistic Fermi liquid, where the entropy density is also linear
in temperature:

sFL =
p2

F
3vF

T . (24)

The Fermi velocity, vF, and the Fermi momentum, pF, of this cosmological analog
of the Fermi liquid are on the order of the speed of light and the inverse Planck length,
correspondingly vF ∼ c and pF ∼ MPl = 1/lPl. Of course, this is only a parallel, and one
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should not identify the de Sitter vacuum with a real Fermi liquid, although the real Fermi
surface may form inside the black hole horizon [53,54].

Since the thermodynamics of the de Sitter state with the thermal energy ϵvac ∝ T2 is
similar to the thermodynamics of the Fermi liquid, let us try to exploit this connection. One
of the directions is the Sommerfeld law in Fermi liquid, which states that the entropy per
one atom of Fermi liquid is

S =
sFL

nFL
∼ T

EF
, (25)

where nFL ∼ p3
F is the density of atoms in the Fermi liquid, and EF is the Fermi energy.

We do not know what the “atoms of the vacuum” are, but from Equation (23), it
follows that the entropy density of the vacuum svac ∼ T/l2

Pl ∼ (T/MPl)/l3
Pl, where lPl

is the Planck length, and MPl is the Planck energy. This suggests that the density of the
“atoms of the vacuum” is nPl ∼ 1/l3

Pl, and the entropy per “atom of the vacuum” is as
follows:

S =
svac

nPl
∼ svacl3

Pl ∼
T

MPl
. (26)

Equation (26) is the full analog of the Sommerfeld law for Fermi liquid. This analogy
also suggests that the corresponding density of states in the quantum vacuum (the analog
of the density of states at the Fermi level NF ∼ mpF in Fermi liquids) is NPl ∼ M2

Pl. For
bosonic and fermionic degrees of freedom of this quantum vacuum, the density of states
is NPl =

9
4πG and NPl =

9
2πG , correspondingly, which can be compared with the value

NPl =
3π
G suggested in Ref. [55]. This huge density of states leads to the very large entropy

of the de Sitter state even at a very low temperature of the vacuum.
So, the quantum vacuum looks like some specific form of the relativistic Fermi liquid.

However, some consequences are the same as for the non-relativistic Fermi liquid. In
particular, in the full equilibrium at T = 0 and in the absence of external pressure, P = 0, the
energy density of the non-relativistic Fermi liquid is exactly zero, ϵ(n)− µn = Ts − P = 0.
This follows solely from thermodynamics, and it is valid for any macroscopic system
in its ground state. In all such systems, the contribution of the zero-point energies of
collective modes (phonons, fermionic quasiparticles, magnions, etc.) is exactly compensated
for with the microscopic (atomic) degrees of freedom. This thermodynamic property
does not depend on microscopic physics, and it is easily checked in condensed-matter
systems for which we know both the micro and macro physics. That is why it is not
surprising that, for the relativistic quantum vacuum, the vacuum energy density is zero
if the following conditions are fulfilled: there is full thermodynamic equilibrium; the
temperature is T = 0; there is no matter (no quasiparticles); and there is no external
pressure, ϵvac(H = 0, T = 0) = −Pvac = 0. This demonstrates that thermodynamics, which
is insensitive to the microscopic structure of the vacuum (ground state), solves the main
cosmological constant problem. The other cosmological constant problems are discussed in
Section 6.6.

3.4. Hubble Volume Entropy vs. Entropy of the Cosmological Horizon

Using the entropy density in Equation (23), one may find the total entropy of the
Hubble volume VH—the volume surrounded by the cosmological horizon with radius
R = 1/H:

Sbulk = svacVH =
4 πR3

3
svac =

π

GH2 =
A

4 G
= Shor , (27)

where A is the horizon area.
The Hubble-volume entropy coincides with the entropy attributed to the cosmological

horizon, as suggested by Gibbons and Hawking. However, Equation (27) demonstrates
that the thermodynamic entropy comes from the local entropy of the de Sitter quantum
vacuum, rather than from the hypothetical horizon degrees of freedom. In this hypothesis,
it is assumed that there are horizon microstates, which are concentrated in the region of
the Planck length lPl = 1/MPl in the vicinity of the horizon, and this leads to the area law



Symmetry 2024, 16, 763 12 of 38

for the total entropy inside the horizon; see, e.g., Ref. [56]. The local thermodynamics in
the de Sitter state leads to the same area law but without assumptions about the spatial
distribution of the degrees of freedom.

The connection between the bulk entropy of the region inside the horizon due to
the local vacuum thermodynamics and the surface entropy of the horizon may have a
holographic origin when the horizon is considered a null surface [56]. This may be the
reason why the presence of the horizon allows us to know the total entropy of the Hubble
volume without knowledge of the distribution of the local entropy inside the horizon.

However, it appears that the bulk–surface correspondence in Equation (27) is valid
only in (3 + 1)-dimensional spacetime. In the general d + 1 dimension of spacetime, the
same approach gives the factor (d − 1)/2 in the relation between the entropy of the Hubble
volume and the Gibbons–Hawking entropy of the cosmological horizon, Sbulk = d−1

2 Shor.
This may add to the peculiarities of the d = 3 space dimension [57] where, in particular,
the mass dimension of the gravitational coupling, [K] = d − 1, coincides with the mass
dimension of curvature, [R] = 2. The same concerns such pair of thermodynamically
conjugate variables as an electric field with the mass dimension [E] = 2 and electric
induction with the mass dimension [D] = d − 1. Their dimensions also coincide only for
d = 3. A discussion of the natural dimensions of physical quantities in d = 3 can be found
in Ref. [58].

4. Thermodynamics from the Heat Transfer in the Multi-Metric Gravity Ensemble
4.1. Multi-Metric Gravity

As we know, the main source of emergent thermodynamics is the heat exchange
between bodies or between systems; see also Ref. [59]. Following this rule, we can consider
de Sitter thermodynamics from the point of view of the heat transfer between different
cosmological objects or different universes.

The heat exchange can be discussed in the frame of so-called multi-metric gravity;
see Ref. [60] and the references therein. The corresponding model action of the whole
system can be written as the sum of the actions of the sub-systems in the same coordinate
spacetime:

S = −
∫

d4x
N

∑
n=1

Ln , Ln =
√
−g(n)

(
KnR{gµν(n)}+ Λn

)
. (28)

Then, the universe can be seen as the system of N sub-universes, each with its own
gravitational coupling, Kn, cosmological constant, Λn, and metric, gµν(n).

Following Froggatt and Nielsen [61], one can introduce N independent tetrad fields
ea(n)

µ for N fermionic species. In this multi-tetrad gravity, one has the ensemble of the
gravitational actions,

Ln = eabcd

(
Kn Rab(n) ∧ ec(n) ∧ ed(n) + Λn ea(n) ∧ eb(n) ∧ ec(n) ∧ ed(n)

)
, (29)

and the corresponding ensemble of actions for the fermionic species,

SM = eabcd

∫
∑
n

Θa(n) ∧ eb(n) ∧ ec(n) ∧ ed(n) , (30)

Θa(n) =
i
2

[
Ψ̄(n)γaDµΨ(n) − DµΨ̄(n)γaΨ(n)

]
dxµ . (31)

This can be extended to multi-fünfbein gravity, where, instead of the tetrad fields, the
Dirac fermions are described by the rectangular vielbein (fünfbein) [62].

Gravity with multiple tetrad fields may also come from Akama– Diakonov– Wetterich
theory [63–71], where the tetrads are formed as composite objects—the bilinear combina-
tions of the fundamental fermionic fields:
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ea(n)
µ =

〈
Θa(n)

〉
. (32)

In this approach, the metric is the quartet of fermions. In principle, so-called vestigial
gravity can be realized, in which the bilinear combination of fermions in Equation (32) is
zero, ea(n)

µ = 0, while the metric—the quartet of fermions—is nonzero [72]:

gµν(n) = ηab

〈
Θa(n)

µ Θb(n)
ν

〉
. (33)

On the levels of particles, the vestigial gravity acts with different strengths on fermions
and bosons. In principle, it is not excluded that such gravity can be formed at an early
stage of the development of the universe.

4.2. Heat Exchange in Multi-Metric Gravity

The heat exchange between the sub-universes leads to their equilibration with the
formation of the common expansion rate and, thus, the common temperature. We consider
first the system of two sub-universes, assuming that, in each of them, the entropy of the
horizon obeys the area law, and we show that the maximum entropy corresponds to the
situation in which both states acquire the same expansion rate.

