
Citation: Guan, W.; Wang, Z.; Xue, L.;

Hou, Y. A Fast Method for the

Off-Boundary Evaluation of Laplace

Layer Potentials by Convolution

Sums. Symmetry 2024, 16, 764.

https://doi.org/10.3390/

sym16060764

Academic Editor: Ioan Ras, a

Received: 17 May 2024

Revised: 8 June 2024

Accepted: 12 June 2024

Published: 18 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Fast Method for the Off-Boundary Evaluation of Laplace Layer
Potentials by Convolution Sums
Wenchao Guan 1 , Zhicheng Wang 2, Leqi Xue 1 and Yueen Hou 2,*

1 School of Computer Science and Engineering, Guangdong Province Key Lab of Computational Science,
Sun Yat-sen University, Guangzhou 510275, China; guanwch3@mail.sysu.edu.cn (W.G.);
xuelq@mail2.sysu.edu.cn (L.X.)

2 Computer School, Jiaying University, Meizhou 514015, China; leemoon14@outlook.com
* Correspondence: houyueen@jyu.edu.cn

Abstract: In off-boundary computations of layer potentials, the near-singularities in integrals near
the boundary presents challenges for conventional quadrature methods in achieving high precision.
Additionally, the significant complexity of O(n2) interactions between n targets and n sources reduces
the efficiency of these methods. A fast and accurate numerical algorithm is presented for computing
the Laplace layer potentials on a circle with a boundary described by a polar curve. This method can
maintain high precision even when evaluating targets located at a close distance from the boundary.
The radial symmetry of the integral kernels simplifies their description. By exploiting the polar form
of the boundary and applying a one-dimensional exponential sum approximation along the radial
direction, an approximation of layer potentials by the convolution sum is obtained. The algorithm uses
FFT convolution to accelerate computation and employs a local quadrature to maintain accuracy for
nearly singular terms. Consequently, it achieves spectral accuracy in regions outside of a sufficiently
small neighborhood of the boundary and requires O(n log n) arithmetic operations. With the help of
this algorithm, layer potentials can be efficiently evaluated on a computational domain.

Keywords: layer potential; nearly singular integrals; numerical integration; approximation by
exponential sums

1. Introduction

The boundary integral equation (BIE) method is attractive for addressing boundary
value problems of partial differential equations (PDEs) like the Laplace equation [1,2],
Helmholtz equation [3], biharmonic equation [4], and other classical elliptic equations in
mathematical physics. It offers a number of numerically attractive properties, including
reducing the dimension of the computational problem by one, enabling boundary-only
discretizations for homogeneous problems, and being well-suited for problems involving in-
finite or semi-infinite domains. Moreover, the BIE method is widely applied in physics and
engineering, including inverse acoustic and electromagnetic scattering problems [3], multi-
media elasticity problems [5], wetting problems [6], Navier–Stokes equations [7,8], etc.

The BIE method seems to have less advantage in accuracy and computational com-
plexity when it recovers the solutions of boundary value problems from the BIE solutions,
requiring the evaluation of layer potentials both near and away from the source layer. This
off-boundary evaluation, particularly with complex boundaries, presents two numerical
challenges: 1. The accuracy of conventional quadrature methods diminishes rapidly as
the target point approaches the boundary due to the near-singularity of boundary inte-
grals. 2. There is significant computing complexity for the O(n2) interactions between n
targets and n sources. To address the computational challenges posed by nearly singular
integrals, many innovative computational methods have been proposed. These meth-
ods include quadrature by expansion [9–12], asymptotic approximation methods [13–15],
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barycentric-type formulas leveraging Cauchy’s integral formula [16,17], singularity swap-
ping methods [18,19], kernel regularization methods [20,21], a method using the Stokes
theorem [22], nonlinear transformation methods [23,24], etc. However, due to the reliance
of computations on target points, most of these methods are rarely developed into fast
methods that are capable of facilitating the evaluation of O(n2) interactions in linear or
quasi-linear (linear up to a logarithmic factor) time. The scheme based on coupling quadra-
ture by expansion and a fast multipole method [25,26] is one such fast algorithm that is
capable of accurately computing layer potentials near boundaries. Nevertheless, in order
to overcome extra geometry refinement, this scheme needs to be carefully designed in cases
for which some parts of the source geometry come so close to other parts that they almost
touch each other [25].

In this paper, we propose a fast and accurate numerical algorithm for computing the
layer potentials for Laplace equations. This method requires only quasi-linear computa-
tional costs and still achieves high precision in regions that exclude a sufficiently small
neighborhood of the boundary. Moreover, it permits discontinuities of layer potentials in
the field across the boundary and is capable of handling cases for which some parts of the
source geometry are close to other parts without too much additional work. Consider the
surface integral operator A : L2(Γ1) → L2(Γ2) defined by

A f (x) :=
∫

Γ1

K(x, y) f (y)dsy, x ∈ Γ2, (1)

where Γ1, Γ2 ⊂ R2 are simple closed curves and are of class C2, f ∈ L2(Γ1) is a density
function, and K is defined and continuous for all x ∈ Γ2, y ∈ Γ1, x ̸= y. Many numerical
applications of boundary integral equation methods require the computation of A f . For
instance, solutions to boundary integral equations are frequently used to evaluate single-
and double-layer potentials for applications in a broad range of simulations in physics and
engineering. In addition, the application of Tikhonov regularization to solve boundary
value problems using potentials with densities on curves different from the actual boundary
of the underlying domain also necessitates the evaluation of A f [1]. For cases wherein Γ1
is a closed polar curve and Γ2 is an origin-centered circle, two algorithm are presented in
this paper. Notice that the integral kernel K for Laplace equations in (1) can be expressed
as a product of a singular part and a finite sum of separable functions. In order to construct
a fast method, we concentrate on approximating the singular part using convolution
sums. Due to the radial symmetry of the singular part, this only requires approximation
along the radial direction. By utilizing the polar form of Γ1, Γ2 and applying exponential
sum approximations to the singular part along the radial direction [27], we derive an
efficient approximation using convolution sums. An error estimate for this approximation
is provided in this paper. Leveraging this efficient approximation, we propose algorithms
for computing the layer potentials for Laplace equations with a computational complexity
of O(n log n) for the evaluation of O(n2) interactions. Currently, there are few fast layer
methods capable of accurately computing potentials near boundaries, among which an
important one is the fast QBX method [25,26]. Our proposed method also efficiently handles
such cases. Unlike the fast QBX, our method does not require handling of the boundary
partition. As noted in the summary of [25], some situations, such as when some parts of
the source geometry come close to other parts, often require extra geometry refinement.
Our method effectively addresses such cases. Moreover, this method accommodates
discontinuities in the field across the boundary, which is a feature that is not commonly
addressed by existing methods.

The structure of this paper is as follows. Section 2 introduces the approximation of A f
by convolution sums and provides an analysis of the approximation error. We then propose
two algorithms based on the approximation. Subsequently, in Section 3, we present some
numerical experiments to examine the performance of the algorithms. Finally, we provide
conclusions about the proposed methods and discuss their drawbacks in Section 4.
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2. Fast Methods for the Evaluation of Layer Potentials

The kernel K of the integral (1) can be expressed as

K(x, y) = ψ(x, y)ϕ
(
|x − y|2

)
. (2)

In the context of certain layer potentials, such as those for the Laplace, biharmonic, and
Stokes equations [1,4,28], the function ψ : Γ2 × Γ1 → C can be represented as a finite sum

of separable functions. Specifically, ψ(x, y) = ∑
Nψ

k=1 ψk(x)ψ̃k(y). Additionally, the function
ϕ : (0, ∞) → R is a logarithmic function satisfying

ϕ(αx) = ϕ(x) + ϕ(α),

or ϕ is homogeneous of γ ∈ R; meaning that for all α > 0,

ϕ(αx) = αγϕ(x),

or ϕ is a linear combination of a logarithmic function, a homogeneous function, and
their products, as is the case for the biharmonic equation [4]. In the case of the Laplace
equation, the kernel for the single-layer potential can be expressed as (2), with ψ(x, y) ≡ 1
and ϕ(x) = − 1

4π log x. Similarly, the kernel for the double-layer potential can also be
represented as (2), with ψ(x, y) = (y − x) · v(y), and ϕ(x) = − 1

2πx , where v(y) is the
unit outer normal vector perpendicular to the curve Γ1 at y. To handle other kernels for
equations like the Helmholtz equation [3,9], the singularity subtraction method is often
used. This involves splitting the kernel into two parts: K1, which has the same leading-order
singularity as K, and a smoother function K − K1, which is easier to integrate numerically.
The singular kernel K1 often has the form (2). In this paper, we focus on the evaluation of
the single- and double-layer potentials for the Laplace equation.

