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Abstract: The economic friction and political conflicts between some countries and regions have
made multinational corporations increasingly focus on the reliability and credibility of manufacturing
supply chains. In view of the impact of poor manufacturing entity reliability and service reputation on
the new-era manufacturing industry, the time-varying reliability and time-varying credibility of cloud
manufacturing (CMfg) services were studied from the perspective of combining nature and society.
Taking time-varying reliability, time-varying credibility, composition complexity, composition synergy,
execution time, and execution cost as objective functions, a new six-dimension comprehensive
evaluation model of service quality was constructed. To solve the optimization problem, this study
proposes an improved chaos sparrow search algorithm (ICSSA), where the Bernoulli chaotic mapping
formula was introduced to improve the basic sparrow search algorithm (BSSA), and the position
calculation formulas of the explorer sparrow and the scouter sparrow were enhanced. The Bernoulli
chaotic operator changed the symmetry of the BSSA, increased the uncertainty and randomness of
the explorer sparrow position in the new algorithm, and affected the position update and movement
strategies of the follower and scouter sparrows. The asymmetric chaotic characteristic brought better
global search ability and optimization performance to the ICSSA. The comprehensive performance of
the service composition (SvcComp) scheme was evaluated by calculating weighted relative deviation
based on six evaluation elements. The WFG and DTLZ series test functions were selected, and the
inverse generation distance (IGD) index and hyper volume (HV) index were used to compare and
evaluate the convergence and diversity of the ICSSA, BSSA, PSO, SGA, and NSGA-III algorithms
through simulation analysis experiments. The test results indicated that the ICSSA outperforms the
BSSA, PSO, SGA, and NSGA-III in the vast majority of testing issues. Finally, taking disinfection robot
manufacturing tasks as an example, the effectiveness of the proposed CMfg SvcComp optimization
model and the ICSSA were verified. The case study results showed that the proposed ICSSA had
faster convergence speed and better comprehensive performance for the CMfg SvcComp optimization
problem compared with the BSSA, PSO, SGA, and NSGA-III.

Keywords: cloud manufacturing; improved chaos sparrow search algorithm; service composition
optimization; time-varying reliability; time-varying credibility

1. Introduction

Over the past half-century, the global economy has demonstrated that openness,
collaboration, and innovation hold the key to advancing manufacturing and economic
growth. The disruptive influence of volatile factors, such as trade frictions, has significantly
impacted the open and collaborative landscape, thereby slowing the pace of development in
the global manufacturing industry. Currently, businesses are placing a heightened emphasis
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on the reliability of manufacturing supply chains [1]. Consequently, numerous nations
have prioritized the establishment of highly trustworthy and dependable manufacturing
supply chains and services at the national decision-making level. Cloud manufacturing
(CMfg), a service-centered manufacturing approach, aligns with the evolving needs of the
manufacturing industry in the contemporary era [2]. It offers a viable solution to address the
challenges posed by diverse consumer demands and shortened product market cycles [3].
The CMfg service platform virtualizes and offers manufacturing resources and capabilities,
enabling centralized oversight of distributed manufacturing assets and tailored services
to a diverse user community [4]. In the intricate and dynamically evolving international
landscape, an analysis of time-varying reliability and credibility offers enhanced insights
for CMfg service selection and user decision-making.