In the de Sitter state, which is determined by the cosmological constant, the equation
of the state for the vacuum energy is ϵvac = −Pvac. The total vacuum energy is proportional
to the volume, V, of the system if we assume that the volume, V, is much larger than the
Hubble volume, V ≫ VH , so that the boundary terms are not important. Then, we have

EV = ϵvacV = 6KH2V . (34)

Let us assume that the bulk–surface correspondence is valid, i.e., the entropy of the
Hubble volume, VH , is equal to the Gibbons–Hawking entropy of cosmological horizon
SVH = Shor = 4 πKA. Then, the total entropy, SV , in the volume V ≫ VH can be obtained
from the entropy of the Hubble volume, VH :

SV = Shor
V

VH
= 12πKHV . (35)

Let us now consider two de Sitter sub-states with different values of the gravitational
coupling, K1 and K2, and different values of the Hubble parameter, H1 and H2:

S = −
∫

d4x
√
−g(1)

(
K1R{gµν(1)}+ Λ1

)
−
∫

d4x
√
−g(2)

(
K2R{gµν(2)}+ Λ2

)
. (36)

This corresponds to the higher dimensional analog of the bilayer graphene [73],
where two 2 + 1 dimensional universes are in the neighboring layers of 3 + 1 spacetime. In
this interpretation, we have two 3 + 1 dimensional universes in the neighboring layers in
the 4 + 1 space.

The total energy and total entropy of the two layers are (if the interaction between the
layers is neglected) as follows:

EV = E1 + E2 = 6(K1H2
1 + K2H2

2)V , (37)

SV = S1 + S2 = 12π(K1H1 + K2H2)V . (38)

Let us now allow for the energy exchange (the heat exchange) between these
two sub-universes (analogs of the two layers of graphene). This exchange can be realized
via the matter field, which interacts with both metrics. It leads to the variations in the
Hubble parameters H1 and H2 at a fixed EV . If we ignore the thermalization of matter via
the de Sitter environment, the heat exchange will finally produce the equilibrium state with
the maximum entropy S, in which the Hubble parameters become equal:
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H2
1 = H2

2 =
EV

6(K1 + K2)V
≡ H2 . (39)

The equilibration of the Hubble parameters demonstrates that the Hubble parameter
(with some numerical factor) plays the role of the temperature of the de Sitter universe.

The temperature of the de Sitter universe can be obtained via a variation of the Hubble
parameter:

1
T1

=
dS1

dE1
=

dS1/dH1

dE1/dH1
=

π

H1
,

1
T2

=
dS2

dE2
=

dS2/dH2

dE2/dH2
=

π

H2
, (40)

with T1 = T2 = H/π in equilibrium.
In the case of the arbitrary number N of sub-universes, the heat exchange between

them leads to the equilibrium state of the universe, in which all the sub-universes coherently
expand with the same rate, H, i.e., with the same de Sitter metric in all subsystems. In this
equilibrium universe, the gravitational coupling K is equal to the sum of the individual
couplings in the sub-universes and the vacuum energy density is equal to the sum of the
energy densities of subsystems:

EV = 6 KH2V , K = ∑
n

Kn , Λ = ∑
n

Λn . (41)

All the substates acquire the same temperature in equilibrium, Tn = T = H/π.

4.3. Thermodynamics from the Multi-Metric Ensemble

Let us recall that, in the above approach, we used the bulk–horizon correspondence
SVH = Shor = 4 πKA, which finally led to the equilibrium universe with the temperature
T = H/π. Let us now consider the thermodynamics of the whole de Sitter system without
any assumption about the entropy of the cosmological horizon. For that, we consider
the statistical ensemble of N de Sitter sub-universes with random Hubble parameters Hn.
This is the extension of multi-metric gravity to the statistical ensemble with the randomly
distributed parameters Kn and Λn.

For a large N, the random distribution of the parameters results in the exponential
behavior of the distribution functions, wn ∝ exp(−En/T), with the same parameter, T, for
all subsystems. As in the statistical ensemble of atoms, where the temperature of the system
is determined by physical processes, the temperature of the ensemble of the sub-universes
is also determined by physical processes. In our case, it is the behavior of matter (atom)
in the de Sitter environment that gives T = H/π. This connection between T and H is
rather natural. Both the parameter T, which plays the role of temperature, and the Hubble
parameter H are the quantities that, in equilibrium, become common for all the subsystems
in the ensemble, and they have the same dimension of inverse time, [T] = [H] = [1/t].

The physical temperature, in turn, gives rise to the total entropy and the local entropy,
SV = ∑n Sn = 12 πKHV = slocV. So, in this scenario, de Sitter entropy comes from a set
of many randomly distributed subsystems with the expansion rates Hn. Due to the heat
exchange at the fixed total energy EV , these states are organized in the equilibrium thermal
state, which corresponds to the coherent de Sitter expansion of the whole system. The
coherence due to thermalization may explain the horizon problem, i.e., why the causally
disconnected regions of the CMB are in thermal equilibrium.

4.4. Regularization vs. Thermalization

The multi-metric ensemble may include the ensemble of N species of Weyl or Dirac
fermions. At a large N, all tetrads in the random ensemble approach the same value,
ea(n)

µ → ea
µ, and thus, in the equilibrium state, all fermionic species experience the same

geometry. In Refs. [61,74], the formation of the common Lorentz invariance for different
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fermionic species was also considered. But this was achieved via the renormalization group
effect in the infrared limit instead of thermalization. This suggests the possible connection
between renormalization and thermalization.

One may expect that the heat exchange between subsystems leads not only to the
coherence of the de Sitter states but also to the general coherence of the metric fields when
the metric fields gµν(n) of the subsystems become equal, thus forming the common metric
gµν. If this is true, this could be a kind of thermodynamic gravity but without using the
holographic principle.

4.5. Coherence vs. Thermalization

At first glance, this formation of the coherent de Sitter expansion from the ensemble of
the random microstates looks similar to the formation of the Bose–Einstein condensate (BEC)
of magnons [75]. The magnon BEC represents the coherent precession of all spins, which
results from the incoherent precessions of the individual spins with random frequencies ωn
in the local magnetic fields. The originally random frequencies correspond to the random
Hubble parameters Hn in different sub-universes. The coherence of precession develops
due to the spin currents between the regions of the local precessions—the analog of the heat
exchange between the sub-universes. The formed common frequency ω of the coherent
precession corresponds to the formed common Hubble parameter H of the large universe.
Moreover, they have the same dimension of the inverse time, [H] = [ω] = [1/t], while the
dimensionless number of magnons (or the dimensionless spin projection Sz, which is the
same) corresponds to the total entropy of de Sitter, which is also dimensionless.

However, the source of the coherence is the exchange of spins instead of the exchange
of energies. As a result, the formation of the coherent state of spin precession is due to the
minimization of the total energy, E, at the fixed projection Sz of the total spin on the magnetic
field. This leads to the common frequency of precession. In the magnon BEC interpretation,
the common frequency plays the role of the chemical potential µ for magnons, which
becomes constant in space due to the exchange of magnons between regions. That is why
this process is quite the opposite of the formation of the common temperature, where the
total energy is fixed, while the total entropy reaches its maximum value.

Anyway, in all cases, all the parameters, which are the same in all subsystems in
equilibrium—common frequency, ω, common chemical potential, µ, common temperature,
T, common angular velocity, Ω, and now also the common Hubble parameter H—have
the same dimension of inverse time, [T] = [H] = [µ] = [ω] = [Ω] = [1/t]. In Section 4.6,
it is shown that the Hubble parameter H enters the chiral anomaly effects, together with
the other thermodynamic variables: T, µ, and Ω. All of this supports the thermodynamic
nature of the Hubble parameter.

4.6. de Sitter Contribution to Chiral Anomaly

As the thermodynamic quantity, the Hubble parameter H participates in differ-
ent thermodynamical effects. We consider this using as an example the chiral vortical
effect—the appearance of the chiral current in fermionic systems in the presence of ro-
tation. For Dirac fermions in flat spacetime, the chiral current jA contains the following
contributions from the temperature, chemical potential, and angular velocity [76–80]:

jA =

(
T2

6
+

µ2

2 π2 +
Ω2

24 π2

)
Ω . (42)

In the de Sitter state, the gravitational thermodynamical variable—the curvature
R—is added [81,82]. According to Ref. [82], the gradient expansion provides the following
contribution to the chiral current, which is very similar to the contributions of other
thermodynamic quantities in Equation (42):

jA =
H2

8 π2 Ω . (43)
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The same term is obtained for anti-de Sitter spacetime, where H2 < 0 [83]. On the
other hand, in Ref. [81], the curvature term comes from the shift in the fermionic mass
gap, −M2 → −(M2 + H2), and this leads to Equation (43) with the opposite sign.

A comparison of Equation (43) with Equation (42) demonstrates that there is a differ-
ence between the contribution T2/6 in Equation (42), which comes from the temperature of
matter, and the contribution T2/8 from the temperature T = H/π of the de Sitter environ-
ment in Equation (43). However, it is possible that the more rigorous calculations (beyond
the gradient expansion, with the proper conservation laws and with the proper limit cases)
can modify the coefficient in Equation (43). It is not excluded that these two contributions
may cancel each other when the matter and the gravitational background are in equilibrium
and, thus, have the same temperature. Such a cancellation of the currents generated via
two different mixed gravitational anomalies in rotating the chiral liquid under the full
equilibrium was found in Ref. [84]. This supports the Bloch theorem concerning the absence
of the total current in equilibrium; see also Refs. [85–87].