In the subsequent sections of this paper, we suppose that Γ1 in (1) is a boundary of a
star domain and is described by the parametrization

r(t) := (r(t) cos(t), r(t) sin(t)), t ∈ I2π := [0, 2π), (3)

where r is a twice-differentiable, 2π-periodic, positive function defined on R. We suppose
that Γ2 in (1) is a circle with a radius R > 0 defined by

cR(t) := (R cos(t), R sin(t)), t ∈ I2π . (4)

The assumption of polar parameterization is made here to enable the squared distance
function to take a form that closely resembles a convolution, as expressed in (5). This form
of the squared distance function is used to construct the layer potential in the form of
convolution sums, with ϕ approximated by exponential sums. With the parametrizations
(3) and (4), let us define

A f (η) := A f (cR(η)) =
∫

I2π

K(cR(η), r(θ)) f̃ (θ)dθ, η ∈ I2π ,

where f̃ (θ) := f ◦ r(θ)|r′(θ)|, θ ∈ I2π . To ensure clarity, we adopt this definition of A :
L2(Γ1) → L2(I2π) throughout the subsequent discussions. It is important to note that when
Γ1 ∩ Γ2 = ∅, meaning that the targets are distant from the sources, the layer potential A f
is smooth. However, due to the jump relations of the layer potential across the boundary,
when Γ1 ∩ Γ2 ̸= ∅, A f is not smooth. Specifically, in the case of the Laplace single-layer
potential, the derivative of A f is discontinuous at the intersection of Γ1 and Γ2, and in the
case of the Laplace double-layer potential, A f itself is discontinuous at the intersection [1].
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2.1. An Approximation of A f by Convolution Sums

In this subsection, we propose an approximation of A f by convolution sums, which
regularizes A f and is utilized in the development of a fast algorithm in the next subsection.
With the parametrizations (3) and (4), we write the square of the distance function between
the points at Γ1 and Γ2 as

d(η, θ) := |cR(η)− r(θ)|2 = (R − r(θ))2 + 4Rr(θ) sin2
(

η − θ

2

)
. (5)

In order to utilize the exponential sum approximation described in the following content,
we rewrite d(η, θ) as

d(η, θ) = d1,β(η, θ)d2,β(θ),

where

d1,β(η, θ) =
|cR(η)− r(θ)|2

d2,β(θ)
=

(R − r(θ))2

βRr(θ)
+

4
β

sin2
(

η − θ

2

)
, and d2,β(θ) = βRr(θ),

with β > 0 denoting a scale parameter.
For the case of the Laplace single-layer potential, from ψ = 1 and ϕ(x) = − 1

4π log x in
(2), it follows that

A f (η) =
∫

I2π

ϕ ◦ d1,β(η, θ) f̃ (θ)dθ +
∫

I2π

ϕ ◦ d2,β(θ) f̃ (θ)dθ. (6)

According to Appendix A.1, the function ϕ can be approximated by M-term exponential
sums on [1, ∞). This approximation is based on the techniques described in [27] and is
given by

ϕM(x) =
M

∑
k=0

cke−akx − bM, (7)

where ak, bk, ck ∈ R, a0 = log 2, and ak > 0 decreases with respect to k. Selecting an
appropriate β and replacing ϕ in the first term on the right-hand side of (6) with ϕM yields
the approximation for the Laplace single-layer potential:

SM,β f (η) :=
∫

I2π

ϕM ◦ d1,β(η, θ) f̃ (θ)dθ +
∫

I2π

ϕ ◦ d2,β(θ) f̃ (θ)dθ. (8)

The first term on the right-hand side of (8) can be represented as a sum of periodic convolu-
tions, and this approximation is expressed as follows:

SM,β f =
M

∑
k=0

ckµk,β ∗
(

ωk,β f̃
)
+ IM,β f̃ ,

where

µk,β(θ) := e−
ak
β 4 sin2( θ

2 ), ωk,β(θ) := e−
ak
β

(R−r(θ))2

Rr(θ) , (9)

and
IM,β f̃ :=

∫
I2π

(
ϕ ◦ d2,β(θ)− bM

)
f̃ (θ)dθ.

For the case of the Laplace double-layer potential, from ψ(x, y) = (y − x) · v(y) and
ϕ(x) = − 1

2πx , it follows that

A f (η) =
∫

I2π

ϕ ◦ d1,β(η, θ)n(θ) · r(θ) f̃ (θ)/d2,β(θ)dθ (10)

−cR(η) ·
∫

I2π

ϕ ◦ d1,β(η, θ)n(θ) f̃ (θ)/d2,β(θ)dθ,



Symmetry 2024, 16, 764 5 of 23

where n(θ) := v(r(θ)). Here, the function ϕ can be approximated by M-term exponen-
tial sums:

ϕM(x) =
M

∑
k=0

c̃ke−akx, (11)

on [1, ∞), where ak, c̃k are defined in Appendix A.2. Similar to the evaluation method
employed for the Laplace single-layer potential, replacing ϕ in (10) with ϕM gives

DM,β f (η) :=
∫

I2π

ϕM ◦ d1,β(η, θ)n(θ) · r(θ) f̃ (θ)/d2,β(θ)dθ

+cR(η) ·
∫

I2π

ϕM ◦ d1,β(η, θ)n(θ) f̃ (θ)/d2,β(θ)dθ.

The function DM,β f can be rewritten as

DM,β f =
M

∑
k=0

c̃kµk,β ∗
(

ωk,β f̃1

)
− cR ·

M

∑
k=0

c̃kµk,β ∗
(

ωk,β f̃2

)
,

where f̃1 := n · r f̃ /d2,β, f̃2 := n f̃ /d2,β, and µk,β, ωk,β are defined in (9). Notice that in
higher dimensions, the principal singularity of the Laplace layer potential remains radially
symmetric. Therefore, it suffices to work with exponential approximations of ϕ to develop
higher-dimensional convolution approximations.

For convenience, we denote the operator AM,β = SM,β for the Laplace single-layer
potential and AM,β = DM,β for the Laplace double-layer potential. It is noteworthy that
AM,β f exhibits smoothness and approximates A f notably well at points distant from
Γ1. The parameter M controls the accuracy of approximation, while β determines the
distance from Γ1 for approximating A f . Hence, AM,β f serves as regularization for A f and
is governed by the parameters M and β. In Sections 2.3 and 2.4, we propose methods for
computing AM,β f . Preceding that, in the upcoming section, we estimate the error between
AM,β f and A f , which is referred to as the smoothing error in this paper.

2.2. The Smoothing Error

In this section, we estimate the smoothing error ∥A f −AM,β f ∥∞,λ, where ∥g∥∞,λ :=
supx∈Γ2\Γ1,λ

|g(x)| for a piecewise continuous function g defined on Γ2, Γ1,λ := {x : |x −

y| < λ, y ∈ Γ1}, β ∈
(

0, λ2

Rrmax

]
with some λ > 0 in (8), and rmax := maxθ∈I2π

r(θ). In order
to present the smoothing error estimate, we define rmin := minθ∈I2π

r(θ) and introduce the
notation ∥g∥∞,H := supx∈H |g(x)|, H ⊂ [1, ∞), for a continuous function g defined on
[1, ∞). The next two theorems present the smoothing error estimate for the Laplace single-
and double-layer potentials. The proofs of these theorems are in Appendix B.

