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Vesna Borka Jovanović
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Abstract: The diagonals–parameter symmetry (DPS) model is a proposed method for analyzing
square contingency tables with ordinal categories. Previously, it was stated that the generalized DPS
(DPS[ f ]) model was equivalent to the DPS model for any function f , but the proof was not provided.
This paper presents the derivation of the DPS[ f ] model and the proof of the relationship between the
two models. The findings offer various interpretations of the DPS model. Additionally, a new model
is considered, and it is shown that the proposed model and the DPS[ f ] model are separable.
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1. Introduction

A contingency table with identical categories for rows and columns can be produced
when a categorical variable is repeatedly measured. Observations in this type of table tend
to concentrate on the cells along the main diagonal. Our research focuses on applying
symmetry instead of assuming independence between row and column categories. Several
studies have addressed symmetry issues, such as [1–9].

Let X and Y represent the row and column variables for an r × r contingency table
with ordinal categories. Additionally, let πij represent the probability of an observation
falling into the (i, j)th cell, where i = 1, . . . , r and j = 1, . . . , r. The diagonals–parameter
symmetry (DPS) model proposed by Goodman [10] is defined as follows.

πij =

{
dkψij (i < j),
ψij (i ≥ j),

(1)

where ψij = ψji and k = j − i. The parameter dk in the DPS model represents the odds
of an observation falling into cells (i, j) where j − i = k and i < j, rather than cells (j, i)
for k = 1, . . . , r − 1. Moreover, the ratio between πij and πji can be expressed as the
constant dk for j − i = k and i < j. This ratio depends solely on the distance from the main
diagonal cells.

When d1 = d2 = · · · = dr−1 = 1 in Equation (1), the DPS model reduces to the
symmetry (S) model proposed by Bowker [1]. When dk is independent of i and j in
Equation (1), with d1 = · · · = dr−1, the DPS model reduces to the conditional symmetry
(CS) model proposed by McCullagh [11].

Using the f -divergence, Kateri and Papaioannou [2] proposed the generalized DPS
(DPS[ f ]) model, defined as

πij = πS
ijF

−1(∆k + ζij) (i = 1, . . . , r; j = 1, . . . , r), (2)

where k = i − j, πS
ij = (πij + πji)/2, ζij = ζ ji and ∆k + ∆−k = 0. It should be noted

that the function f is twice-differentiable and strictly convex. Additionally, F(t) = f ′(t),
f (1) = 0, f (0) = limt→0 f (t), 0 · f (0/0) = 0, and 0 · f (a/0) = a limt→∞[ f (t)/t]. The model
derivation is not included in their paper. They did mention that the DPS model is the
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closest to symmetry regarding the Kullback–Leibler distance under some conditions and
that the DPS[ f ] model is equivalent to the DPS model. In this study, we will derive the
DPS[ f ] model and provide proof of the relation between the two models. We can obtain
various interpretations of the DPS model from the result. We discuss the necessary and
sufficient condition for the S model and the property between test statistics for goodness
of fit.

The paper is organized as follows: Section 2 derives Equation (2) and interprets the
model from an information theory viewpoint. The proof is given that the DPS[ f ] model is
equivalent to the DPS model regardless of the function f . Section 3 considers a new model
and proves that the proposed model and the DPS[ f ] model are separable. A numerical
example is provided in Section 4. Finally, Section 5 summarizes the paper.

2. Properties of the DPS[ f ] Model

Kateri and Papaioannou [2] noted that the DPS[ f ] model is the closest model to
the S model in terms of the f -divergence under the conditions where ∑ ∑j−i=kπij (and
∑ ∑i−j=kπij) for k=1, . . . , r − 1 and the sums πij + πji for i, j = 1, . . . , r are given. Similar
research has been conducted in, for example, Ireland et al. [12], Kateri and Agresti [3], and
Tahata [5]. This section derives the DPS[ f ] model and describes its properties.

We can obtain the following theorem, although the proof of Theorem 1 is given in
Appendix A.1.