Anyway, the participation of the curvature R = −12 H2 in the thermodynamics of
the chiral anomaly demonstrates the uniqueness of the de Sitter state in providing the
contributions of gravitational variables to different thermodynamic effects together with the
traditional thermodynamic variables, such as the temperature, chemical potential, angular
velocity, and electric and magnetic fields.

5. Thermodynamics of de Sitter State and f (R) Gravity
5.1. Thermodynamic Variables in f (R) Gravity

Here, we consider the thermodynamics of the de Sitter state in terms of the gravita-
tional variables and the corresponding modification of the thermodynamic Gibbs–Duhem
relation for the quantum vacuum.

The conventional vacuum pressure Pvac obeys the equation of state w = −1 and enters
the energy-momentum tensor of the vacuum medium in the following form:

Tµν = Λgµν = diag(ϵvac, Pvac, Pvac, Pvac) , Pvac = −ϵvac . (44)

In the de Sitter state, the vacuum pressure is negative, Pvac = −ϵvac < 0.
Due to the linear dependence of the de Sitter entropy density on temperature, this

pressure, Pvac, does not satisfy the standard thermodynamic Gibbs–Duhem relation,
Tsvac = ϵvac + Pvac, because the right-hand side of this equation is zero. The reason for that
is that, in this equation, we did not take into account the gravitational degrees of freedom
of the quantum vacuum. Earlier, it was shown that gravity contributes to thermodynamics
with a pair of thermodynamically conjugate variables: the gravitational coupling K = 1

16 πG
and the scalar Riemann curvature R; see Refs. [9,88,89]. The contribution of the term KR
to thermodynamics is similar to the work density [90–93].

The quantities K and R can be considered the local thermodynamic variables that,
in condensed matter physics, are similar to the temperature, pressure, chemical potential,
number density, spin density, etc. Indeed, since de Sitter spacetime is maximally symmet-
ric, its local structure is characterized by the scalar curvature alone, while all the other
components of the Riemann curvature tensor are expressed via R:

Rµναβ =
1

12
(

gµαgνβ − gµβgνα

)
R . (45)

That is why the scalar Riemann curvature, as the covariant quantity, naturally serves
as one of the thermodynamical characteristics of macroscopic matter [94,95].

Another argument is related to the so-called Larkin–Pikin effect [96]. This is the jump in
the number of degrees of freedom when the fully homogeneous state is considered. One has
extra parameters, which are space-independent but participate in thermodynamics [97–99].
The same concerns the constant electric and magnetic fields in vacuo that, together, add three
more degrees of freedom. These constant fields are mutually independent, in contrast to the
spacetime-dependent fields connected via the Maxwell equations [99]. The scalar curvature
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R in the de Sitter vacuum, which is constant in spacetime, also serves as such a thermodynamic
parameter. Then, the gravitational coupling K = d f /dR serves as the analog of the chemical
potential, which is constant in full equilibrium.

5.2. Gibbs–Duhem Relation in f (R) Gravity

The new thermodynamic variables, K and R, which come from gravity and
Equation (23) for entropy density, allow us to restore the Gibbs–Duhem relation for the de
Sitter vacuum in the following form:

Tsvac = ϵvac + Pvac − KR . (46)

This equation is obeyed, as can be checked using an example of Einstein gravity,
where Tsvac = 12 π2KT2 = 12 KH2, using the equations ϵvac + Pvac = 0 and R = −12 H2.
This supports the earlier proposal that K and R can be considered the thermodynamically
conjugate variables [88,89].

Equation (46) can also be written using the effective vacuum pressure, which absorbs
the gravitational degrees of freedom:

P = Pvac − KR . (47)

Then, the conventional Gibbs–Duhem relation is restored:

Tsvac = ϵvac + P . (48)

Equation (48) is just another form of writing the Gibbs–Duhem relation (46). But it
allows for a different interpretation of the de Sitter vacuum state. The introduced effective
de Sitter pressure, P, is positive, P = ϵvac > 0, and it satisfies the equation of state
w = 1, which is similar to matter with the same equation of state. As a result, due to the
gravitational degrees of freedom, the de Sitter state has many common properties with the
non-relativistic Fermi liquid, where the thermal energy is proportional to T2, and also with
the relativistic stiff matter with w = 1 introduced by Zel’dovich [100].

5.3. Entropy of the Cosmological Horizon in Terms of Effective Gravitational Coupling

Let us now show that the holographic bulk–surface correspondence also remains valid
in f (R) gravity, i.e., that the entropy of the Hubble volume coincides with the entropy
attributed to the cosmological horizon, Shor = 4 πKA.

In the f (R) gravity, the action is as follows:

S = −
∫

d4x
√
−g f (R) . (49)

In the equilibrium de Sitter state, the curvature is determined by the Einstein equations
obtained via a variation of the action (49):

2 f (R) = R d f
dR . (50)

The corresponding vacuum energy density ϵvac = −Pvac in the f (R) gravity is as
follows:

ϵvac = f (R)− KR , K =
d f
dR . (51)

This shows that the gravitational coupling K is the natural definition of the variable,
which is thermodynamically conjugate to the curvature R, while ϵvac serves as the corre-
sponding thermodynamic potential. The Gibbs–Duhem relation for the de Sitter states in
f (R) gravity has the following conventional thermodynamic form:

Tsvac = ϵvac + Pvac − KR . (52)
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Let us now use the fact that the local temperature, T = H/π, of the equilibrium de
Sitter state is the geometric property of de Sitter, being fully determined by the PG metric in
Equation (1). This temperature, which in particular regulates the process of the ionization
of an atom in the de Sitter environment, does not depend on the function f (R). Using this
local temperature, one obtains from Equation (52) the local entropy, svac = −KR/T, where
R = −12 H2 = −12 π2T2. Then, the total entropy of the Hubble volume, VH , is given via
the same Equation (27) as in the Einstein gravity:

Sbulk = svacVH = 4 πKA = Shor . (53)

But now, K is the effective gravitational coupling in Equation (51).
This generalization of Gibbons–Hawking entropy was discussed in Refs. [9,101–103].

But here, it was obtained using the local thermodynamics of the de Sitter vacuum. This
demonstrates that the local thermodynamics of the de Sitter vacuum is also valid for the
f (R) gravity. The effective gravitational coupling K serves as one of the thermodynamic
variables of the local thermodynamics. This quantity plays the role of chemical poten-
tial, which is thermodynamically conjugate to the curvature R, and it is constant in the
thermodynamic equilibrium state of de Sitter spacetime.

5.4. Example of Quadratic Gravity

For illustration, we consider the simple example of the f (R) gravity and the corre-
sponding modification of the gravitational coupling K in the de Sitter environment. In
the conventional Einstein gravity, where f (R) = K0R + Λ, the de Sitter state has the
equilibrium value of the curvature, R0 = −2Λ/K0 = −12H2. Let us add the quadratic
term to the Einstein action [9,101]:

f (R) = K0R− 1
2

ϵGR2 + Λ . (54)

Here, ϵG is the dimensionless parameter. In electrodynamics, this parameter corre-
sponds to such parameters as the dielectric constant, magnetic permeability, and inverse

fine-structure constant. These parameters contain the logarithm ln M4
Pl

B2 . This is the running
coupling, in which the ultraviolet cut-off is given via the Planck mass, while the infrared
cut-off is provided via the magnetic field B. The coefficient of the logarithmic term depends
on the number of massless fermionic and bosonic species. In gravity, there is also the

logarithmic correction ln M4
Pl

R2 to ϵG, where the infrared cut-off is provided via the Hubble
parameter. But here, we ignore the logarithmic contributions for simplicity.

In the analogy with electrodynamics, the parameter K0 corresponds to the spontaneous
magnetization or the spontaneous polarization, which breaks the corresponding discrete
T and P symmetries. In gravity, the corresponding broken discrete symmetry is the
symmetry with respect to transformation, R → −R. The possible origin of such discrete
symmetry [104] is the symmetry under the coordinate transformation xµ → ixµ (the
complex metric was also considered in Ref. [105]). Under this operation, the de Sitter state
is transformed to anti-de Sitter; see also Ref. [106]. This is different from the time-reversal
symmetry operation, which connects the black and white holes in Section 8.5, and the
expanding and contracting de Sitter states in Section 7.2.