Theorem 1. In the case of the Laplace single-layer potential, there exist positive constants C1, C2
such that for all λ, R > 0, M ∈ Z+ and f ∈ L2(Γ1), by choosing h = log(4πM)/M and
β ∈

(
0, λ2

Rrmax

]
,

∥A f − SM,β f ∥∞,λ ≤
(

C1ι exp
(
− π2M

log(3ι) log(π2M)

)
+

(
2−s −

(
1 + esinh(log(4πM))

)−s
)

/(4πs log 2) + C2s2−s log(4πM)2/M
)
∥ f ∥1, (12)

where s = λ2/(βRrmax), ι = (R + rmax)2/(βRrmin).
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Theorem 2. In the case of the Laplace double-layer potential, there exist positive constants C1, C2
such that for all λ, R > 0, M ∈ Z+ and f ∈ L2(Γ1), by choosing h = log(4πM)/M and
β ∈

(
0, λ2

Rrmax

]
,

∥A f −DM,β f ∥∞,λ ≤
(

C1 exp
(
− π2M

log(3ι) log(π2M)

)
+

(
2−s −

(
1 + esinh(log(4πM))

)−s
)

/(2πs) + C2s2−s log(4πM)2/M
)

τ∥ f ∥1, (13)

where s = λ2/(βRrmax), ι = (R + rmax)2/(βRrmin), τ = maxx∈I2π
|r′(x)|(1/R + 1/rmin)/β.

Theorems 1 and 2 indicate that the smoothing error of AM,β f decreases exponentially
on Γ2\Γ1,λ as the parameters M and β increase. In these theorems, the selection strategy
of h is based on the Sinc quadrature error estimates from Proposition 2.1 in [27], ensuring
the exponential decay of the smoothing error with M. Notice that the second term on the
right-hand side of (12) and (13) depends on s, and s = λ2/(βRrmax). Selecting a sufficiently
small β ensures this second term becomes negligible. We choose β = λ2/(50Rrmax)
to ensure 2−s = 2−50 ≈ 8.9 × 10−16, nearly reaching double precision relative to the
machine epsilon. Thus, the second term on the right-hand side of (12) and (13) can be
ignored relative to the first term within machine precision. The choice of β also determines
ι = 50(R + rmax)2rmax/(λ2rmin), which increases as λ decreases. Thus, in order to ensure
that the first term on the right-hand side of (12) and (13) is sufficiently small, an appropriate
value of M needs to be found based on ι. Theorem 1 suggests that selecting M = C(log ι) +
(log ι)2 with a positive constant C ensures the smoothing error in cases for which the
single-layer potential remains bounded regardless of ι and λ. In addition, Theorem 2
suggests M = C(log ι) for the double-layer potential. In summary, in this paper, we
select β = λ2/(50Rrmax), M = −Cs(log β) + (log β)2 for the single-layer potential and
M = −Cd(log β) for the double-layer potential, where Cs, Cd > 0 .

2.3. A Method for Computing AM,β f Using FFT Convolution

The function AM,β f , introduced in Section 2.1 for both the single- and double-layer
potential cases, takes the form

AM,β f = C ·
(

M

∑
k=0

wkµk,β ∗
(

ωk,βg
))

+ BM,β, (14)

with C = [1], wk = ck, g = [ f̃ ], BM,β = IM,β f̃ for the Laplace single potential, and C =

[1,−cR], wk = c̃k, g = [ f̃1, f̃2], BM,β = 0 for the Laplace double potential. Notice that AM,β f
consists of a periodic convolution sum. It is well known that applying the FFT convolution
method leads to a fast evaluation of AM,β f .

Denote Zk := {0, 1 . . . , k − 1}, k ∈ Z+. Given n ∈ Z+, the values of r and |r′| on
I2π,n := {2kπ/n : k ∈ Zn}, and the values of the density function on Sn := {r(θk) :
θk ∈ I2π,n}. We now present a fast algorithm for computing the values of AM,β f on
TR,n := {cR(θk) : θk ∈ I2π,n}, with a radius R > 0.

We next present an estimate of the computational costs of Algorithm 1. Let MM,n
denote the number of multiplications used in Algorithm 1.
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Algorithm 1 An algorithm for computing AM,β f using n-point FFT convolution.

Input: M, n ∈ Z+, β, R > 0, a function f on Sn, and r, |r′| defined on I2π,n.
Output: Approximate values of AM,β f on TR,n.

Step 1: Compute the periodic convolution of µk,β ∗
(

ωk,βg
)
(TR,n) using the n-point FFT

method, denoted as Ik,β(TR,n) for k = 0, . . . , M.
Step 2: Compute the integral BM,β using the n-point periodic trapezoidal rule.
Step 3: Compute the approximate values of AM,β f on TR,n by C · ∑M

k=0 wkIk,β(TR,n) + BM,β.

Theorem 3. There exists C > 0 such that for all M, n ∈ Z+,

MM,n ≤ CMn log2 n.

Proof. The number of multiplications used in Step 1 is bounded by O(Mn log2 n). The
number of multiplications used in Step 2 is not greater than the amount of O(n). The
number of multiplications used in Step 3 is bounded by O(Mn). Therefore, we obtain the
O(Mn log2 n) upper bound on the total number of multiplications used in Algorithm 1.

Denote the output of Algorithm 1 as AM,β,FFT f (TR,n). The computational error
A f (TR,n) − AM,β,FFT f (TR,n) comprises both the smoothing error and the error in con-
volution computation. We estimated the smoothing error in Γ2\Γ1,λ in Section 2.2. We turn
to discuss the convolution error. The aliasing error of the discrete Fourier transform and
the truncation error of the Fourier series contribute to the convolution error when using
FFT. The decay rates of the coefficients of the Fourier series of µk,β and ωk,βg determine this
convolution computation error. It is important to note that as β decreases, the decay rates
of µk,β and ωk,βg also decrease, as illustrated in Figure 1, indicating the near-singularity
of the layer potential. This leads to a decrease in the accuracy of computing the convolu-
tion using the n-point FFT. Indeed, when ak/β is large, µk,β(x) ≈ ∑j∈Z Gak/β(x + 2jπ) for
x ∈ R, where Gak/β := exp

(
−akx2/β

)
. According to the Fourier transform of Gak/β, the

jth Fourier coefficient of ∑j∈Z Gak/β(x + 2jπ) is
√

β/(2ak)exp
(
−βj2/(4ak)

)
. Therefore, the

Fourier coefficients of µk,β decay nearly as O
(
exp
(
−βj2/(4ak)

))
.

(a) (b)

Figure 1. The Fourier coefficients of µ0,β and ω0,β. The radius function of the boundary Γ1 is
r(t) = 1 + 0.3 cos(5t), and the target point is located at (0.66, 0.37), which is a distance of 6 × 10−3

from the boundary. Top row: β = 1 × 10−2. Bottom row: β = 1 × 10−4. (a) The Fourier coefficients of
µ0,β. (b) The Fourier coefficients of ω0,β.

2.4. An Improved Method for Computing AM,β f

In order to avoid inaccuracies in the computation of µσ ∗ (ωσg) in (14) using the FFT
convolution method with very small β values, we directly evaluate it using local quadrature
methods. Let g ∈ L1(I2π) and σ ≥ 0. We define the periodic convolution as follows:
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Cσg := µσ ∗ (ωσg),

where

µσ(θ) := e−4σ sin2( θ
2 ), ωk,β(θ) := e−σ

(R−r(θ))2

Rr(θ) , θ ∈ R.

The form (14) can be rewritten as

AM,β f = C ·
(

M

∑
k=0

wkC ak
β

g

)
+ BM,β.

We now address the computation of Cσg with large values of σ. Suppose Cσg can
be accurately computed using the FFT convolution method with σ ≤ σ0 for a suffi-
ciently large σ0. Note that the function µσ exhibits a sharp peak at θ = 0 with a large
σ. Thus, instead of the convolution method, we apply the Gauss quadrature to Cσg. For

the machine epsilon ϵ > 0, we define Cϵ := 2
√

σ arcsin
√

− log ϵ

2
√

σ
≈
√
− log ϵ. This en-

sures µσ(θ) < ϵ for θ ∈ [−π, π]\[−Cϵ/
√

σ, Cϵ/
√

σ]. Here, we set Cϵ = 6 to make µσ

on [−π, π]\[−Cϵ/
√

σ, Cϵ/
√

σ] reach double precision. Neglecting the integral part of
[η − π, η + π]\[η − Cϵ/

√
σ, η + Cϵ/

√
σ] yields

Cσg(η) ≈
∫ η+Cϵ/

√
σ

η−Cϵ/
√

σ
µσ(η − θ)ωσ(θ)g(θ)dθ.