Theorem 1. In the class of models with given ∑ ∑i−j=k πij, k ̸= 0, and πij + πji (i =
1, . . . , r; j = 1, . . . , r), the model

πij = πS
ijF

−1(∆k + ζij) (i = 1, . . . , r; j = 1, . . . , r)

with k = i − j, ζij = ζ ji and ∆k + ∆−k = 0, is the model closest to the complete symmetry model
in terms of the f -divergence.

The DPS[ f ] model can be expressed as

F(2πc
ij) =

{
γij + ak (i < j),

γij (i ≥ j),
(3)

where k = j − i, γij = γji and πc
ij = πij/(πij + πji). It should be noted that πc

ij represents
the conditional probability of an observation falling in the (i, j) cell, given that it falls in
either the (i, j) cell or the (j, i) cell. Namely, the DPS[ f ] model indicates that

F(2πc
ij)− F(2πc

ji) = ak (i < j). (4)

When a1 = · · · = ar−1 = 0, the DPS[ f ] model is reduced to the S model.
If f (x) = x log(x), x > 0, then the f -divergence is reduced to the KL divergence.

When we set f (x) = x log(x), Equation (3) is reduced to

πij =

{
πS

ij exp(γij + ak − 1) (i < j),

πS
ij exp(γij − 1) (i ≥ j),

where k = j − i and γij = γji. We shall refer to this model as the DPSKL model. Under the
DPSKL model, the ratios of πij and πji for i < j are expressed as

πij

πji
= dKL

k (i < j), (5)

where dKL
k = exp(ak) and k = j − i. Since Equation (5) indicates that the ratio of πij and

πji depends on the distance of k = j − i, the DPSKL model is equivalent to the DPS model
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proposed by Goodman [10]. Namely, the DPS model is the closest model to the S model in
terms of the KL divergence under the conditions where ∑ ∑i−j=k πij, k ̸= 0, and the sums
πij + πji for i = 1, . . . , r; j = 1, . . . , r are given. This is a special case of Theorem 1.

If f (x) = − log(x), x > 0, then the f -divergence is reduced to the reverse KL diver-
gence. Then, the DPS[ f ] model is reduced to

πij =


πS

ij

(
− 1

γij + ak

)
(i < j),

πS
ij

(
− 1

γij

)
(i ≥ j),

where k = j − i and γij = γji. We shall refer to this model as the DPSRKL model. This model
is the closest to the S model when the divergence is measured by the reverse KL divergence
and can be expressed as

1
πc

ij
− 1

πc
ji
= dRKL

k (i < j),

where dRKL
k = −2ak and k = j − i. This model indicates that the difference between inverse

probabilities 1/πc
ij and 1/πc

ji depends on the distance of k = j − i.
If f (x) = (1 − x)2, then the f -divergence is reduced to the χ2-divergence (Pearsonian

distance). Then, the DPS[ f ] model is reduced to

πij =


πS

ij

(
γij + ak

2
+ 1
)

(i < j),

πS
ij

(
γij

2
+ 1
)

(i ≥ j),

where k = j − i and γij = γji. We shall refer to this model as the DPSP model. This model
is the closest to the S model when the divergence is measured by the χ2-divergence and
can be expressed as

πc
ij − πc

ji = dP
k (i < j),

where dP
k = ak/4 and k = j − i. This model indicates that the difference between πc

ij and
πc

ji depends on the distance of k = j − i.