The equilibrium curvature R0 in the f (R) gravity in Equation (54) can be obtained
from Equation (50):

R0 = −2
Λ
K0

= −12H2 , (55)

It is the same as in Einstein gravity because the quadratic terms in Equation (50) are
canceled. The equilibrium value of the effective gravitational coupling K is as follows:

K =
d f
dR
∣∣
R=R0

= K0 + 2ϵG
Λ
K0

. (56)
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This modified gravitational coupling K determines the local entropy svac, which
follows from Equation (52). As a result, the entropy of the Hubble volume in Equation (57),
which we identify with the entropy attributed to the horizon Shor, is also determined by
the modified coupling K:

Shor = svacVH = 4 πKA . (57)

The local and global entropies change signs for K < 0, while the cosmological expan-
sion is still described by the de Sitter metric. However, the negative K requires the negative
parameter ϵG < 0, which marks the instability of such a de Sitter vacuum [101].

6. From de Sitter Thermodynamics to de Sitter Decay
6.1. de Sitter State as Thermal Bath for Matter

The validity of the holographic connection between the bulk and surface entropies
in the extension of the thermodynamics to f (R) gravity also supports the idea that the
de Sitter vacuum is the thermal state with the local temperature T = H/π. Such a
gravitational temperature, which is twice the Hawking temperature, has also been obtained
in the particular de Sitter limit, when the relativistic and non-relativistic matter tends to
zero (see footnote 2 on page 4 in Ref. [107]). This demonstrates that, in the conventional
approaches to de Sitter thermodynamics, where Euclidean time is used, the results may
depend on the choice of the order of limits.

The nonzero local temperature of the gravitational vacuum shows that the de Sitter
vacuum is locally unstable towards the creation of matter if some matter (such as an atom
or electron ) is originally present, see Section 2.3. This is distinct from the mechanism of
creation of the pairs of particles via Hawking radiation from the cosmological horizon,
which may or may not lead to the decay of the vacuum energy. There are still controver-
sies concerning the stability of the de Sitter vacuum caused by Hawking radiation; see,
e.g., refs. [98,108,109] and the references therein.

6.2. de Sitter Decay Due to Thermalization of Matter via de Sitter Heat Bath

To describe the decay of the vacuum due to the creation and further thermalization of
matter, the extension of the Starobinsky analysis of vacuum decay [110–113] is needed. Par-
ticularly, the revolutionary stochastic inflation approach pioneered by Starobinsky [114,115]
is extremely useful, although it requires some modifications [116–119]. This also includes
the so-called separate universe approach, which is somewhat similar to the multi-metric
gravity discussed in Section 4. Here, we consider the simple phenomenological scenario
based on the energy exchange between the thermal de Sitter vacuum and the created
thermal matter. This phenomenological description does not depend on the details of
microscopic (UV) theory, and it requires only the slow-roll condition, i.e., the slow variation
in the Hubble parameter, |Ḣ| ≪ H2, or |Ṫ| ≪ T2, which is the same.

The thermal exchange between the de Sitter heat bath and the excited matter generates
the thermal relativistic gas. The temperature of relativistic gas tends to approach the
temperature T = H/π of the de Sitter background. Correspondingly, the energy density
of this matter, ϵM, tends to approach the (quasi)equilibrium value at this temperature,
ϵM(T) ∼ T4. In terms of the Hubble parameter, one has ϵM(H) → bH4, where the
dimensionless parameter b depends on the number of massless relativistic fields—for
example, b = 7NF/120 π2 for NF species of massless Weyl fermions.

The energy exchange between the vacuum heat bath and matter can be described
by the following dynamical modification of the Friedmann equations [120], where the
dissipative Hubble friction equation ∂tϵM = −4 HϵM is extended to

∂tϵM = −4 H(ϵM − bH4) . (58)

This equation describes the tendency of matter to approach the local temperature of
the vacuum, T = H/π. The extra gain in the matter energy, 4 bH5, is compensated for with
the corresponding loss of the vacuum energy:
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∂tϵvac = −4 bH5 , (59)

Since the vacuum energy density is ϵvac = 6KH2, one obtains from Equation (59)
the following time dependence of the Hubble parameter and the energy densities of the
vacuum and matter:

H(t) = b−1/3MPl

(
tPl

t + t0

)1/3
, (60)

ϵvac(t) = 6 b−2/3M4
Pl

(
tPl

t + t0

)2/3
, (61)

ϵM(t) = bH4 = b−1/3M4
Pl

(
tPl

t + t0

)4/3
. (62)

Here, MPl is the Planck mass, M2
Pl = K, and tPl = 1/MPl is the Planck time. We

assume that t0 ≫ tPl, and thus, |Ḣ| ≪ H2.
Thus, the thermal character of the de Sitter state determines the process of its decay.

The obtained power-law decay of H in Equation (60) was also found in Refs. [121–126],
though using different approaches. In the Padmanabhan model [121,122], the de Sitter
horizon is considered the photosphere with the Gibbons–Hawking temperature and the
radiative luminosity dE/dt ∝ T4 AH , where AH = 4 π/H2 is the area of the horizon.
Since the energy of the Hubble volume is E ∼ M2

Pl/H, and T4 AH ∼ H2, this leads to
the power law for the vacuum energy density in Equation (61). As was mentioned by
Padmanabhan [122], in his model, the late-time cosmological constant is independent of its
initial value; see Equation (61) at t ≫ t0.

In Refs. [123–125], the Starobinsky stochastic inflation approach was used. The param-
eter b therein is proportional to the number, N, of conformal fields, and the parameter t0 is
related to the initial value of the Hubble parameter at the beginning of inflation at t = 0:

H(t = 0) = b−1/3MPl

(
tPl
t0

)1/3
≪ MPl . (63)

This H(t = 0) corresponds to the scaleron mass M in Starobinsky inflation. The
time t0 ∼ E2

Pl/H3
t=0 is called the quantum breaking time of spacetimes with a positive

cosmological constant [127,128].
All of this demonstrates that the phenomenological scenario of the thermalization of

matter via the de Sitter heat bath in Equations (58) and (59) is rather natural. It produces the
inflation in terms of two phenomenological parameters, b and t0, which determine the decay
of the vacuum energy density in Equation (61). However, in Section 6.4, we consider another
phenomenological approach that gives a different power law for de Sitter decay.

6.3. Connection to Holographic Principle

The evolution of the gravitational (dark) energy in Equation (61) and of the energy
of the relativistic matter in Equation (62) allows us to consider another proposal made by
Padmanabhan [129] (see also Refs. [130,131] and the references therein). It is the holographic
postulate that connects the expansion of the Hubble volume with the difference between
the number, Nhor, of microstates on the surface of the horizon (one degree of freedom per
Planck area) and the number, Nbulk, of the degrees of freedom in bulk:

dVH
dt

= G (Nhor − Nbulk) . (64)

This postulate suggests that the expansion of the universe is being driven towards the
holographic equipartition so that in the equilibrium de Sitter state that all the bulk degrees of
freedom inside the horizon can be expressed via the horizon degrees of freedom, Nbulk = Nhor.
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Instead of the speculative horizon degrees of freedom, we consider here the corre-
sponding thermodynamic entropy. We already found that, according to Equation (27),
the gravitational entropy of the Hubble volume is equal to the entropy attributed to the
cosmological horizon, Sbulk = Shor. Let us consider what happens in the presence of
matter. On the one hand, matter adds its contribution, SM, to the bulk entropy, and thus,
Sbulk = SM + Shor. On the other hand, matter violates the de Sitter symmetry, which leads
to the time dependence of the Hubble volume.

The entropy density of matter sM(t) can be obtained from the matter energy density
in Equation (62):

sM(t) =
4 π

3
bH3(t) . (65)

Then, the total entropy of matter SM in the Hubble volume is time-independent:

SM = sM(t)VH(t) =
(

4 π

3

)2
b . (66)

The time derivative of the Hubble volume dVH/dt, which is obtained from
Equation (60), is also time-independent:

dVH
dt

=
4 π

3
bl2

Pl . (67)

Comparing Equation (67) with Equation (66), one has

dVH
dt

=
3

4 π
l2
PlSM . (68)

Then, using equation SM = Sbulk − Shor, one obtains the general relation between
the expansion in the Hubble volume and the difference between the bulk entropy and its
holographic surface value:

dVH
dt

= 12 G (Sbulk − Shor) . (69)

Up to the sign and numerical coefficient, this coincides with Equation (64), which
supports the Padmanabhan holographic conjecture [129], but without using the speculative
degrees of freedom of the horizon.

6.4. de Sitter Decay and Zel’dovich Stiff Matter

As was mentioned by Padmanabhan, his photosphere model [122] leads to a late-time
cosmological constant in Equation (61), which is independent of the initial value, but its
value is still far too large. Can we fix this? In Section 5.2, we obtained indication that
the thermodynamics of the de Sitter thermal bath also has the properties of the Zel’dovich
stiff matter with w = 1. Let us try the stiff-matter scenario using our phenomenological
approach.