Applying the m-point Gauss quadrature to the above integral, denoted by Cm
σ g(η), provides

an evaluation of Cσg(η). Here, the values of g at the quadrature points can be obtained
by the Fourier interpolation from g(Sn). This process can be accelerated by converting
the Fourier interpolation to B-spline interpolation, allowing for the computation of the m
quadrature points in linear time. We also write Cm

σ g(x), x = cR(η) in place of Cm
σ g(η) for

simplicity. Given a continuous function g and a point x, Cσg(x) decays with respect to σ, as
illustrated in Figure 2a. Figure 2b–d illustrate the relative error of the Gauss–Chebyshev
quadrature against σ with 25, 40, and 55 integral points, respectively. As the number of
integral points increases, the relative error decreases. In addition, the relative error remains
bounded within a certain range of σ, indicating that the absolute error decays with respect
to σ. This demonstrates that Cσg(x) with a large σ can be efficiently computed using the
Gauss quadrature. Furthermore, due to the rapid decay of the integrand with a large σ, we
neglect computing Cm

σ g at the points x in Γ2 such that dist(x, Γ1) > Cϵ
√

Rrmax/σ for the
machine epsilon.

Let Mx ∈ Z satisfy aMx ≤ x < aMx−1 if x ∈ [aM, a0), and Mx = 0 if x ≥ a0. The
Algorithm 2 derived from the above discussion is as follows:

Algorithm 2 An algorithm using the n-point FFT convolution and the m-point Gauss
quadrature.

Input: M, m, n ∈ Z+, β, σ0, R > 0, a function f on Sn, and r, |r′| defined on I2π,n.
Output: Approximate values of AM,β f on TR,n.

Step 1: Compute the periodic convolution of C ak
β

g(TR,n) using the n-point FFT method,

denoted as Ik,β(TR,n), for k = Mβσ0 , . . . , M.
Step 2: Compute Qm

k g(TR,n) by the Gauss quadrature for k = 0, . . . , Mβσ0 − 1, with

Qm
k g(x) = Cm

ak
β

g(x) for x ∈ Tk,β
R,n :=

{
x ∈ TR,n : dist(x, Γ1) ≤ 6

√
Rrmaxβ/ak

}
and Qm

k g(x) =

0 for x ∈ TR,n\Tk,β
R,n.

Step 3: Compute the integral BM,β using the n-point periodic trapezoidal rule.
Step 4: Compute the approximate values of AM,β f on TR,n by

C ·
(

∑M
k=Mβσ0

wkIk,β(TR,n) + ∑
Mβσ0

−1
k=0 wkQm

k g(TR,n)

)
+ BM,β.
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(a) (b)

(c) (d)

Figure 2. The values of µσ ∗ ωσ(0.66, 0.37) and the relative error of the Gauss–Chebyshev quadrature
against σ. The radius function of the boundary Γ1 is r(t) = 1 + 0.3 cos(5t), and the target point is
at a distance of 6 × 10−3 from the boundary. (a) The values of µσ ∗ ωσ(x), x = (0.66, 0.37). (b) The
relative error of the 25-point Gauss quadrature. (c) The relative error of the 40-point Gauss quadrature.
(d) The relative error of the 55-point Gauss quadrature.

To close this section, we present an estimate of the computational costs of Algorithm 2.
Let MQ

M,m,n,βσ0
denote the number of multiplications used in Algorithm 2.

Theorem 4. There exists C > 0 such that for all R, β, σ0 > 0 and M, m, n ∈ Z+,

MQ
M,m,n,βσ0

≤ Cn
(
(M − Mβσ0) log2 n + Mβσ0 ξm

)
,

where ξ ∈ [0, 1] satisfies
∣∣∣Tk,β

R,ℓ

∣∣∣ ≤ ξℓ for all k = 0, . . . , Mβσ0 − 1, ℓ ∈ Z+.

Proof. The number of multiplications used in Step 1 is bounded by O((M − Mβσ0 +
1)n log2 n). The number of multiplications used in Step 2 is not greater than O(Mβσ0 ξmn +
n log2 n). The number of multiplications used in Step 3 is bounded by O(n). The number
of multiplications used in Step 4 is bounded by O((M − Mβσ0 + 1)n + Mβσ0 ξn). Therefore,
we obtain the result.

In the next section, the performances of the periodic trapezoidal rule and Algorithms 1
and 2 are presented. The periodic trapezoidal rule is a straightforward quadrature method
to implement. This quadrature is exponentially accurate for computing real analytic func-
tions [29]. Thus, it has high accuracy in computing layer potentials that are far from
boundaries. However, when computing layer potentials near boundaries, the method con-
verges very slowly due to the near-singularity of the integral. Additionally, its complexity



Symmetry 2024, 16, 764 10 of 23

is O(n2) for computing interactions between n targets and n sources. Theorem 3 indicates
that Algorithm 1 has a complexity of O(n log n). However, as discussed in Section 2.3,
the convolution error for the nearly singular terms leads to inaccuracy near the boundary,
similar to the periodic trapezoidal rule. Algorithm 2 improves the accuracy near the bound-
ary by using the local Gauss quadrature for the nearly singular terms instead of the FFT
convolution method . Moreover, Theorem 4 indicates that Algorithm 2 still maintains a
complexity of O(n log n).

3. Numerical Experiments

In this section, we present illustrative examples demonstrating the performance of
the methods by evaluating layer potentials using the proposed methods. We begin by
presenting the results for double-layer potentials when Γ1 and Γ2 intersect, showing errors
near the intersection points with the periodic trapezoidal rule (PTR) and Algorithms 1
and 2. We then investigate the performance of these algorithms when Γ2 is closed to Γ1.
Finally, we employ these methods as components of an integral equation solver for Laplace
Neumann boundary value problems. MATLAB (R2020a) is used for these implementations.
All test computations are conducted on a PC equipped with a 3.6 GHz AMD Ryzen 5 3600
CPU and 32 GB memory.

The starfish curve of Figure 3a that we use for our numerical experiments is given by

r(t) = (1 + 0.3 cos(5t))
(

cos(t)
sin(t)

)
, (15)

and the limaçon of Figure 3b is given by

r(t) = (10 − (9 + 10−3) cos(t))
(

cos(t)
sin(t)

)
. (16)

In each case, t ∈ I2π .

(a) (b)

Figure 3. Test curves Γ1 (black) and Γ2 (blue). (a) A starfish curve (black) and a unit circle (blue).
(b) A limaçon (black) and a unit circle (blue).

3.1. Double-Layer Potential Evaluation

The experiments with intersecting curves in Figure 3 and curves in close proximity
in Figure 6a examine the performance of the proposed algorithm near the boundary Γ1.
To this end, we employ these methods to compute the double-layer potential D fd with a
source function fd. In order to derive an analytical expression of D fd in the interior and
exterior domains for result verification, we chose fd = 1 on Γ1, and the corresponding
double-layer potential satisfies
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D fd(x) =


− 1, x ∈ Ω,

− 1/2, x ∈ Γ1,

0, x ∈ R2\Ω̄,

where Ω is the domain enclosed by Γ1.
The geometries of the first two examples with the boundaries described by (15) and (16)

are shown in Figure 3. We compute 104 equispaced points on the unit circle by employing
n-point PTR and Algorithms 1 and 2, with n = 104. In Algorithms 1 and 2, we set β =
λ2/(50Rrmax), λ = 10−3, and M =

⌈
−40 log10 β

⌉
according to the analysis in Section 2.2.

Here, the selection of λ ensures the accuracy of the layer potentials at distances greater
than 10−3 from the boundary. In addition, we select m = 55 and σ0 = 105 in Algorithm 2.
The parameter m determines the number of integral points for the local Gauss quadrature
used to handle the nearly singular terms. The relative errors shown in Figure 2 indicate
that m = 55 is an appropriate choice, as the local quadrature error reaches double-precision.
The σ0 sets the range of σ values at which the fast convolution method is employed to
compute Cσg, as discussed in Section 2.4. A larger σ0 means more terms are evaluated
using the FFT convolution method, which can result in a loss of accuracy due to the near
singularity of some convolution terms.