Moreover, if f (x) = (λ(λ+ 1))−1(xλ+1 − x), x > 0, where λ is a real-valued parameter,
then the f -divergence is reduced to the power-divergence [13]. Then, the DPS[ f ] model is
reduced to

πij =


πS

ij

(
λ
(
γij + ak

)
+

1
λ + 1

) 1
λ

(i < j),

πS
ij

(
λγij +

1
λ + 1

) 1
λ

(i ≥ j),

where k = j − i and γij = γji. We shall refer to this model as the DPSPD(λ) model. This
model is the closest to the S model when the power-divergence measures the divergence
and can be expressed as

(πc
ij)

λ − (πc
ji)

λ = dPD(λ)
k (i < j),

where dPD(λ)
k = (λak)/2λ and k = j − i. This model indicates that the difference between

the symmetric conditional probabilities to the power of λ depends on the distance of
k = j − i. When we apply the DPSPD(λ) model, we should set the value of λ.
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Kateri and Papaioannou [2] reported that the DPS[ f ] model is equivalent to the DPS
model regardless of f . That is, all the models described above (i.e., DPSKL, DPSRKL, DPSP,
and DPSPD(λ)) are equivalent to the DPS model surprisingly. However, the proof was not
given. We prove the following theorem.

Theorem 2. The DPS[ f ] model is equivalent to the DPS model regardless of f .

The poof is given in Appendix A.2. Theorem 2 states that the DPS model holds if and
only if the DPS[ f ] model holds. If the DPS model fits the given dataset, we obtain various
interpretations for the data.

When a1 = · · · = ar−1, the DPS[ f ] model is reduced to the conditional symmetry
model based on the f -divergence (CS[ f ]) model. The CS[ f ] model is described previ-
ously Kateri and Papaioannou [2]. Additionally, Fujisawa and Tahata [14] proposed the
generalization of the CS[ f ] model. Similarly, when d1 = · · · = dr−1, the DPS model is
reduced to the CS model proposed by McCullagh [11]. The CS[ f ] model is equivalent to
the CS model regardless of f (Kateri and Papaioannou [2]). Hence, Theorem 2 leads to the
following result.

Corollary 1. The CS[ f ] model is equivalent to the CS model regardless of f .

3. Equivalence Conditions for Symmetry

Here, the equivalence conditions of the S model are discussed. If the S model holds,
then the DPS[ f ] model with a1 = · · · = ar−1 = 0 holds. Conversely, if the DPS[ f ] model
holds, then the S model does not hold generally. Therefore, we are interested in considering
an additional condition to obtain the S model when the DPS[ f ] model holds. Other studies
have discussed such conditions; see Read [15] and Tahata et al. [16].

We consider the distance global symmetry (DGS) model defined as

δU
k = δL

k (k = 1, . . . , r − 1),

where δU
k = ∑ ∑j−i=k πij, δL

k = ∑ ∑i−j=k πij. For k = 1, . . . , r − 1, this model indicates that
the sum of probabilities which are apart distance k = j − i from main diagonal cells is equal
to the sum of probabilities which are apart distance k = i − j from main diagonal cells. We
obtain the following theorem. (The proof is given in Appendix A.3.)

Theorem 3. The S model holds if and only if both the DPS[ f ] and DGS models hold.

Next, we consider the global symmetry (GS) model, which is defined as

∑ ∑
i<j

πij = ∑ ∑
i<j

πji.

It should be noted that the DGS model implies the GS model. Read [15] noted that
the S model holds if and only if both the CS and GS models hold. Fujisawa and Tahata [14]
proved that the S model holds if and only if the CS[ f ] and GS models hold. These statements
are the same as those from Corollary 1. In addition, a refined estimator for measures
associated with the S, CS, and GS models was introduced by [17]. The result has a significant
connection to decomposing the S model and separating the goodness-of-fit test statistic of
the S model. According to Corollary 1, the refined estimator for the measure of CS can be
utilized to gauge the extent of deviation from the CS[ f ] model.

This section proves the separation of the test statistics for the S model into those for the
DPS[ f ] model and the DGS model. Consider a square contingency table of size r × r where
nij denotes the observed frequency in the cell located at the (i, j) position. Assume this
contingency table adheres to a multinomial distribution. In this context, let mij represent
the expected frequency in the (i, j) cell, and m̂ij be its corresponding maximum likelihood
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estimate under a specified model. To test each model’s goodness of fit, we can employ the
likelihood ratio chi-square statistic, denoted by G2(M). This statistic is computed using the
following formula:

G2(M) = 2
r

∑
i=1

r

∑
j=1

nijlog

(
nij

m̂ij

)
.