We assume that the dynamics of the decaying de Sitter state can be considered as a
kind of two-fluid hydrodynamics of superfluid liquid. We have the (superfluid) vacuum
component with w = −1, which has de Sitter symmetry, and the (normal) stiff matter com-
ponent with w = 1, which violates this symmetry. These two components tend to approach
the common temperature. Such two-fluid behavior of the de Sitter state may also come from
the observation in Section 6.5 that thermal fluctuations of the energy density in the Hubble
volume are on the order of the vacuum energy density itself, < (∆ϵvac)2 > / < ϵvac >2∼ 1.
So, in these speculations, the de Sitter state behaves as a mixture of dark energy (the de
Sitter vacuum) and dark matter (the stiff matter or the thermal fluctuations of de Sitter).

For the (dark) matter with w = 1, the dissipative Hubble friction equation is
∂tϵDM = −6 HϵDM. Due to the energy exchange between the gravitational (dark energy)
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component and the dark matter component, the temperature of dark matter tends to approach
the heat bath temperature T = H/π. Then, instead of Equations (58) and (59), one obtains

∂tϵDM = −6 H(ϵDM − b̃H2) , (70)

and
∂tϵvac = −6 b̃H3 . (71)

Here, b̃ is the phenomenological dimensionless parameter on the order of unity whose
microscopic origin is to be found. Similar equations with the corresponding phenomeno-
logical dimensionless parameter γ were suggested in Ref. [132], where the Polyakov
scenario [109] of the infrared instability of the de Sitter space was discussed, and the
pressureless matter was considered with w = 0.

Equation (71) gives the following power-law decay of dark energy and dark matter:

ϵvac(t) ∼ ϵDM(t) ∼ M4
Pl

(
tPl

t + t0

)2
. (72)

For a large t ≫ t0, this gives the reasonable order of magnitude of the vacuum energy
density and of the energy density of matter in the present time:

ϵvac(tpresent) ∼ ϵDM(tpresent) ∼
M2

Pl
t2
present

∼ 10−120M4
Pl . (73)

The same behavior of the vacuum energy density was obtained using the Hawking
four-form field [9,133]. In this case, the role of dark matter is played by the oscillations of
the four-form field during decay [134]. Note that, in our approach, both dark energy and
dark matter come from the gravitational degrees of freedom. In this sense, it has relations
to Refs. [135–137] and references therein, where the role of the gravitational degrees of
freedom is discussed.

6.5. Thermal Fluctuations in de Sitter State

Here, we consider thermal fluctuations in the de Sitter thermal state, which may also
serve as the source of the two-fluid behavior of de Sitter dynamics. The de Sitter thermal
state represents the excited state of the Minkowski quantum vacuum. In addition, the deep
Minkowski quantum vacuum experiences thermal fluctuations, which may play the role of
dark matter.

According to Landau– Lifshitz [138], the thermal fluctuations are determined by the
compressibility of the system and the considered volume, V. In the case of the fluctuating
relativistic vacuum, one has the following [133]:〈

(∆ϵvac)
2
〉
=
〈
(∆Pvac)

2
〉
=

T
Vχvac

. (74)

Here, χvac is the vacuum compressibility [99]—the compressibility of the equilibrium
Minkowski vacuum with ϵvac = −Pvac = 0.

Note the main difference between the thermal fluctuations and quantum fluctuations.
The contribution of the quantum fluctuations of the relativistic quantum fields to the
vacuum energy density is typically in the order of M4

Pl, where MPl is the Planck mass. But
in the full equilibrium vacuum state, this contribution is canceled due to the ultraviolet
trans-Planckian degrees of freedom via the thermodynamic Gibbs–Duhem relation [99,133].
This cancellation is universal, being valid both for the relativistic vacuum states and for
the non-relativistic ground states of the condensed matter systems. But the contribution
of thermal fluctuations to vacuum energy is in the range of the applicability of infrared
physics, where it is expressed in terms of the temperature, T, and the compressibility of the
vacuum.
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The value of the vacuum compressibility is determined by ultraviolet physics [99]
with its Planck energy scale, χ−1

vac ∼ M4
Pl. This is similar to the gravitational coupling,

which is also determined by the Planck scale, K ∼ M2
Pl. On the other hand, the temperature

corrections to χ−1
vac and K, as well as the Casimir corrections, are within the range of the

applicability of infrared physics; see Ref. [139] for the universal temperature correction to
the gravitational coupling K.

The contribution to compressibility via infrared physics was discussed in Refs. [140–143].
The negative contributions to compressibility obtained in these papers do not violate the stability
of the quantum vacuum since these contributions represent corrections that are small compared
to the main value of the vacuum compressibility, χ−1

vac ∼ M4
Pl.

Taking into account that the excited vacuum (the de Sitter state) has the temperature
T = H/π and the energy density < ϵvac >∼ M2

PlH
2, it follows from Equation (74) that the

thermal fluctuations of the energy density in the Hubble volume are in the order of thermal
energy density: 〈

(∆ϵvac)
2
〉

V=VH
∼ ⟨ϵvac⟩2 . (75)

This can be the reason for the two-fluid behavior of the de Sitter state discussed in
Section 6.4. The thermal fluctuations of dark energy play the role of dark matter in the
same way as the oscillations of the dark energy in Ref. [134], and they lead to the same
power-law decay in Equation (72) and to the present values of dark energy and dark matter
in Equation (73).

6.6. Cosmological Constant Problems

In principle, the phenomenological approaches to the dynamics of vacuum energy density
may produce different power-law decay. Examples are Equations (72) and (61). However, it is
not excluded that these two asymptotic laws may correspond to different epochs.

So, if this speculative approach in Section 6.4 works, Equation (73) may solve all the
cosmological constant problems:

(1) Why the cosmological constant is not large;
(2) Why the dark energy is on the order of magnitude of dark matter;
(3) Why they have the present value.

7. From de Sitter to Black Hole Thermodynamics
7.1. de Sitter vs. Black Hole

The thermodynamics of the de Sitter state is very different from the thermodynamics
of black holes. A black hole is a compact object. The temperature of the Hawking radiation,
TH , from the black hole horizon is well determined, which is also supported by condensed
matter analogs [144]. On the other hand, the origin of black hole entropy is still not clear,
although it can be determined from the equation dM = THdS, assuming that the laws of
thermodynamics are applicable to this compact object.

On the contrary, the de Sitter state is not a compact object. It is a homogeneous
vacuum state without boundaries that has the homogeneous energy density as the local
thermodynamic variable. The local energy density allows us to also introduce the local
temperature T = H/π. This local temperature can be measured via any detector that is
stationary with respect to the shift velocity and that measures, for example, the rate of the
ionization of an atom, w ∝ exp(−E/T).

7.2. Entropy of Expanding, Contracting, and Static de Sitter

However, the de Sitter state allows us to probe the origin of black hole entropy. For that,
we must consider three different states of the de Sitter quantum vacuum: the expanding de
Sitter state with H > 0, the contracting de Sitter state with H < 0, and the de Sitter state
with the fully static metric. Let us note that the metrics of the expanding and contracting
de Sitter states are stationary but not static since their shift velocities are non-zero.
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Let us start with the fully static de Sitter metric:

ds2 = −(1 − H2r2)dt2 +
dr2

1 − H2r2 + r2dΩ2 . (76)

This metric has singularity at the cosmological horizon, which requires the proper
attention. In one approach, this static configuration can be considered the intermediate
symmetric state between the two states with broken time-reversal symmetry—the expand-
ing and contracting states. The same consideration applies to the static hole, that can be
viewed as the intermediate state between the black and white holes [88].

The contracting de Sitter vacuum has a negative Hubble parameter, H < 0. That is
why its local temperature is negative, T = H/π < 0, and the local entropy is also negative,
scontracting = 3 H/4 G = −3/(4 GrH) < 0. The total entropy in the Hubble volume of the
contracting de Sitter state is

Scontracting = scontractingVH = − A
4 G

, (77)

where A is the area of the cosmological horizon. That is why the entropy of the static de
Sitter state in Equation (76), as the intermediate state between the states with positive and
negative entropies, is zero. Correspondingly, the temperature of this state must be infinite,
which is consistent with the singularity at the horizon; see also Ref. [145].

7.3. Gravastar—Black Hole with de Sitter Core

The connection between the black hole and the de Sitter state appears when we
consider the black hole obtained through the deformation of the gravastar [20]. The
gravastar is an object that contains a de Sitter vacuum inside a black hole horizon [146–148].
We consider the gravastar in which the black hole horizon coincides with the de Sitter
horizon, rbh = rH (the metric in the state with the critical value of the mass parameter
m = 2 MG|H| = 1, at which two horizons merge, is illustrated in Figure 1 of Ref. [149]).
Since, in such a gravastar, the two horizons cancel each other, there is no Hawking radiation,
and the entropy of the gravastar is zero. In the Painlevé–Gullstrand form, the metric of
such a gravastar is given via Equation (1) with the following shift velocity:

v(r) = −
√

rH
r

, r > rH , (78)

v(r) = − r
rH

, r < rH . (79)

Here, rH = 1/|H| = rbh, where rbh = 2MG, and M = 1/(2 G|H|) is the mass of the
black hole, which is formed by the de Sitter core.