The first example presents the error of computing D fd on a unit circle Γ2 with a starfish
Γ1 in Figure 3a. For simplicity, we write D̃ fd(η), η ∈ R instead of D fd(c1(η)). Figure 4a
shows D̃ fd(η) for η ∈ (0.09π, 0.11π). Note that the double-layer potential has a jump at
η = π/10 since Γ1 and Γ2 intersect. Figure 4b–d illustrate the error of PTR and Algorithms 1
and 2, respectively, with n = 104. Algorithms 1 and 2 use the parameter setting discussed
above. Compared to PTR and Algorithm 1, Algorithm 2 shows higher accuracy near the
intersection point at η = π/10.

(a) (b)

(c) (d)

Figure 4. Double-layer potential evaluation at 104 equispaced points on a unit circle with the starfish
boundary described by (15). (a) The graph of D̃ fd on (0.09π, 0.11π). (b) The 104-point PTR. (c)
Algorithm 1 with n = 104, β = 1.54 × 10−8, M = 312. (d) Algorithm 2 with m = 55, n = 104, β =

1.54 × 10−8, M = 312, σ0 = 105.
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The second example presents the results with a limaçon Γ1 in Figure 3b. The unit
circle is inside the domain Ω except for a small segment near (1, 0). Note that the parts
of limaç near (1, 0) are very close to each other, and some of the targets are inside the
“slit”. Algorithms 1 and 2 use the same parameter settings as the first example. The graph
of D̃ fd on (−π/10, π/10) is shown in Figure 5a. This function is piecewise, with only a
small region centered at 0 with a width of 2 arccos(9/(10 − 0.999)) ≈ 0.03 being 0, while
the remainder is −1 almost everywhere. Figure 5b,c show that the errors of PTR and
Algorithm 1 are significant at the discontinuity points and are also not negligible in the
central region. In comparison, Algorithm 2 computes accurately in the central region,
though the error is still significant at the discontinuity points, as shown in Figure 5d. The
computational results of this method can clearly distinguish the central region, with a
width of only 0.03.

(a) (b)

(c) (d)

Figure 5. Double-layer potentials evaluation at 104 equispaced points on a unit circle with the
limaçon boundary described by (16). (a) The graph of D̃ fd on (−π/10, π/10). (b) A 104-point PTR.
(c) Algorithm 1 with n = 104, β = 1.54 × 10−8, M = 312. (d) Algorithm 2 with m = 55, n = 104,
β = 1.54 × 10−8, M = 312, σ0 = 105.
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We next show the evaluation errors of the proposed methods on a circle of radius R
close to the starfish boundary described by (15). Here, we chose β = (R− rmax)2/(50Rrmax)
in Algorithms 1 and 2, with the selection of other parameters following the same rules
as in the first example. Figure 6a shows two curves Γ1 and Γ2 in this example, which are
at a distance of 10−4 from each other. Figure 6b,c illustrate that the results of PTR and
Algorithm 1 are inaccurate at points near Γ1, whereas Algorithm 2 achieves a precision
of 13 decimal places, as shown in Figure 6d. We denote the distance between Γ1 and Γ2
as dist(Γ1, Γ2). Table 1 presents the ℓ∞ errors on T1.3001,n and the computation time for
computing D̃ fd on a circle with a radius of 1.3001 with different values of n. The errors of
PTR and Algorithm 1 decay slowly, while the error of Algorithm 2 maintains a precision of
13 decimal places. The computing time for Algorithms 1 and 2 grows quasi-linearly as n
increases, whereas the time of PTR grows quadratically.

(a) (b)

(c) (d)

Figure 6. Double-layer potential evaluations at 104 equispaced points on a circle located at a distance
of 10−4 from the starfish boundary described by (15). (a) A starfish curve (black) and a circle of
radius 1.3001 (blue). (b) A 104-point PTR. (c) Algorithm 1 with n = 104, β = 1.18 × 10−10, M = 397.
(d) Algorithm 2 with m = 55, n = 104, β = 1.18 × 10−10, M = 397, σ0 = 105.
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Table 1. The ℓ∞ errors of the Laplace double-layer potential evaluated on T1.3001,n and the computa-
tion time, where n varies from 104 to 8 × 104, and dist(Γ1, Γ2) = 10−4.

ℓ∞ Error Time (s)

n PTR Algorithm 1 Algorithm 2 PTR Algorithm 1 Algorithm 2

1 × 104 8.6 × 10−1 8.6 × 10−1 8.2 × 10−13 7.5 0.6 1.5
2 × 104 2.7 × 10−1 2.7 × 10−1 8.4 × 10−13 22.3 1.5 2.9
4 × 104 4.8 × 10−2 4.8 × 10−2 9.5 × 10−13 75.2 2.8 5.7
8 × 104 2.1 × 10−3 2.1 × 10−3 9.3 × 10−13 259.5 7.0 12.1

Table 2 shows the ℓ∞ errors on TR,104 with dist(Γ1, Γ2) varying from 10−1 to 10−4,
confirming that the proposed parameter selection for Algorithm 2 ensures the errors remain
bounded regardless of dist(Γ1, Γ2), as discussed in Section 2.2.

Table 2. The ℓ∞ errors in computing the Laplace double-layer potentials on TR,104 , where R varies
from 1.4 to 1.3001, and dist(Γ1, Γ2) varies from 10−1 to 10−4.

ℓ∞ Error

dist(Γ1, Γ2) PTR Algorithm 1 Algorithm 2

10−1 3.0 × 10−15 6.7 × 10−14 6.7 × 10−14

10−2 6.5 × 10−15 1.1 × 10−12 1.1 × 10−12

10−3 4.7 × 10−4 4.7 × 10−4 6.6 × 10−13

10−4 8.6 × 10−1 8.6 × 10−1 8.2 × 10−13

3.2. Integral Equation Solvers

In this section, we examine the proposed methods in the context of solving integral
equations of the second kind. A numerical experiment of the exterior Neumann boundary
value problems for the Laplace equation is conducted. Let Ω ⊂ R2 be the bounded open
domain, with boundary Γ1 described by (15), and let uex(x) := (x1 − 0.1)/|x− (0.1, 0.4)|2 be
the solution, where x ∈ R2\Ω. We use the single-layer potential representation uex = Sφ [1].
Here, φ ∈ C(Γ1) satisfies (

−1
2
+D′

)
φ =

∂uex

∂v
,

where

(D′φ)(x) :=
∫

Γ1

∂K(x, y)
∂v(x)

φ(y)dsy, x ∈ Γ1.

In order to obtain the potential density function f , we solve the BIEs using the Fourier
Galerkin method described in [2]. The tested methods are employed to compute Sφ on
T\Ω, where

T :=
{

x : x ∈ TRk ,256, Rk = 0.7 + 0.01k, k = 0, . . . , 90
}

,

The first column of Figure 7 shows the absolute error of the PTR with 256 points. The
last two columns of Figure 7 illustrated the absolute error of Algorithms 1 and 2. Here,
E∞ in Figure 7 denotes the ℓ∞ error of the evaluations on T\Ω. Algorithms 1 and 2
are employed with n = 256, β = λ2/(50Rrmax), λ = max{R − rmax, 10−6}, and M =⌈
−28 log10 β + log2

10 β
⌉

. In addition, we select m = 55 and σ0 = 100 for Algorithm 2.
Figure 7 illustrates that Algorithm 2 achieves a precision of nine digits in evaluating the
single-layer potential, even for target points near the boundary with a distance of 1.4× 10−5.
Conversely, both the PTR and Algorithm 1 exhibit inaccuracies close to the boundary.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Absolute errors of computing single-layer potentials at targets on T\Ω with a minimum
distance of 1.4 × 10−5 from the exterior Laplace Neumann BVPs. The first column shows the errors of
the 256-point PTR. The last two columns present the errors of Algorithms 1 and 2 using the proposed
parameter selection scheme with n = 256, λ = max{R − rmax, 10−6}, m = 55, and σ0 = 100. The
bottom row shows the errors relative to the points parameterized by angle η and radius R. (a) PTR:
E∞ = 6.4 × 10−2. (b) Algorithm 1: E∞ = 6.4 × 10−2. (c) Algorithm 2: E∞ = 1.4 × 10−9. (d) PTR.
(e) Algorithm 1. (f) Algorithm 2.