This statistic follows a chi-square distribution with the corresponding degrees of
freedom (df).

It is supposed that model M3 holds if and only if both models M1 and M2 hold. In
this case, if the analyst has found hypothesis M3 unacceptable, their attention will move to
examining components M1 and M2. For these three models, Aitchison [18] discussed the
properties of the Wald test statistics, and Darroch and Silvey [19] described the properties
of the likelihood ratio chi-square statistics. Assume that the following equivalence holds:

T(M3) = T(M1) + T(M2), (6)

where T is the goodness of fit test statistic and the number of df for M3 is equal to the sum
of numbers of df for M1 and M2. If both M1 and M2 are accepted with a high probability
(at the α significance level), then M3 is accepted. However, when (6) does not hold, an
incompatible situation where both M1 and M2 are accepted with a high probability but M3
is rejected may arise. In fact, Darroch and Silvey [19] showed such an interesting example.
The partitions of chi-squared test statistics are also discussed in, for example, [20,21].

From Theorem 3, the S model holds if and only if the DPS[ f ] model and the DGS
model hold. In addition, df for the DPS[ f ] model is (r − 1)(r − 2)/2 and that for DGS
model is (r − 1). The df for the S model can be obtained by adding the degrees of freedom
for the DPS[ f ] model and the DGS model. Thus, we consider partitioning test statistics.

Theorem 2 confirms that the DPS[ f ] model is equivalent to the DPS model. Therefore,
the maximum likelihood estimates (MLEs) under the DPS[ f ] model are given by

m̂ij =
nU

k
nU

k + nL
k

(
nij + nji

)
(i < j),

m̂ij = nij (i = j),

m̂ij =
nL

k
nU

k + nL
k

(
nij + nji

)
(i > j),

(7)

where k = |j − i|, nU
k = ∑ ∑k=j−i nij, and nL

k = ∑ ∑k=j−i nji (Goodman [10]).
Next, we consider the MLEs under the DGS model using the Lagrange function. Since

the kernel of the log likelihood is ∑r
i=1 ∑r

j=1 nij log πij, Lagrange function L is written as

L =
r

∑
i=1

r

∑
j=1

nijlog πij + λ

(
r

∑
i=1

r

∑
j=1

πij − 1

)
+

r−1

∑
k=1

λk

(
∑ ∑
k=j−i

(
πij − πji

))
.

Equating the derivation of L to 0 with respect to πij, λ, and λk gives

m̂ij =
(nU

k + nL
k )nij

2nU
k

(i < j),

m̂ij = nij (i = j),

m̂ij =
(nU

k + nL
k )nij

2nL
k

(i > j),

(8)
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where k = |j − i|. It is important to note that the DPS and DGS models do not remain the
same when the row and column categories are permuted. Therefore, these models should
be used with data from an ordinal category.

We obtain the following equivalence from Equations (7) and (8):

G2(S) = G2(DPS[ f ]) + G2(DGS),

because the MLEs under the S model are m̂ij = (nij + nji)/2. Therefore, the DPS[ f ] model
and the DGS model are separable and exhibit independence.

Let W(M) denote the Wald statistic for model M. We obtain the following theorem
and prove it in Appendix A.4.

Theorem 4. W(S) is equal to the sum of W(DPS[ f ]) and W(DGS).

4. Numerical Example

Table 1, which is taken from Smith et al. [22], describes the amount of influence reli-
gious leaders and medical leaders should have in government funding for decisions on
stem cell research when surveying 871 people. The influence levels are divided into four cat-
egories: (1) Great influence, (2) Some influence, (3) A little influence, and (4) No influence.

Table 1. How much influence should religious leaders and medical leaders have in government
funding for decisions on stem cell research? [22].