The shift velocity v(r) is continuous across the surface, r = rH , while the gradient of
the shift velocity dv/dr experiences a jump at this surface. It is important that the shift
velocity v(r) is negative everywhere. Since it is negative in the de Sitter core, this means
that de Sitter spacetime in the core of this gravastar is contracting, v(r) = Hr = −r/rH < 0;
i.e., the Hubble parameter is negative, H = −1/rH < 0.

7.4. Entropy of Black Hole from Negative Entropy of Contracting de Sitter Core

According to Equation (77) the region of the contracting de Sitter core of the gravastar
has negative entropy, Scontracting = −A/4 G. That is why the gravastar is unstable towards
the shrinking of the de Sitter region since this leads to the increase in the entropy of the
whole system due to the decrease in the negative entropy of the contracting de Sitter state.
Due to energy conservation, the shrinking of the volume of the de Sitter core leads to
the formation of the singularity at r = 0, where the mass becomes concentrated. In the
final state—the black hole—the de Sitter region with negative entropy fully disappears by
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shrinking to the singularity with mass M. The resulting black hole with mass M acquires
positive entropy, A/4 G:

SBH = Sgstar − Scontracting = 0 − scontractingVH =
A

4 G
. (80)

The black hole entropy is also concentrated in the singularity, together with the
curvature R and mass M [20]. This again supports the holographic connection between
the entropy of bulk, which is concentrated in the singularity, and the surface entropy of the
black hole horizon.

Equation (80) allows the interpretation of the zero value of the entropy of the gravastar
in terms of the cancelation of the entropies of two horizons. In the initial gravastar state,
the entropy of the contracting de Sitter horizon fully compensates for the entropy of the
black hole horizon:

Sgstar = Scontracting + SBH = − A
4 G

+
A

4 G
= 0 . (81)

7.5. White Hole and Anti-Gravastar

In the same way, the anti-gravastar can be obtained as the white hole with the de Sitter
core. This object has the following shift velocities:

v(r) =
√

rH
r

, r > rH , (82)

v(r) =
r

rH
, r < rH . (83)

It is obtained from the pure white hole, which has the negative horizon entropy
SWH = −A/4 G [88,89], by growing the de Sitter state in its core with positive entropy. In
the anti-gravastar state, the entropies of two horizons cancel each other in the same way as
in the gravastar:

Santigstar = Sexpanding + SWH =
A

4 G
− A

4 G
= 0 . (84)

It is important that the coordinate singularities in the metric of the gravastar and in
the metric of the anti-gravastar can be smoothly removed via small deformations. That is
why these objects do not depend on the choice of the coordinate systems, and thus, they
are equivalent to the fully static black hole with the fully static de Sitter core:

ds2 = −(1 − 2 GM/r)dt2 +
dr2

1 − 2 GM/r
+ r2dΩ2 , r > 2 MG = 1/H , (85)

ds2 = −(1 − H2r2)dt2 +
dr2

1 − H2r2 + r2dΩ2 , r < 2 MG = 1/H . (86)

This again supports the zero entropy of these gravastars and also the zero entropy of
the fully static de Sitter state with the metric in Equation (76).

7.6. Gibbs–Duhem and Black Hole Thermodynamics

Let us show that the modified Gibbs–Duhem relation in Equation (46) is also applicable
to the thermodynamics of black holes. As distinct from the de Sitter state, the black hole is a
compact object, and its thermodynamics operates with global parameters, such as mass, M,
the entropy of the horizon, the total electric charge, Q, and the total angular momentum, J.
This global thermodynamics can be described by the integral form of the Gibbs–Duhem
relation in Equation (46). The curvature here comes from the central singularity [150]:

R = 8 πMG δ(r) . (87)
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Since the energy density here is ϵ = Mδ(r), the integration of the right-hand side of
Equation (46) over space gives the following relation for the Schwarzschild black hole:

TBHSBH = M −
∫

d3r
√
−gKR =

M
2

. (88)

This agrees with the global thermodynamics of the black hole with the Hawking
temperature TBH = 1

8 πMG and the Bekenstein– Hawking entropy SBH = A
4G . Equation (88)

is also valid for the white hole, where the temperature and entropy are opposite to that of
the black hole with the same mass [88], TWH(M) = −TBH(M) and SWH(M) = −SBH(M).

In principle, the central singularity in the black hole may spontaneously lose spherical
symmetry, forming, for example, a kind of rigid top. This, in turn, may influence the shape
of the event horizon. This is similar to the deformations of the cosmological horizon via
masses concentrated on vertices of Platonic solids deep within the Hubble volume [151].

7.7. Entropy of the Schwarzschild– de Sitter Cosmological Horizon

Let us consider the possible application of the modified Gibbs–Duhem relation to
the Schwarzschild–de Sitter (SdS) black hole. We discuss the simple case of the Nariai
limit, when the black hole horizon approaches the cosmological horizon, rb → r0 − 0 and
rc → r0 + 0, where

r0 = (GM/H2)1/3 =
1√
3 H

. (89)

In this limit, the temperatures of the horizons approach the Bousso–Hawking
value [152]:

Tb = Tc =

√
3

2 π
H =

1
6 πGM

. (90)

The entropy of the cosmological horizon Sc can be obtained via the integration of the
right-hand side of Equation (46) over the volume inside the cosmological horizon with
radius r0:

TcSc = M −
∫

r<r0

d3r
√
−gKR . (91)

Since we discuss here the Nariai limit, one obtains the following:

TcSc = M −
∫

r<r0

d3r
√
−gKR = M − M

2
+

3 H2

4 π

4 πr3
0

3
=

3
2

M. (92)

From this equation, one obtains the entropy of the cosmological horizon:

Sc =
3 M
2 Tc

=
πr2

0
G

=
A

4 G
. (93)

This again agrees with the Gibbons–Hawking entropy attributed to the horizon, al-
though this holographic connection is valid only in the Narai limit.

7.8. Heat Exchange between Black Holes in the Multi-Metric Ensemble

The thermodynamic character of the black hole objects can be tested using the multi-
metric ensemble in Section 4. Let us consider an ensemble of n sub-universes in the same
coordinate spacetime, S = −

∫
d4x ∑n Ln, but with with different metrics, gµν(n), different

gravitational couplings, Kn, and the corresponding individual black holes with masses Mn.
If one introduces the energy exchange between these sub-universes, then the masses Mn
will be varied at the fixed total mass M = ∑n Mn of the whole universe. In the thermal
equilibrium, which corresponds to the maximum of the total entropy, the individual metrics
approach the common metric, and the whole system corresponds to the universe with the
gravitational coupling K = ∑n Kn and with the black hole of mass M. The equilibrium
masses, Mn, of the individual substate approach the following values:
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Mn = M
Kn

K
. (94)

In this equilibrium state, the Hawking temperature of the black hole with mass M
in the whole ensemble coincides with the Hawking temperatures of the individual black
holes in each gravitational sub-state:

1
Tn

=
dSn

dMn
=

dS
dM

=
1

TH
. (95)

This is the effect of thermalization.

8. Black and White Holes Entropy from Macroscopic Quantum Tunneling
8.1. Collective Canonically Conjugate Variables for Schwarzschild Black Hole

Considering the thermodynamics of gravity systems, we used thermodynamically
conjugate variables—the gravitational coupling K = 1

16πG and the scalar curvature R,
which, as the covariant quantity, may serve as one of the thermodynamical characteristics
of macroscopic matter [94]. These variables are the local thermodynamic variables that are
similar to the temperature, pressure, chemical potential, number density, etc., in condensed-
matter physics.

The gravitational coupling K is determined by UV microscopic physics, but in the
description of gravity as a macroscopic phenomenon in the IR limit, it is the collective
variable. In the superfluid 3He-A with Weyl fermionic quasiparticles, both the coupling K
in the effective gravity and the fine structure “constant“ α in the effective electrodynamics
are determined by physics on the microscopic (atomic) level [31]. In microscopic theory,
one obtains K ∝ ∆2

0 and 1/α ∝ ln(∆0/T), where ∆0 is the gap amplitude, and T is the
temperature of the liquid. The gap amplitude ∆0 plays the role of the ultraviolet cut-off
MPl, while T provides the infrared cut-off. For the relativistic quantum fields with massless
particles, the infrared cut-off is either the temperature T or the strength of the fields. In the
inhomogeneous superfluid (inhomogeneous vacuum), both K and α depend on coordinates.
It is not surprising that, in the relativistic quantum vacuum, there is also a connection
between the gravitational coupling K and the coupling α in quantum electrodynamics, as
suggested in Refs. [153–159].