The construction of the CMfg service composition (SvcComp) model, along with its
associated solution algorithm, serves as a crucial element in determining the effectiveness
of the optimal SvcComp plan. Furthermore, it significantly impacts the efficiency and
profitability of CMfg resources. The optimization of CMfg SvcComp is characterized by its
multi-objective nature, nonlinearity, and inherent uncertainty. Consequently, numerous
scholars are devoting themselves to addressing the intricate NP problem [5]. Scholars pri-
marily focus on production cost, execution time, and profit as key optimization parameters
in their exploration of SvcComp modeling and optimization algorithms. However, they
infrequently take into account the influence of non-functional service quality factors, includ-
ing service reliability, reputation, and composition synergy, on the overall SvcComp. The
execution of CMfg entails a collaborative effort involving various distributed manufactur-
ing resources. Notably, each CMfg service execution agent operates within a specific natural
and social context, deviating from the idealized perception of a “rigid body”. Within the
CMfg process, diverse CMfg services engage in data exchange, information transmission,
and material transportation. The interactions give rise to constraints, collaborations, and
competitions that persist throughout the entire manufacturing lifecycle. The interplay
among services and tasks, among services themselves, and with agents occupies a vital
position in determining the effectiveness and efficiency of SvcComp in executing manufac-
turing tasks. Instances such as war friction and the Red Sea crisis highlight the significance
of manufacturing enterprises being deeply embedded in the global industrial chain to
leverage both service credibility and reliability alongside manufacturing cost and time as
key metrics for assessing CMfg service quality. This approach ensures the provision of more
credible, reliable, and efficient services to users. In the intricate and dynamic international
landscape, the time-varying nature of reliability and credibility significantly influences the
overall performance and service selection within CMfg SvcComp. The CMfg environment
necessitates the collaborative efforts of various executing agents, encompassing service
providers, operators, customers, and more. The collaboration is influenced by both natural
and social factors. The reliability of CMfg services, the degree of collaboration among ser-
vices during the manufacturing process, the credibility of these services, and the complexity
of the SvcComp all play crucial roles in the successful accomplishment of manufacturing
endeavors. Therefore, while adhering to the constraints of delivery time and manufacturing
cost, it is imperative to optimize CMfg SvcComp by prioritizing parameters such as service
reliability, composition synergy, service credibility, and composition complexity.

The fundamental principle of SvcComp dictates that all manufacturing tasks stemming
from the decomposition of manufacturing demands must be assigned to either a single
cloud service or multiple cloud services for execution. The optimal CMfg SvcComp scheme
should exhibit optimal overall performance, encompassing maximum service reliability,
composition synergy, and service credibility, while minimizing composition complexity,
delivery time, and manufacturing cost. The key contributions of this work are outlined
as follows: (1) an improved chaos sparrow search algorithm tailored for CMfg SvcComp
is introduced; (2) a CMfg SvcComp optimization model, incorporating factors such as
time-varying reliability, time-varying credibility, and composition complexity, is developed;
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(3) an illustrative application example is presented to demonstrate the effectiveness of the
proposed mathematical model and optimization algorithm.

The rest of this paper is structured as follows: Section 2 conducts a comprehensive
analysis of domestic and international research on service reliability, service credibility,
CMfg SvcComp, and its associated optimization algorithms. Section 3 defines and outlines
the calculation methods for time-varying reliability, composition synergy, time-varying
credibility, composition complexity, execution time, and execution cost. Section 4 introduces
an improved algorithm, while Section 5 validates the effectiveness of the proposed method
through a detailed analysis of practical applications. Finally, Section 6 concludes this paper
and underscores the significance of the work.

2. Related Work

In recent years, various scholars have delved into the modeling and optimization of
cloud SvcComp, leveraging techniques such as genetic algorithms and particle swarm
optimization. By synthesizing the prior research efforts of these scholars, we meticu-
lously selected the most pertinent studies and categorized the existing research into
three distinct groups.