Religious Medical Leaders

Leaders Great (1) Fair (2) Little (3) None (4) Total

Great (1) 36 16 7 7 66
(36.00) a (11.96) a (6.22) a (7.00) a

(36.00) b (60.19) b (70.95) b (67.00) b

Fair (2) 74 96 22 4 196
(78.04) a (96.00) a (26.05) a (4.78) a

(42.67) b (96.00) b (82.76) b (40.55) b

Little (3) 119 174 48 4 345
(119.78) a (169.95) a (48.00) a (3.99) a

(62.59) b (100.34) b (48.00) b (15.05) b

None (4) 127 93 26 18 264
(127.00) a (92.22) a (26.01) a (18.00) a

(67.00) b (48.91) b (14.99) b (18.00) b

Total 356 379 103 33 871
a MLEs under the DPS model; b MLEs under the DGS model.

The values of the likelihood ratio chi-square statistics G2 and the corresponding p
values for the models applied to these data are shown in Table 2. Table 2 indicates that
the sum of the test statistics DPS (i.e., DPS[ f ]) model and DGS model is equal to that
of the S model. The S model fits the data very poorly. We can infer that the marginal
distribution for religious leaders is not equal to that for medical leaders. On the other hand,
the DPS model fits the data very well. The likelihood-ratio test for the null hypothesis
H0: d1 = d2 = d3 = 1 uses a test statistic which is the difference between G2 for the S model
and the DPS model. The resulting test statistic is 545.15 − 2.45 = 542.70 with three degrees
of freedom. This indicates strong evidence of at least one difference from 1. Additionally,
the DGS model fits the data poorly. From Theorem 3, the reason of the poor fit of S model
is caused by the poor fit of the DGS model rather than the DPS model.
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Table 2. Likelihood ratio chi-square values G2 for the models applied to Table 1.

Models df G2 p-Value

S 6 545.15 <0.0001
DPS 3 2.45 0.4847
DGS 3 542.70 <0.0001

The values of MLEs of (d1, d2, d3) in Equation (1) are (0.15, 0.05, 0.06). It should be
noted that (d1, d2, d3) is equal to (dKL

1 , dKL
2 , dKL

3 ) in the DPSKL model. Let (i, j) denote the
pair that the amount of influence religious leaders is ith level and that of medical leaders
is jth level. When k = j − i (k = 1, 2, 3), a pair (i, j) is d̂k times as likely as a pair (j, i) on
condition that a pair is (i, j) or (j, i). From d̂k < 1 (k = 1, 2, 3), the probability distribution
for religious leaders is stochastically higher than the probability distribution of medical
leaders. That is, the medical leaders rather than the religious leaders should have influence
in government funding for decisions on stem cell research.

Moreover, from Theorem 2, we can obtain various interpretations. Since the DPS
model holds, the DPSRKL, DPSP, and DPSPD(λ) models also hold. For example, we obtain

(d̂RKL
1 , d̂RKL

2 , d̂RKL
3 ) = (6.37, 19.22, 18.09),

(d̂P
1 , d̂P

2 , d̂P
3 ) = (−0.73,−0.90,−0.90),

and for λ = 3,

(d̂PD(3)
1 , d̂PD(3)

2 , d̂PD(3)
3 ) = (−0.65,−0.86,−0.85).

When k = j − i (k = 1, 2, 3), we can infer that (i) the difference between the reciprocal
of conditional probability that a pair is (i, j) and the reciprocal of conditional probability
that a pair is (j, i) is d̂RKL

k on condition that the pair is (i, j) or (j, i) from the DPSRKL model,
(ii) the difference between the conditional probability that a pair is (i, j) and the conditional
probability that a pair is (j, i) is d̂P

k under the same condition from the DPSP model, and
(iii) the difference between the conditional probability that a pair is (i, j) to the third power
and the conditional probability that a pair is (j, i) to the third power is d̂PD(3)

k under the
same condition from the DPSPD(3) model.