4. Conclusions

In this paper, we introduce a convolution sum approximation of layer potentials and
provide an approximation error analysis. A parameter selection scheme for the approxima-
tion is proposed in Section 2.2 to ensure high approximating accuracy outside a sufficiently
small neighborhood of the boundary. Then two fast methods using convolution sums are
presented for the evaluation of layer potentials in this paper. Due to the nearly singular
convolution terms, Algorithm 1 exhibits inaccuracies near the boundary similar to PTR, as
shown in the experiments in Section 3. Algorithm 2, which still maintains a complexity of
O(n log n), improves the accuracy of the evaluation near the boundary via computing the
nearly singular convolution terms by the Gauss quadrature.

The improved method offers several advantages: Firstly, this approach leverages
periodic convolution sums to approximate layer potentials on a circle, enabling fast compu-
tation compared to traditional methods. This technique significantly reduces computational
time. In the meantime, a local quadrature is applied to the nearly singular convolution
terms in order to maintain the algorithm’s accuracy near the boundary. Secondly, the
algorithm allows for handling discontinuities in the field across the boundary, which is a
feature that is not commonly addressed by existing methods. Lastly, our method is capable
of handling scenarios where parts of the source geometry almost touch each other. This
robustness is achieved without requiring much additional work, making the algorithm
practical and efficient in real-world applications.

On the one hand, the algorithms proposed in this paper allow for fast off-boundary
computation of layer potentials while accommodating discontinuities in the potential across
the boundary. On the other hand, applications to practical problems when restricted to
either the exterior or interior may result in redundant computations. Additionally, the
assumption of a polar boundary limits the algorithm’s applicability to practical scenarios.
Nevertheless, this method still presents an opportunity to accelerate the evaluation of
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integral operators with logarithmic or power-law singularities and to develop algorithms
for higher dimensions.
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Appendix A. Approximation by Exponential Sums

In this section, we introduce the exponential sums associated with logarithmic and
inverse functions by using the technique in [27]. Following that, we provide corresponding
error estimates.

Appendix A.1. Logarithmic Function

In this subsection, we consider using the exponential sum to approximate the loga-
rithmic function ϕ(x) = − 1

4π log(x). This approach is based on the techniques described
in [27]. The logarithmic function has the exponential integral form

ϕ(x) = − 1
4π

∫ x

1

1
t

dt = − 1
4π

∫ x

1

∫ ∞

0
e−ρtdρdt = − 1

4π

∫ ∞

0

∫ x

1
e−ρtdtdρ, (A1)

for x ≥ 1. Since ∫ x

1
e−ρtdt =

1
ρ
(e−ρ − e−ρx), (A2)

substituting (A2) into the right-hand side of (A1) implies that

ϕ(x) =
1

4π

∫ ∞

0

1
ρ
(e−ρx − e−ρ)dρ.

Applying a substitution of ρ = log(1 + eξ) yields

ϕ(x) =
∫ +∞

−∞
f1(ξ, x)dξ, x ≥ 1, (A3)

where

f1(ξ, x) :=
1

4π

e−x log(1+eξ ) − e− log(1+eξ )

(1 + e−ξ) log(1 + eξ)
.

By substituting ξ = sinh(t) into (A3), the integrand changes into

f2(t, x) := cosh(t) f1(sinh(t), x).
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We then use the truncated Sinc quadrature rules [29,30] for computing the integral as follow

Th,M( f2)(x) := h
M

∑
ℓ=−M

f2(ℓh, x). (A4)

In the numerical examples of this paper, we truncate the sum (A4) and approximate the
integral (A3) by

T̃h,M( f2)(x) := h
0

∑
ℓ=−M

f̃2(ℓh, x)− h
M

∑
ℓ=−M

f̃2(ℓh, 1)

= h
M

∑
k=0

f̃2(−kh, x)− bM =
M

∑
k=0

cke−akx − bM, (A5)

where

f̃2(t, x) :=
1

4π

e−x log(1+esinh(t)) cosh(t)
(1 + e− sinh(t)) log(1 + esinh(t))

, ak := log
(

1 + e− sinh(kh)
)

,

and

bM :=
M

∑
k=−M

cke−ak , ck :=
h cosh(kh)

4π(1 + esinh(kh)) log(1 + e− sinh(kh))
.

Remark A1. There is precision loss in the evaluation of log(1 + exp(− sinh(kh))) in ak, ck when
kh is large. In such cases, using its Taylor series for computation can provide better accuracy.

Appendix A.2. Function 1/x

When ϕ(x) = − 1
2πx , we introduce the corresponding exponential sums in [2]. Con-

sider the Laplace integral transform

ϕ(x) = − 1
2πx

= − 1
2π

∫ ∞

0
e−xtdt.

By applying substitutions of t = log(1 + eρ), ρ = sinh(ξ), we have

ϕ(x) =
∫ +∞

−∞
f3(ξ, x)dξ, x ≥ 1, (A6)

where

f3(ξ, x) := cosh(ξ) f4(sinh(ξ), x), f4(ρ, x) := − 1
2π

e−x log(1+eρ)

1 + e−ρ .

Use the truncated Sinc quadrature, we have

Th,M( f3)(x) := h
M

∑
k=−M

f3(kh, x), (A7)

and in this paper, we compute (A6) as

T̃h,M( f3)(x) := h
0

∑
ℓ=−M

f3(ℓh, x) = h
M

∑
k=0

f3(−kh, x) =
M

∑
k=0

c̃ke−akx, (A8)

where

ak = log
(

1 + e− sinh(kh)
)

, c̃k =
h cosh(kh)

1 + esinh(kh)
.
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Remark A2. The function ϕ(x) = cx−α for c, α > 0 can also be approximated by exponential
sums (see [27]).

Appendix A.3. Error Estimates

In this subsection, we provide an error estimate for the M-term approximation of the
exponential sums discussed in the preceding two subsections. To this end, we first estimate
the truncated error between Th,M( fk) and T̃h,M( fk) for k = 2, 3, which represent the cases
for ϕ(x) = log(x) and ϕ(x) = x−1, respectively. We provide a lemma for estimating the
error for the case of ϕ(x) = (−2πx)−1 for x ≥ s ≥ 1.

Lemma A1 (Function (−2πx)−1). There exists a positive constant C such that for all M ∈ Z+,
s ≥ 1 and h > 0,∥∥∥Th,M( f3)− T̃h,M( f3)

∥∥∥
∞,[s,∞)

≤
(

2−s −
(

1 + esinh(Mh)
)−s

)
/(2πs) + Cs2−s Mh2.

Proof. Since ∥∥∥Th,M( f3)− T̃h,M( f3)
∥∥∥

∞,[s,∞)
=

∥∥∥∥∥h
M

∑
ℓ=1

f3(ℓh, ·)
∥∥∥∥∥

∞,[s,∞)

, (A9)

it suffices to estimate the upper bound of
∥∥∥h ∑M

ℓ=1 f3(ℓh, ·)
∥∥∥

∞,[s,∞)
. According to the triangle

inequality, we have∥∥∥∥∥h
M

∑
ℓ=1

f3(ℓh, ·)
∥∥∥∥∥

∞,[s,∞)

≤
∥∥∥∥∥h

M

∑
ℓ=1

f3(ℓh, ·)−
∫ Mh

0
f3(ξ, ·)dξ

∥∥∥∥∥
∞,[s,∞)

+

∥∥∥∥∫ Mh

0
f3(ξ, ·)dξ

∥∥∥∥
∞,[s,∞)

. (A10)

The error estimate of the right rectangle rule implies that for all x ∈ [s, ∞),∣∣∣∣∣h M

∑
ℓ=1

f3(ℓh, x)−
∫ Mh

0
f3(ξ, x)dξ

∣∣∣∣∣ ≤ Mh2

2
max

ξ∈[0,Mh]

∣∣∣∣∂ f3

∂ξ
(ξ, x)

∣∣∣∣. (A11)

Since it can be derived that there exists a positive constant C such that for all s ≥ 1

max
(ξ,x)∈[0,Mh]×[s,∞)

∣∣∣∣∂ f3

∂ξ
(ξ, x)

∣∣∣∣ ≤ Cs2−(s−1), (A12)

it follows from (A11) and (A12) that∥∥∥∥∥h
M

∑
ℓ=1

f3(ℓh, ·)−
∫ Mh

0
f3(ξ, ·)dξ

∥∥∥∥∥
∞,[s,∞)

≤ Cs2−s Mh2. (A13)

Note that∥∥∥∥∫ Mh

0
f3(ξ, ·)dξ

∥∥∥∥
∞,[s,∞)

≤ 1
2π

∫ Mh

log 2
e−stdt =

(
2−s −

(
1 + esinh(Mh)

)−s
)

/(2πs). (A14)

Combining (A9), (A10), (A13) and (A14) leads to the result.