Now, for the discussion of the quantum-mechanical tunneling of the macroscopic
objects, we need the collective dynamical variables instead of the thermodynamic variables.
The canonically conjugate dynamical variables that are relevant to the black hole are the
gravitational coupling K and the horizon area A = 4 πR2. Bekenstein [160] proposed that A
is an adiabatic invariant and, thus, can be quantized according to the Ehrenfest principle that
classical adiabatic invariants may correspond to observables with a discrete spectrum. So, the
area of the horizon, A, is a proper candidate for the quantum mechanics of the black hole.

8.2. Modified First Law of Black Hole Thermodynamics

Let us first consider how these variables enter black hole thermodynamics. For that, it
is convenient to use the redefined gravitational coupling K̃ = 4 πK = 1

4G . In terms of this
coupling, the Hawking temperature of the Schwarzschild black hole and its Bekenstein
entropy are as follows:

TBH =
K̃

2 πM
, SBH =

πM2

K̃
= AK̃ . (96)

If K̃ is a global thermodynamic variable, one obtains the following modification of the
first law of black hole thermodynamics,

dSBH = d(AK̃) = πd(M2/K̃) = −π
M2

K̃2 dK̃ + 2 π
M
K̃

dM (97)

or
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dSBH = −AdK̃ +
dM
TBH

. (98)

This modification is similar to the modification in terms of the moduli fields [161]. But
in our case, the thermodynamic variable, which is conjugate to the thermodynamic variable
K̃, is the product of the black hole area and the black hole temperature, ATBH. On the other
hand, in dynamics, K̃ and A are canonically conjugate variables; see Section 8.4.

In general, the variable K̃ is local and depends on a space coordinate, but in the same
way as for the moduli fields [161], the black hole thermodynamics is determined by the
asymptotic value of K at spatial infinity. In Equation (98), K̃ ≡ K̃(∞) is the global quantity
that characterizes the quantum vacuum in full equilibrium, i.e., far from the black hole.

Also, the variable K̃ allows us to study the transition to the vacuum without gravity,
i.e., to the vacuum where K̃ → ∞ and, thus, G → 0; see Section 8.4.

8.3. Adiabatic Change in Coupling K and Adiabatic Invariant

Let us change the coupling, K̃, and the black hole mass, M, adiabatically, i.e., at the
constant entropy of the black hole. Then, the equation dSBH = 0 gives

dM
dK̃

= ATBH =
M

2 K̃
. (99)

This shows that M2/K̃ = const is the adiabatic invariant for the spherical, electrically
neutral black hole. Thus, according to the Bekenstein conjecture [160], it can be quantized
in quantum mechanics:

M2

K̃
= aN . (100)

Here, N is an integer, and a is some fundamental dimensionless parameter of order
unity. If this conjecture is correct, one obtains the quantization of the entropy of the
Schwartzschild black hole:

SBH(N) = π
M2

K̃
= πaN . (101)

The Bekenstein idea of the role of adiabatic invariants in the quantization of the black
hole requires further consideration; see some approaches to that in Refs. [162–167]. In
particular, the similarity between the energy levels of the Schwarzschild black hole and the
hydrogen atom has been suggested [168,169]. We leave this problem for the future. This
consideration should be supported with microscopic theory; see, e.g., ref. [170].

In this respect, the condensed matter analogs can be useful since, in condensed-matter
systems, the physics is known both on macro and micro (atomic) levels. One example
is provided via a consideration of the quantum nucleation of the vortex ring in moving
superfluids—the vortex instanton. It shows that the corresponding entropy that determines
the nucleation process, exp(−Sring), is quantized:

Sring(N) = 2 πN . (102)

Here, N is the number of atoms involved in the process of vortex instanton; see
Section 26.4 and Equations (26.20) and (26.21) in Ref. [31]. This would correspond to the
parameter a = 2 in Equation (100).

8.4. A and K as Canonically Conjugate Variables and Black-Hole–White-Hole Quantum Tunneling

The canonically conjugate variables A and K allow us to consider the quantum mechan-
ical tunneling from the black hole to the white hole—the process discussed in Refs. [171–180]
and in the references therein. In the semiclassical description of this macroscopic quan-
tum tunneling, the trajectory in the (K̃, A) phase space must be considered, which, in the
complex plane, connects the black and white holes.
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Note the difference from the consideration in Section 8.3, where K̃ varies in the adia-
batic regime, i.e., at a fixed entropy, SBH, while the area, A, temperature, TBH, and mass, M,
follow the variation of K̃. In the dynamic regime, which is relevant for the description of
quantum tunneling, the parameter K̃ varies at a fixed energy (fixed mass M of the black
hole), while the area, A, temperature, TBH, and entropy, SBH, follow the variation in K̃.

As in the case of the semiclassical consideration of Hawking radiation in terms of quantum
tunneling, we shall use the Painleve–Gullstrand coordinate system with the following metric:

ds2 = −dt2(1 − v2)− 2dt dr · v + dr2 , (103)

where, for the Schwartzschild black hole, one has

v(r) = ∓r̂

√
R
r
= ∓r̂

√
M

2rK̃
= ∓r̂

√
2MG

r
, (104)

where R is the radius of the horizon, the minus sign corresponds to the black hole, and
the plus sign describes the white hole. In the theory with variable gravitational coupling,
the sign changes at the singularity K̃ = ∞ (i.e., at G = 0), when the black hole shrinks to
a point and then expands as a white hole. The point K̃ = ∞, where gravity disappears,
serves as the branch point, where the velocity of the freely falling observer changes signs.

The vector v is normal to the surface of the horizon. When v changes sign, the horizon
area, A, also changes sign: it crosses zero at K̃ = ∞ and becomes negative on the white-hole
side of the process, A → −A. This also could mean that, due to the connection between the
area and entropy, the white hole may have negative entropy. This is what we discuss in
Section 8.5.

The quantum tunneling exponent is usually determined by the imaginary part of the
action on the trajectory, which transforms the black hole into a white hole. In terms of
Euclidean action, one has the following:

pBH→WH ∝ exp (−IBH→WH) , IBH→WH =
∫

C
A(K̃′)dK̃′ . (105)

Here, the semiclassical trajectory C is at M = const, and thus, A(K̃′) = ±πM2/(K̃′)2.
Along this trajectory, the variable K̃′ changes from K̃ to the branch point at K̃′ = ∞ and
then from K̃′ = ∞ to K̃′ = K̃ along the other branch, where the area A(K̃′) < 0. The integral
gives the tunneling exponent of the transition to the white hole

IBH→WH = 2 πM2
∫ ∞

K̃

dK̃′

K̃′2 = 2π
M2

K̃
. (106)

The tunneling exponent in Equation (106) can be expressed in terms of the black hole
entropy in Equation (96), and for the probability of transition, one obtains the following:

pBH→WH ∝ exp
(
−2 πM2/K̃

)
= exp (−2 SBH) . (107)

It is important that Equation (107) contains exactly twice the black hole entropy. This
allows us to consider again the entropy of the white hole.

8.5. Negative Entropy of White Hole

The connection between the probability of the transition and the thermodynamic
fluctuations [181] is also applicable to the transition between the black and white holes. The
total change in the entropy in this process is ∆S = SWH − SBH. According to Equation (107),
this change is equal to −2 SBH. Then, from equation SWH − SBH = −2 SBH, one obtains
that the entropy of the white hole is equal to the opposite sign of the entropy of the black
hole with the same mass:

SWH(M) = −SBH(M) . (108)
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This means that the white hole, which is obtained via quantum tunneling from the
black hole and, thus, has the same mass, M, as the black hole, has the negative temper-
ature TWH = −TBH and the negative area AWH = −ABH. According to the first law in
Equation (98), applied now to the white hole, this gives the negative entropy SWH = −SBH.

Such anti-symmetry between the black and white holes is similar to the anti-symmetry
between the expanding and contracting de Sitter states discussed in Section 7.2.

The discussed transition from the black hole to the white hole with the same mass,
M, is not the thermodynamic transition. It is the quantum process of tunneling between
the two quantum states. It is one of many routes of black hole evaporation, including the
formation of a small white hole in the late stage of decay [171–180]. The uniqueness of this
particular route, the hidden information, and the (anti)symmetry between the black and
white holes are combined to produce the negative entropy of the white hole.

8.6. Black-Hole-to-White-Hole Transition as a Series of Hawking Radiation Co-Tunneling

Let us show that the result (107), where the probability of the quantum tunneling
between the black and white holes is determined by twice the black hole entropy, is
supported by a consideration of the conventional Hawking radiation of particles from
the black hole. The tunneling exponent of radiation can be expressed in terms of the
change in the entropy of the black hole after radiation, p ∝ e∆SBH ; see Refs. [182–185].
This demonstrates that the quantum process of Hawking radiation can be considered as
thermodynamic fluctuation [181].