5. Concluding Remarks

This paper proves that the DPS[ f ] model is equivalent to the DPS model proposed
by Goodman [10]. This result provides various interpretations of the DPS model. The
separation of the test statistic for the S model is considered. The DPS[ f ] and DGS models are
separable and exhibit independence. Kateri and Papaioannou [2], Kateri and Agresti [3],
Tahata [5] and Fujisawa and Tahata [14] considered models based on the f -divergence
for the analysis of square contingency tables with ordinal categories. In the future, it
should be studied whether the model based on the f -divergence is equivalent to the
conventional model.
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Appendix A

This section provides the proofs of theorems.

Appendix A.1

In a similar manner to Tahata [5], we prove Theorem 1. Let IC(π : πS) denote the
f -divergence between (πij) and (πS

ij). That is

IC(π : πS) =
r

∑
i=1

r

∑
j=1

πS
ij f

(
πij

πS
ij

)
, (A1)

where f satisfies the conditions described in Section 1. Now minimize (A1) under the
conditions where the restraints

πij + πji = tij = tji (i = 1, . . . , r; j = 1, . . . , r) (A2)

and

δU
−k = ∑ ∑

i−j=−k
πij, δL

k = ∑ ∑
i−j=k

πij (k = 1, . . . , r − 1) (A3)

are given. The Lagrange function is written as

L = IC(π : πS) +
r

∑
i=1

r

∑
j=1

λij
(
πij + πji − tij

)
+

r−1

∑
k=1

(
∆̄−k

(
∑ ∑

i−j=−k
πij − δU

−k

)
+ ∆̄k

(
∑ ∑
i−j=k

πij − δL
k

))
.

By taking the partial derivative of L with respect to πij and setting it to zero, we obtain
the following equation:

f ′
(

πij

πS
ij

)
+ ∆̄−k + λij + λji = 0 (i < j),

f ′
(

πij

πS
ij

)
+ λij + λji = 0 (i = j),

f ′
(

πij

πS
ij

)
+ ∆̄k + λij + λji = 0 (i > j).

(A4)

Let f ′ denote F, and let π∗
ij denote the solution satisfying (A2), (A3), and (A4). Given

that f is a strictly convex function, it follows that F′(x) = f ′′(x) > 0 for all x. Thus, F is
strictly monotonic, ensuring the existence of F−1. We represent ζij as −(λij + λji) and ∆l as
−∆̄l . From Equation (A4), we obtain

π∗
ij = πS

ijF
−1(∆−k + ζij

)
(i < j),

π∗
ij = πS

ijF
−1(ζij

)
(i = j),

π∗
ij = πS

ijF
−1(∆k + ζij

)
(i > j),

where ζij = ζ ji and ∆k + ∆−k = 0. The minimum value of IC(π : πS) is obtained for π∗
ij,

where ζij and ∆l are selected to ensure that π∗
ij complies with the constraints (A2) and (A3).

Thus, the DPS[ f ] model represents the optimal approximation to the S model in terms of
f -divergence under these specified conditions.
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Appendix A.2

Let function G be defined as

G(x) = F
(

2x
1 + x

)
− F

(
2

1 + x

)
(x > 0),

where F = f ′. Then, the derivative of G is

G′(x) =
2

(1 + x)2

(
F′
(

2x
1 + x

)
+ F′

(
2

1 + x

))
.

Since the function f is twice-differential and strictly convex G′(x) > 0 for x > 0, hence
G is a strictly increasing function, and G−1 exists.

If the DPS model holds, πij/πji = dk holds for i < j from Equation (1), where k = j − i.
Then we can see that for i < j,

G(dk) = F
(

2dk
1 + dk

)
− F

(
2

1 + dk

)
,

= F
(

2πc
ij

)
− F

(
2πc

ji

)
.

This is equivalent to Equation (4). Namely, the DPS[ f ] model holds.
On the other hand, if the DPS[ f ] model holds, Equation (4) holds. We can see that for

i < j,

G

(
πij

πji

)
= ak.