Similarly, we can derive the error estimate for the case when ϕ(x) = 1
4π log(x) for

x ≥ s.

Lemma A2 (Logarithmic Function). There exists a positive constant C such that for all M ∈ Z+,
s ≥ 1 and h > 0,∥∥∥Th,M( f2)− T̃h,M( f2)

∥∥∥
∞,[s,∞)

≤
(

2−s −
(

1 + esinh(Mh)
)−s

)
/(4πs log 2) + Cs2−s Mh2.
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Proof. Note that ∥∥∥Th,M( f2)− T̃h,M( f2)
∥∥∥

∞,[s,∞)
=

∥∥∥∥∥h
M

∑
ℓ=1

f̃2(ℓh, ·)
∥∥∥∥∥

∞,[s,∞)

. (A15)

It suffices to bound the right-hand side of (A15). According to the triangle inequality, we
have∥∥∥∥∥h

M

∑
ℓ=1

f̃2(ℓh, ·)
∥∥∥∥∥

∞,[s,∞)

≤
∥∥∥∥∥h

M

∑
ℓ=1

f̃2(ℓh, ·)−
∫ Mh

0
f̃2(ξ, ·)dξ

∥∥∥∥∥
∞,[s,∞)

+

∥∥∥∥∫ Mh

0
f̃2(ξ, ·)dξ

∥∥∥∥
∞,[s,∞)

. (A16)

Similar to the proof of Lemma A1, it can be demonstrated that there exists a positive
constant C such that for all M ∈ Z+, s ≥ 1 and h > 0,∥∥∥∥∥h

M

∑
ℓ=1

f̃2(ℓh, ·)−
∫ Mh

0
f̃2(ξ, ·)dξ

∥∥∥∥∥
∞,[s,∞)

≤ Cs2−s Mh2. (A17)

From ∥∥∥∥∫ Mh

0
f̃2(ξ, ·)dξ

∥∥∥∥
∞,[s,∞)

≤ 1
4π

∫ Mh

log 2
e−st/tdt ≤ 1

4π

∫ Mh

log 2
e−stdt/ log 2

and (A14), it follows that∥∥∥∥∫ Mh

0
f̃2(ξ, ·)dξ

∥∥∥∥
∞,[s,∞)

≤
(

2−s −
(

1 + esinh(Mh)
)−s

)
/(4πs log 2). (A18)

Combining (A16)–(A18) leads to the result.

We restate an estimate for
∥∥Th,M( f3)− ϕ

∥∥
∞,[1,ι] with ϕ(x) = x−1 and ι > 1, as pre-

sented in Lemma 4.3 in [27].

Lemma A3 (Hackbusch, Khoromskij). Let ϕ(x) = (−2πx)−1. There exists a positive constant
C such that for all ι > 1 and M ∈ Z+, by choosing h = log(4πM)/M,

∥∥Th,M( f3)− ϕ
∥∥

∞,[1,ι] ≤ C exp
(
− π2M

log(3ι) log(π2M)

)
.

For convenience, denote

ν(z) :=
ez − 1 − z

z
,

on C and introduce a ≲ b to mean a ≤ Cb for some positive constant C and a, b ∈ R. We
next present an estimate of

∥∥Th,M( f2)− ϕ
∥∥

∞,[1,ι] for ϕ(x) = − 1
2π log x and ι > 1.

Lemma A4. Let ϕ(x) = − 1
2π log x. There exists a positive constant C such that for all ι > 1 and

M ∈ Z+, by choosing h = log(4πM)/M,

∥∥Th,M( f2)− ϕ
∥∥

∞,[1,ι] ≤ Cι exp
(
− π2M

log(3ι) log(π2M)

)
. (A19)

Proof. Let Dδ := {z ∈ C : |ℑmz| ≤ δ} with δ ≤ 0.93 < π
2 . Since

f2(z, x) =
cosh z(−x + 1 − xν(−x log(1 + exp(sinh(z)))) + ν(− log(1 + exp(sinh(z)))))

4π(1 + exp(sinh(z))
,

ν is analytic on C, and the zeros of 1 + exp(sinh(z)) are outside of Dδ, the function f2(·, x)
is analytic in Dδ, with x ≥ 1.
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To utilize Lemma 4.3 from [27] for the proof of this lemma, it is necessary to establish
the following inequalities:

| f2(z, x)| ≤ 1
2π log 2

(∣∣∣∣∣cosh(z)e−x log(1+exp(sinh(z)))

1 + exp(− sinh(z))

∣∣∣∣∣+
∣∣∣∣∣cosh(z)e− log(1+exp(sinh(z)))

1 + exp(− sinh(z))

∣∣∣∣∣
)

, (A20)

for all z ∈ Dδ,ℜez ≥ 0, x ≥ 1, and

| f2(z, x)| ≤ 3.33(x + 1)
4π

∣∣∣∣ cosh(z)
1 + exp(− sinh(z))

∣∣∣∣, (A21)

for all z ∈ Dδ,ℜez < 0, x ≥ 1.
Firstly, we prove

| log(1 + exp(sinh(z)))|−1 ≤
(

log
√

2
)−1

(A22)

for all z ∈ Dδ,ℜez ≥ 0. In the case of z ∈ Dδ,ℜez > x1(δ) := arsinh(1/ cos δ), we have
ℜe(sinh(z)) = sinh(ℜez) cos(ℑmz) > cos(ℑmz)/ cos δ ≥ 1. It follows that

| log(1 + exp(sinh(z)))| ≥ ℜe(log(1 + exp(sinh(z))))

≥ log(1 + 2 exp(ℜe sinh z) cos(ℑm sinh z) + exp(2ℜe sinh z))/2

≥ log(exp(ℜe sinh z)− 1) ≥ log(e − 1) ≥ log
√

2.

Thus, the inequality (A22) holds. In the case of z ∈ Dδ, 0 ≤ ℜez ≤ x1(δ), we have
sinh(ℜez) ≤ 1/ cos δ, which leads to

ℑm sinh z = cosh(ℜez) sin(ℑmz) ≤
√

1 + cos2 δ tan δ.

The restriction 0 < δ ≤ 0.93 guarantees |ℑm sinh z| < π/2. Additionally, the inequalities
ℜez ≥ 0 and |ℑmz| < δ < π/2 imply

ℜe(sinh(z)) = sinh(ℜez) cos(ℑmz) > 0.

Thus, it follows that

| log(1 + exp(sinh(z)))| ≥ log(1 + 2 exp(ℜe sinh z) cos(ℑm sinh z) + exp(2ℜe sinh z))/2

> log(1 + exp(2ℜe sinh z))/2 > log
√

2.

The above inequality implies (A22). We finish the proof of (A22) for all z ∈ Dδ,ℜez ≥ 0.
From (A22) and the triangle inequality, we obtain (A20). Applying Lemma 4.3 in [27]
to (A20) leads to

| f2(z, x)| ≲ exp
(
ℜez − cos 0.93

2
exp(ℜez)

)
(A23)

for z ∈ Dδ,ℜez ≥ 0, and x ∈ [1, ι]. This bound of f2(z, x) is independent of x and decays
double-exponentially.