The first group studied service reliability and service credibility. In the research of
service credibility, Qiu-yun Zhao et al. [6] put forward a support mechanism for credibility
in CMfg services, which hinged on a classified approach to QoS, described the environ-
ment information and the level of QoS in the manufacturing cloud service model, and
constructed an adaptive control logic algorithm to adjust the QoS level. Tooba Aamir
et al. proposed a credibility model of social sensor cloud service based on user’s position
and credibility. It used comments and metadata of cloud service to collect the trust rate
of the service and the credibility of the users’ comments [7]. R. Tang et al. proposed an
algorithm of cloud media resource allocation based on credibility, which allocated cloud
media resources based on total credibility to obtain the optimal allocation sequence of
higher allocation efficiency and service quality [8]. Suzhen Wang et al. proposed a trust
management model based on credibility, which could distinguish trust feedback and detect
malicious trust feedback of attackers [9]. Lie Qu et al. proposed a new model for evaluating
the reliability of users, which provided subjective evaluation by ordinary cloud consumers
and objective evaluation by professional testers for cloud services, and could resist user col-
lusion [10]. Xiaogang Cai et al. proposed a method of evaluating and modifying reputation
based on node credibility [11]. By calculating the reputation of each node and modifying
the reputation value, the accuracy of reputation results was improved, and an incentive
mechanism was introduced to improve the enthusiasm of cloud user node evaluation.
Khamdi Mubarok et al. proposed a hierarchical model for reliability assessment, specif-
ically designed to evaluate the dependability of manufacturing services. In this model,
enterprise manufacturing resources were categorized into three distinct levels, component,
machine, and system, enabling a comprehensive reliability evaluation [12]. Combining
explicit text information with rating information and implicit context information, Jian Liu
et al. determined task similarity and employed a clustering-based approach to identify
cohorts of users sharing similar characteristics [13]. They further devised a trust perception
methodology that merged both local and global trust metrics, reconstructing the trust
network among clustered users. Additionally, they introduced a prediction and recommen-
dation strategy for service quality, grounded in clustering and trust perception principles.
Shikai Jing et al. put forward an SvcComp approach for CMfg, leveraging discrete particle
swarm optimization with a focus on execution reliability [14]. The probability density
function was used to describe the service reliability, and the CMfg SvcComp workflow
model was dynamically generated based on the service model library. Chen Jiang et al.
proposed a real-time estimation error-guided sampling method for time-varying reliabil-
ity analysis, used Kriging prediction mean and variance to calculate the probability of
error classification, obtained the total number of error classification points, and calculated
the estimation error of fault probability based on confidence intervals [15]. Junejo A.K.
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et al. studied a cloud service trust computing framework that calculates credibility by
aggregating multidimensional evidence of quality of service and quality of experience [16].
The approach integrated the principles of complex networks to provide a comprehensive
assessment of accounting cloud service reliability. Zhiqiang Wan et al. analyzed the prob-
lem of the monotonic degradation of materials and time-varying reliability evaluation of
parametric random loads, and proposed a new method combining the probability density
evolution method and probability measure change [17]. Hua-Ming Qian et al. introduced a
decoupling technique for single-loop processes, alongside a double-closed-loop Kriging
model, specifically tailored for time-varying reliability analysis [18]. Hong-Shuang Li et al.
proposed a high-dimensional time-varying reliability analysis method that incorporated
random sampling and treated random processes as inputs [19]. The time-varying reliability
analysis was transformed into the reliability problem of series systems with multiple re-
sponses. M.H. Ping et al. proposed a time-varying extreme event evolution method and
simulated the time evolution process of extreme events by the time-dependent polynomial
chaotic expansion method [20]. Monte Carlo simulation was used to sample the standard
normal variables, and the time-varying reliability of the failure threshold was obtained.

The second group delved into the intricacies of manufacturing task decomposition
and SvcComp. Mingzhou Liu et al. introduced a CMfg task decomposition algorithm
that employed sequential task decomposition, leveraging a recursive decomposition ap-
proach to enhance the optimization of decomposed tasks [21]. Aijun Liu et al. developed
a quantitative analysis technique for task granularity, which assessed the granularity of
complex product collaborative workflows within integrated manufacturing systems [22].
The method served as a guide for coarse-grained task decomposition and the reorgani-
zation of sub-tasks with low cohesion coefficients. Shuping Yi et al. proposed a task
decomposition optimization strategy grounded in clustering algorithms [23]. By recon-
structing decomposed sub-tasks using clustering techniques, they achieved optimal task
decomposition and offered a solution to the disjoint issue that arose in manufacturing
task decomposition and resource allocation. Katz Dmitriy et al. investigated two varia-
tions of the classic job interval scheduling problem, focusing on the flexible allocation of
reusable resources among competing job intervals [24]. J. Thekinen et al. examined the
objectives and preferences of service seekers and providers in cloud-based design and
manufacturing [25]. They further evaluated the suitability of various matching mecha-
nisms in the context of cloud design and manufacturing. Octavian Morariu et al. explored
service-oriented approaches for enhancing resource allocation in a private cloud environ-
ment [26]. They introduced an extended queued resource allocation bus architecture that
incorporated the computation of alternative schedules for optimized resource utilization.
Yang-Kuei Lin et al. proposed a resource-constrained project scheduling method based on
a genetic algorithm, which integrated novel concepts like enhancement and local search,
addressing the challenges associated with computing resource allocation in cloud com-
puting systems [27]. Buyun Sheng et al. delved into the complexities of the matching
process between an intelligent matching engine and CMfg services, emphasizing their
diversity, heterogeneity, and multi-constraints [28]. They developed an intelligent search
engine tailored for small and medium-sized enterprises’ CMfg services, leveraging service
ontology language to facilitate swift and efficient cloud search matching. Fei Tao et al.
introduced a supply–demand matching simulator specifically for manufacturing services,
outlining a simulator architecture grounded in hyper-networks [29]. Jinhui Zhao et al.
proposed a bilateral matching model for cloud services, emphasizing the role of quality of
service in the matching process [30]. It calculated satisfaction degree by the variable fuzzy
identification method. Yuqian Lu et al. delved into the realm of knowledge-based SvcComp
and adaptive resource planning within the CMfg environment [31]. They constructed an
integrated network environment that could swiftly allocate resources for specific service
requests, leveraging governance strategies, resource access mechanisms, and availability
information. Jorick Lartigau et al. recognized the commonalities among cloud services,
including QoS parameters, but broadened their focus to include the physical locale of man-
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ufacturing resources [32]. They introduced a methodology that combines QoS evaluation
with geo-perspective correlation across cloud services, enabling a comprehensive analysis
of transportation impacts. Marcos A. Pisching et al. studied the characteristics and major
challenges of industrial 4.0 SvcComp based on CMfg [33]. Yan Xiao et al. introduced a
decision-making framework for manufacturing service resource matching, emphasizing
the fusion of multidimensional information [34]. Leveraging the integration of various
information data sources from CMfg resources, they categorized the significance of manu-
facturing service tasks using information entropy and rough set theory. Hamed Bouzary
et al. proposed a hybrid algorithm which combines the grey wolf optimization algorithm
and the genetic algorithm [35]. The embedded crossover and mutation operators enabled
the continuous structure of the grey wolf algorithm to adapt to combinatorial problems
such as SvcComp optimization selection. Mohammad Moein Fazeli et al. proposed an
integrated optimization method for choosing the best composition of services to execute
customer requests [36].