We consider the process of co-tunneling, in which the particle escapes the black hole
via quantum tunneling, and then this particle tunnels to the white hole through the white
hole horizon (this is the analog to electron tunneling via an intermediate virtual state
in electronic systems [186,187]). This process takes place at the fixed total mass M. The
tunneling exponent needed for this process to occur is e(∆SBH+∆SWH). A summation of all
the processes of the tunneling of matter from the black hole to the formed white hole finally
gives Equation (107):

p ∝ e∑(∆SBH+∆SWH) = e2 ∑ ∆SBH = exp (−2SBH) . (109)

Here, we took into account the (anti)symmetry in the dynamics of black and white
holes in the process of quantum tunneling, ∑ ∆SBH = ∑ ∆SWH.

8.7. Emission of Small Black Holes vs. Hawking Radiation

The principle that macroscopic quantum tunneling can be considered a thermody-
namic fluctuation can also be applied to the process of the creation of pairs of black
holes [188], to the process of the splitting of the black hole into two or several smaller
black holes with the same total mass (see, e.g., Ref. [189]), and to other processes with
macroscopic objects. For example, the probability of the decay of the black hole with mass
M into two black holes with M1 + M2 = M is as follows:

p(M → M1 + M2) ∝ (110)

eSBH(M1)+SBH(M2)−SBH(M1+M2) = e−8πGM1 M2 . (111)

In the particular limit case m = M1 ≪ M2 ≈ M, this channel of the black hole decay
describes the emission of the small black hole with mass m via the large black hole with
mass M:

p(m, M) ∝ exp
(
− m

TBH(M)

)
, m ≪ M . (112)

This shows that the macroscopic tunneling process of the emission of a small black
hole via a large black hole is governed by the same Hawking temperature TBH(M) = 1

8πGM
as the Hawking radiation of a particle, which tunnels across the horizon.
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However, there is a difference. In Equation (112), the quadratic term m2 is neglected.
In a general case, one obtains from Equation (111) the following:

p(m, M − m) ∝ exp (−8 πGm(M − m)) . (113)

This equation demonstrates the effect of a back reaction—the correction to the Hawk-
ing radiation caused by the reduction in the black hole mass after the radiation of a small
black hole. A similar correction due to the back reaction in the process of the radiation of
particles was obtained by Parikh and Wilczek [185] (see also Ref. [182]):

p(ω, M − ω) ∝ exp
(
−8 πGω

(
M − ω

2

))
, (114)

where ω is the energy of the emitted particle. As distinct from Equation (113), for the
emission of a small black hole, Equation (114) contains the factor 1/2. The reason for such
a difference is that, in the case of the emission of a small black hole, the probability of
emission contains the extra term compared to the emission of particles—the entropy of the
emitted black hole, S(m) = 4 πGm2:

p(m, M − m) ∝ exp
(
−8 πGm

(
M − m

2

)
+ 4 πGm2

)
. (115)

As a result, Equation (113) is restored. This also coincides with the result of the
radiation of the self-gravitating shell [190].

Equation (111) can be extended to the emission of several black holes. For example,
the probability of the emission of N black holes with masses m = M/N is as follows:

p(M → mN) ∝ exp
(
−4 πGM2

(
1 − 1

N

))
. (116)

For a large N, this corresponds to the probability of the destruction of the black hole
via an explosion within the particular channel:

pN→∞ ∝ exp(−SBH) . (117)

There are many channels for the destruction of the black hole in quantum tunneling.
The black hole entropy SBH can be estimated using the probability of a black hole explosion
in a single quantum event. Then, Equation (117) suggests that the entropy of the black
hole is determined by the number of possible channels leading to the destruction of the
black hole.

The discussed scenario of the destruction of black holes via an explosion into small-
Planck-scale objects also explains the origin of the negative entropy of the white hole. The
explosion is a rare process in which the entropy is reduced to zero. However, after the
explosion occurs, an even rarer process may follow when the small-Planck-scale objects are
collected back, forming the white hole. The rarity of this process reduces the entropy even
further, which leads to the negative entropy of the formed white hole. This is the reason
why the white hole has negative entropy. The latter is also supported by the consideration
of the super-rare process of quantum tunneling from the black hole to the white hole of the
same mass in Section 8.5. The decrease in the entropy in this super-rare process corresponds
to the loss of the double entropy of the black hole, which results in the negative entropy of
the white hole.

The negative temperature of the white hole is also not very surprising. In general,
the negative absolute temperatures are consistent with equilibrium thermodynamics. All
the thermodynamic properties, such as thermometry, the thermodynamics of cyclic trans-
formations, ensemble equivalence, fluctuation–dissipation relations, response theory, the
transport processes, and symmetry breaking-phase transitions, can be reformulated to
include negative temperatures [191–193].
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9. Conclusions

The starting point of our consideration was that matter immersed in the de Sitter
vacuum perceives this vacuum as a heat bath with the local temperature T = H/π, where
H is the Hubble parameter. This temperature has no relation to the cosmological horizon
or the Hawking radiation from the cosmological horizon. However, it is exactly twice the
Gibbons–Hawking temperature, TGH = H

2π . The reason for such a relation is the specific
symmetry of de Sitter spacetime, which is similar to the invariance under translations in
the Minkowski vacuum.

There are also discrete symmetries that are important in considerations of the ther-
modynamics of de Sitter. The expanding de Sitter universe represents one of the two
degenerate states formed via broken time-reversal symmetry. These states are the expand-
ing de Sitter state and the contracting de Sitter state. These states are obtained from each
other via the time reversal transformation t → −t. Another broken discrete symmetry
corresponds to the reversal of the sign of the scalar curvature, R → −R. This symmetry
operation transforms the de Sitter state into the anti-de Sitter state. This symmetry is spon-
taneously broken by the term linear in R in the the Einstein action,

√−gKR, where the
gravitational coupling K plays the role of the order parameter in this scenario of symmetry
breaking.

The local thermodynamics of the de Sitter state in Einstein gravity gives rise to the
Gibbons–Hawking area law for the total entropy inside the cosmological horizon. We
extended the consideration of local thermodynamics to f (R) gravity and obtained the
same area law but with the modified gravitational coupling K = d f /dR. The agreement
with the traditional global thermodynamics of de Sitter supports the suggestion that the
de Sitter vacuum is the thermal state with the local temperature T = H/π and that
the local thermodynamics is based on the thermodynamically conjugate gravitational
variables K and R. This pair of non-extensive gravitational variables is similar to the
pair of electrodynamic variables, the electric field, E, and the electric induction, D, which
participate in the thermodynamics of dielectrics. The gravitational variables modify the
thermodynamic Gibbs–Duhem relation, due to which the thermal properties of the de Sitter
state become similar to those of Zel’dovich stiff matter and the non-relativistic Fermi liquid.

The local temperature T = H/π leads to the creation of multiple particles even if only
a single electron is introduced to the de Sitter vacuum. This results in the thermal instability
of the de Sitter state towards the formation of matter and to the further thermalization of
this matter via the de Sitter heat bath. The process of the thermalization of matter via the
de Sitter heat bath, which takes place without the effects from the cosmological horizon,
leads to the decay of the vacuum energy density. Distinct from this process, the possibility
of instability in the de Sitter state due to Hawking radiation from the cosmological horizon
is still controversial.

We considered two scenarios of vacuum decay that give two different power laws of
decay. One of them reproduces the result of the Padmanabhan model [122]. The second
one is based on the thermal fluctuations in the de Sitter heat bath. It leads to the reasonable
values of dark energy and dark matter in the present time, and these values are not sensitive
to the initial state of the universe. This scenario suggests the simultaneous solution of three
cosmological constant problems: why the cosmological constant is not large; why the dark
energy is in the order of dark matter; and why they have the present order of magnitude.

Using local thermodynamics with the local temperature T = H/π, we obtained the
connection between the bulk entropy of the Hubble volume and the surface entropy of
the cosmological horizon Shor =

A
4G . This suggests a kind of bulk–surface correspondence

that may have a holographic origin [194–196]. It would be interesting to check this corre-
spondence using the more general extensions of Einstein gravity and also different types of
generalized entropy [93,197–200]. It is important that such a connection takes place only in
3 + 1 spacetime, where there is special symmetry due to which both gravitational variables,
K and R, have the mass dimension of 2, the same as the electrodynamic variables, the
electric field E, and electric induction D. It will be interesting to extend these considerations
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to another system with similar symmetry properties—the Einstein static universe, which
also has a constant curvature.

We also discussed the thermodynamics of de Sitter in the frame of the statistical
ensemble of multi-metric gravities. The heat exchange between different “sub-Universes”
in the ensemble leads to the common de Sitter expansion with the common temperature
T = H/π. The application of local thermodynamics to the entropy of the Schwarzschild
black hole was also considered. We obtained the Bekenstein–Hawking entropy of the black
hole from the negative entropy of the contracting de Sitter core of the gravastar object.
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