Secondly, we prove∣∣∣∣∣ e−x log(1+exp(sinh(z))) − e− log(1+exp(sinh(z)))

log(1 + exp(sinh(z)))

∣∣∣∣∣ ≤ 3.33(x + 1) (A24)

for all z ∈ Dδ,ℜez < 0, x ≥ 1. In the case of z ∈ Dδ, x0(x) < ℜez < 0, x ≥ 1, where x0 is
defined by (4.5) in [27], we have

ℜe(−x log(1 + exp(sinh(z)))) < 0 (A25)
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according to proof (d) of Lemma 4.3 in [27]. In the case of z ∈ Dδ,ℜez ≤ x0(x), x ≥ 1,
according to proof (e) of Lemma 4.3 in [27], we have

ℜe(−x log(1 + exp(sinh(z)))) ≤ log 3
2

. (A26)

We conclude that for all z ∈ Dδ,ℜez < 0, x ≥ 1, the inequality (A26) holds. Consider the
upper bound of |ν| for ℜez ≤ log 3

2 . We have |ν(z)| ≤ ν(R0) for |z| ≤ R0. In the case of

|z| ≥ R0 and ℜez ≤ log 3
2 , it follows that |ν(z)| ≤

(
eℜez + 1

)
/R0 + 1 ≤

(
e

log 3
2 + 1

)
/R0 + 1.

We choose R0 as the zero of
(

e
log 3

2 + 1
)

/R0 + 1 = ν(R0) and |ν(z)| ≤ ν(R0) ≤ 2.33 for all

ℜe(z) ≤ log 3
2 . Thus, the inequality (A26) implies that

|ν(−x log(1 + exp(sinh(z))))| ≤ 2.33, (A27)

for z ∈ Dδ,ℜez < 0, x ≥ 1. Combining (A27) and∣∣∣∣∣ e−x log(1+exp(sinh(z))) − e− log(1+exp(sinh(z)))

log(1 + exp(sinh(z)))

∣∣∣∣∣
≤ 1 + x + x|ν(−x log(1 + exp(sinh(z)))|+ |ν(− log(1 + exp(sinh(z)))|

leads to (A24) for z ∈ Dδ,ℜez < 0, x ≥ 1. Inequality (A24) implies (A21). According
to (A21) and the bound of

∣∣∣ cosh(z)
1+exp(− sinh(z))

∣∣∣ in proof (d)(e) of Lemma 4.3 in [27], it can be
obtained that

| f2(z, x)| ≲ ι exp
(
|ℜez| − cos 0.93

2
exp(|ℜez|)

)
(A28)

for z ∈ Dδ,ℜez < 0, and x ∈ [1, ι]. By (A23) and (A28), we conclude that (A28) holds
for z ∈ Dδ and x ∈ [1, ι]. Therefore, according to Proposition 2.1 in [27], the choice
a = 1, b = 1/2, δ = δ(x) defined by (4.5) in [27] leads to (A19).

Appendix B. The Proofs of the Smoothing Error Estimate Theorems

In this appendix, we give the proofs of Theorems 1 and 2.

Proof of Theorem 1. Let Iλ ⊂ I2π satisfy {r(η) : η ∈ Iλ} = Γ2\Γ1,λ. The definition (5) of d
implies d(η, θ) ∈ [λ2, (R + rmax)2] for all Iλ × I2π . Thus, d1,β(η, θ) = d(η, θ)/d2,β(θ) ∈ [s, ι].
For the single-layer potential A f , we have

∥A f − SM,β f ∥∞,λ =

∥∥∥∥∫I2π

(
ϕ − T̃h,M( f2)

)
◦ d1,β(η, θ) f̃ (θ)dθ

∥∥∥∥
∞,Iλ

≤
∥∥∥ϕ − T̃h,M( f2)

∥∥∥
∞,[s,ι]

∥∥ f̃
∥∥

1 =
∥∥∥ϕ − T̃h,M( f2)

∥∥∥
∞,[s,ι]

∥ f ∥1, (A29)

where T̃h,M( f2) is defined by (A5). Since∥∥∥ϕ − T̃h,M( f2)
∥∥∥

∞,[s,ι]
≤
∥∥ϕ − Th,M( f2)

∥∥
∞,[s,ι] +

∥∥∥Th,M( f2)− T̃h,M( f2)
∥∥∥

∞,[s,ι]
, (A30)

where Th,M( f2) is defined by (A4), it remains to estimate
∥∥ϕ − Th,M( f2)

∥∥
∞,[s,ι] and∥∥∥Th,M( f2)− T̃h,M( f2)

∥∥∥
∞,[s,ι]

. Lemma A4 ensures that there exists a positive constant C1

independent of M, h, s, ι such that

∥∥ϕ − Th,M( f2)
∥∥

∞,[s,ι] ≤
∥∥ϕ − Th,M( f2)

∥∥
∞,[1,ι] ≤ C1ι exp

(
− π2M

log(3ι) log(π2M)

)
(A31)
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with h = log(4πM)/M. Lemma A2 implies that there exists a positive constant C2 inde-
pendent of M, h, s, ι such that∥∥∥Th,M( f2)− T̃h,M( f2)

∥∥∥
∞,[s,ι)

≤
∥∥∥Th,M( f2)− T̃h,M( f2)

∥∥∥
∞,[s,∞)

≤
(

2−s −
(

1 + esinh(log(4πM))
)−s

)
/(4πs log 2) + C2s2−s log(4πM)2/M. (A32)

Combining (A29)–(A32) leads to (12).

Proof of Theorem 2. Recall that Iλ ⊂ I2π satisfies {r(η) : η ∈ Iλ} = Γ2\Γ1,λ. Then
d(η, θ) ∈ [λ2, (R + rmax)2] for all Iλ × I2π , and d1,β(η, θ) ∈ [s, ι]. For the double-layer
potential A f , employing the definition (A8) of T̃h,M( f3) and the Cauchy–Schwarz inequal-
ity yields

∥A f −DM,β f ∥∞,λ ≤
∥∥∥∥∫I2π

(
ϕ − T̃h,M( f3)

)
◦ d1,β(η, θ) f̃1(θ)dθ

∥∥∥∥
∞,Iλ

+

∥∥∥∥∫I2π

(
ϕ − T̃h,M( f3)

)
◦ d1,β(η, θ) f̃2(η, θ)dθ

∥∥∥∥
∞,Iλ

≤
∥∥∥ϕ − T̃h,M( f3)

∥∥∥
∞,[s,ι]

maxx∈I2π
|r′(x)|

β

(
1
R
+

1
rmin

)
∥ f ∥1, (A33)

where f̃1 = r′ · r f̃ /d2,β, f̃2(η, θ) = r′(θ) · cR(η) f̃ (θ)/d2,β(θ). Since∥∥∥ϕ − T̃h,M( f3)
∥∥∥

∞,[s,ι]
≤
∥∥ϕ − Th,M( f3)

∥∥
∞,[s,ι] +

∥∥∥Th,M( f3)− T̃h,M( f3)
∥∥∥

∞,[s,ι]
, (A34)

where Th,M( f3) is defined by (A7), it remains to estimate
∥∥ϕ − Th,M( f3)

∥∥
∞,[s,ι] and∥∥∥Th,M( f3)− T̃h,M( f3)

∥∥∥
∞,[s,ι]

. Lemma A3 ensures that there exists a positive constant C1

independent of M, h, s, ι such that

∥∥ϕ − Th,M( f3)
∥∥

∞,[s,ι] ≤ C1 exp
(
− π2M

log(3ι) log(π2M)

)
(A35)

with h = log(4πM)/M. Lemma A1 implies that there exists a positive constant C2 inde-
pendent of M, h, s, ι such that∥∥∥Th,M( f3)− T̃h,M( f3)

∥∥∥
∞,[s,ι)

≤
∥∥∥Th,M( f3)− T̃h,M( f3)

∥∥∥
∞,[s,∞)

≤
(

2−s −
(

1 + esinh(log(4πM))
)−s

)
/(2πs) + C2s2−s log(4πM)2/M. (A36)

Combining (A33)–(A36) leads to (13).
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