The third group focused on service quality evaluation and optimization algorithms. K.
He et al. [37] outlined selection criteria for CMfg service providers within the CMfg system
and developed a comprehensive evaluation index system incorporating a scalable quantita-
tive model. The triangular fuzzy number algorithm was used to calculate the similarity
and demand expectation between service providers, and the comprehensive performance
ranking of service quality was obtained. Shangguang Wang et al. proposed an accurate
evaluation method of cloud service quality [38]. According to the preferences of cloud users,
a fuzzy comprehensive decision method was used to evaluate cloud service providers.
Xinggang Wang et al. proposed a task evaluation index system for 3D printing orders for
innovative new product development in a CMfg environment [39]. The evaluation index
included eight dimensions: execution time, service quality, matching, reliability, flexibility,
cost, fault tolerance, and satisfaction. Yuan Ye et al. proposed an evaluation system of
e-government service quality for telecom operators and evaluated the service quality based
on network factors, service process factors, collaboration factors, and resource allocation fac-
tors [40]. Yanjuan H et al. delved into the challenges of manufacturer scheduling within the
CMfg environment [41]. They thoroughly analyzed the influencing factors of manufacturer
resource scheduling, encompassing task load, task reliability, manufacturing efficiency,
resource abundance, and IoT matching. Utilizing a chaotic optimization algorithm, they
addressed the objective function, successfully realizing manufacturer scheduling across
various tasks. Yongxiang Li et al. introduced a CMfg SvcComp optimization approach
leveraging cloud entropy-enhanced genetic algorithms [42]. They outlined methods for
computing service matching, composition coordination, and cloud entropy, establishing
a multi-objective optimization model for CMfg SvcComp. Wenjun Xu et al. proposed an
enhanced Pareto-based discrete bees algorithm, aiming to select optimal services from a
vast array of CMfg offerings, combining them to create new, high-performance services [43].
Onaizah N A and Aljanabi R M presented a novel approach, the chaotic African vulture
optimization algorithm integrated with a deep learning-driven solid waste classification
system, termed CAVOA-DLSWC. Its objective was to automatically identify waste objects
and categorize them into distinct groups utilizing advanced deep learning models [44].
M. Tavana et al. introduced a discrete cuckoo optimization algorithm, leveraging group
technology for seamless resource allocation integration [45]. Fateh Seghir et al. proposed
a hybrid genetic algorithm specifically tailored to address the cloud SvcComp challenge,
with a focus on quality of service perception [46]. It combined the genetic algorithm and
drosophila optimization to search the evolutionary process. Xianmin Wei et al. studied the
optimal resource allocation for CMfg. Utilizing a four-dimensional objective function en-
compassing time, cost, quality of service, and load balancing, an ant colony algorithm was
employed to discover the optimal solution [47]. Yi Que et al. introduced a user-centered
manufacturing model for the manufacturer cloud, developing a comprehensive mathemati-
cal evaluation framework that encompassed four crucial service quality perception metrics:
time, reliability, cost, and capability [48]. They further proposed an information entropy-
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based immune genetic algorithm to enhance the selection of core manufacturing SvcComps.
Hui Jiang et al. developed a multi-objective genetic algorithm grounded in non-dominated
sorting techniques to tackle the disassembly SvcComp optimization challenge [49]. Their
study focused on cloud-based disassembly systems, offering disassembly services tailored
to user needs. Sergi Vila et al. introduced a multi-objective genetic algorithm to determine
the most appropriate allocation of the cloud to available virtual machines [50]. Tianhua
Li et al. introduced a self-learning artificial bee colony genetic algorithm, integrating re-
inforcement learning techniques. The innovative algorithm intelligently selected feasible
solutions for optimizing CMfg SvcComp [51]. The global optimal individual served as
a guiding beacon, enhancing the search accuracy of the algorithm by refining the search
equation. Zhongning Wang et al. proposed a novel hybrid algorithm, marrying the bee
colony method with the simplex approach [52]. The algorithm addressed large-scale cloud
SvcComp optimization challenges.