Since G−1 exists, we obtain
πij

πji
= G−1(ak).

Namely, the DPS model holds. The proof is complete.

Appendix A.3

It is obvious that if the S model holds, the DPS[ f ] model and the DGS model simulta-
neously hold. Assuming that both the DPS[ f ] and the DGS models hold, we show that the
S model holds. From Theorem 2, the DPS[ f ] model is equivalent to πij/πji = dk for i < j
with k = j − i. Since the DGS model holds, we obtain

∑ ∑
j−i=k

(dk − 1)πji = 0 (k = 1, . . . , r − 1).

Since πji > 0, we get dk = 1 (k = 1, . . . , r − 1). Namely, the S model holds.

Appendix A.4

Theorem 2 shows that the DPS[ f ] model is equivalent to the DPS model. Let

π = (π11, . . . , π1r, π21, . . . , π2r, . . . , πr1, . . . , πrr)
t,

β = (ρ1, . . . , ρr−1, ε)t,

where ε = (ε11, . . . , ε1r, ε22, . . . , ε2r, . . . , εrr). Then, from Equation (1), the DPS model is
expressed as

log π = Xβ = (x1, . . . , xr−1, x11, . . . , x1r, x22, . . . , x2r, . . . , xrr)β,
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where xl = (wl+1, . . . , wr, 0, . . . , 0)t is a r2 × 1 vector (l = 1, . . . , r − 1). Here, wh (1 × r
vector) is 1 for the hth element and 0 otherwise. For example, when r = 4,

x1 = (w2, w3, w4, 0, . . . , 0)t = (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0)t.

Additionally, xij (i ≤ j) is the r2 × 1 vector shouldering εij. Note that the r2 × K matrix
X is a full column rank where K = (r − 1) + r(r + 1)/2.

We define the linear space spanned by the columns of the matrix X as S(X), which
has dimension K. This space, S(X), is a subspace of Rr2

. Consider an r2 × d1 matrix
U with full column rank, such that the linear space S(U), spanned by the columns
of U , serves as the orthogonal complement of S(X). Note that d1 is calculated as
d1 = r2 − ((r − 1) + r(r + 1)/2) = (r − 1)(r − 2)/2. Given that U tX = Od1,K, where Od1,K
denotes the d1 ×K zero matrix, the DPS model can be expressed as h1(π) = U t log π = 0d1 ,
with 0s representing the s × 1 zero vector.

Additionally, the DGS model can be expressed as h2(π) = Mπ = 0d2 where

M = (g1, . . . , gr−1)
t,

and d2 = r − 1. Here, gl = 2xl − ∑ ∑j−i=l xij. Note that Mt belongs to the space S(X). That
is, S(Mt) ⊂ S(X).

Let p denote π with πij replaced by pij, where pij = nij/n with n = ∑ ∑ nij. From
Theorem 3, the S model is equivalent to h3(π) = 0d3 , where h3 = (ht

1, ht
2)

t and d3 = d1 +
d2 = r(r − 1)/2. In an analogous manner to Tahata [5], we obtain that

√
n(h3(p)− h3(π))

has an asymptotically normal distribution with mean 0d3 and covariance matrix

H3(π)Σ(π)Ht
3(π) =

[
H1(π)Σ(π)Ht

1(π) Od1,d2
Od2,d1 H2(π)Σ(π)Ht

2(π)

]
,

where Hs(π) = ∂hs(π)/πt and Σ(π) = diag(π) − ππt. Here, diag(π) denotes a di-
agonal matrix with the ith component of π as the ith diagonal component. Therefore,
W3 = W1 + W2 holds, where

Ws = nht
s(p)(Hs(p)Σ(p)Ht

s(p))−1hs(p).

The Wald statistic for the DPS[ f ] model (i.e., W(DPS[ f ])) is W1, that for the DGS model
(i.e., W(DGS)) is W2, and that for the S model (i.e., W(S)) is W3. The proof is complete.
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