The research work of the aforementioned scholars is a microcosm of the rapid devel-
opment of CMfg SvcComp in recent years. However, in their research on CMfg SvcComp
optimization, they did not comprehensively analyze various factors and relationships that
affect CMfg service quality from both social and natural aspects. The impact mechanisms
of time-varying credibility and time-varying reliability on CMfg SvcComp performance
are rarely considered together in their work. The impact of the current unstable inter-
national relations on the industrial chain makes it necessary for us to establish a CMfg
SvcComp model that is more in line with the development of the times and comprehensive
considerations, and devise a more effective optimization algorithm tailored to the purpose.

3. Cloud Manufacturing Service Composition Modeling
3.1. Task Decomposition

In CMfg, a complex manufacturing task, J, necessitates decomposition into m sub-tasks
for efficient execution, as illustrated in Figure 1. It is expressed mathematically as follows:

J = {J1, J2, . . ., Jj, . . ., Jm}, (1)

where Jj is the j-th sub-task, and j = 1, 2, . . ., m.

3.2. SvcComp Process

Users compensate for utilizing manufacturing resources mapped by cloud services to
fulfill manufacturing tasks. The procedure encompassing service discovery and composi-
tion is depicted in Figure 1. Potential cloud services suitable for a given manufacturing
task can be sourced from the cloud resource pool. The set of cloud services, encompassing
all atomic services capable of executing the j-th sub-task within the cloud resource pool, is
mathematically represented as follows:

Sj = {S1,j, S2,j, . . . , SPj ,j}, (2)

wherein Pj signifies the count of cloud services present in the j-th cloud service set, and
SPj ,j designates the Pj-th cloud service belonging to the j-th cloud service set.

The aggregate count of cloud services encompassed within n cloud service sets
amounts to

N =
n

∑
j=1

Pj, (3)

where N represents the overall tally of cloud services.
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3.3. SvcComp Evaluation Factors
3.3.1. Time-Varying Service Credibility

Service credibility (SC) is the socialized evaluation of service transactions that occur in
a certain period of time for CMfg services, SvcComp, service providers, service users and
cloud service platforms. Service credibility is mainly used to reflect the impact of various
subjective and social factors on service quality and SvcComp performance in CMfg, such as
service reputation, communication level, social relations of manufacturing entities, etc. If
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the service credibility changes with time, it is called time-varying service credibility. Service
score, honesty value, and visit rate are used to calculate the service credibility.

(1) Service score.
The service score refers to the score given by the user after using the CMfg service.

The CMfg service platform calculates the CMfg service score according to the service score
values given by all users. The calculation formula of service score is as follows:

SSi =

Li
∑

h=1
(USh,i)

5Li
, (4)

where SSi represents the standardized service score of the i-th CMfg service, and its value
range is [0, 1]; USh,i represents the service score value given by the h-th user for the i-
th CMfg service, and its value range is [0, 5]; Li signifies the aggregate count of users
evaluating the i-th CMfg service.

(2) Service honesty.
After using CMfg services, the user can mark a CMfg service as dishonest in the

dishonest record box, or recommend the service in the recommendation record box. The
CMfg service platform calculates the service honesty value according to dishonest records
and recommendation records as follows:

SHi =
RRi

RRi + DRi
, (5)

where SHi denotes the honesty value of the i-th CMfg service; RRi denotes the number of
recommendation records for the i-th CMfg service; DRi denotes the number of dishonest
records for the i-th CMfg service.

(3) Visit rate.
CMfg services with high credibility are easy to gain the familiarity of cloud service

users, which can encourage users to pay again to use them and recommend them to others,
and generate greater service visits. Therefore, the visit rate serves as a metric to assess the
credibility of CMfg services, and its computation formula is outlined below:

VRi =
VNi

VNmax
, (6)

where VRi denotes the visit rate of the i-th CMfg service; VNi denotes the number of visits
to the i-th CMfg service; and VNmax denotes the maximum visit number of the same type
of CMfg service as the i-th one.

In summary, service credibility can be calculated as follows:

SCij = β1 × SSij + β2 × SHij + β3 × VRij, (7)

where SCij indicates the service credibility of the i-th CMfg service for the j-th task; β1, β2
and β3 represent the weight coefficients associated with their respective influencing factors,
and β1 + β2 + β3 = 1.

The service credibility is enhanced with the increase in service transaction behavior.
When transaction occurs at a certain time, the new service credibility value can be calculated
according to Equation (7). If there is no transaction within a certain period of time, the
service credibility declines with the passage of time, and is therefore called time-varying
credibility. Its attenuation rate is proportional to the current value of service credibility.
The computation formula is outlined as follows:

dSCij(t)
dt

= −τ1SCij(t) (8)



Symmetry 2024, 16, 772 9 of 29

where τ1 is the attenuation coefficient of service credibility, and τ1 > 0. By solving the
differential equation, we can obtain that

SCij(t) = SCij(0)e−τ1t (9)

where SCij(t) is the service credibility value at time t; SCij(0) is the initial value of SCij at
t = 0.

Combining Equations (7) and (9) can obtain that

SCij(t) = (ν − 1)SCij(0)e−τ1t + ν(β1 × SSij(t) + β2 × SHij(t) + β3 × VRij(t)) (10)

where ν is a switching variable. If a CMfg service has transaction behavior at t, ν = 1, and
the calculated value SCij(t) is assigned to SCij(0). If a CMfg service has no transaction
behavior at t, ν = 0.

3.3.2. Composition Synergy Degree

The composition synergy degree quantifies the level of collaboration among CMfg
services that are integrated to fulfill complex manufacturing tasks. During SvcComp, inad-
equate synergy can significantly hinder information exchange and material transportation
between CMfg services, thereby prolonging product delivery times. The composition
synergy between CMfg services Si and Sj, utilized for executing manufacturing tasks Ji and
Jj, can be computed as follows:

CSij =
Ti + Tj

η1max[Ti, Tj] + η2(Ti + Tj)+η3 (Ti + Tj + 2ξij
√

Ti · Tj)
(11)

where CSij denotes the level of composition synergy exhibited between the i-th and j-th
CMfg services within the SvcComp. Ti signifies the duration required by CMfg service Si
to independently complete manufacturing task Ji, whereas Tj represents the time taken by
CMfg service Sj to independently fulfill manufacturing task Jj. η1, η2 and η3 are switching
variables. If manufacturing tasks Ji and Jj are independent and executed in parallel, η1 = 1;
otherwise, η1 = 0. Similarly, if tasks Ji and Jj are independent and executed sequentially,
η2 = 1; otherwise, η2 = 0. If tasks Ji and Jj are interactively coupled, η3 = 1; otherwise,
η3 = 0. Tij = max[Ti, Tj] represents a methodology for determining the aggregate execution
time of manufacturing sub-tasks Ji and Jj when executed independently and in parallel.
Conversely, Tij = Ti + Tj outlines the calculation of the total execution time for Ji and Jj
when executed independently but in a sequential manner. For scenarios where Ji and Jj
are interactively coupled, Tij = Ti + Tj + 2ξij

√
Ti · Tj provides the formula for computing

their combined execution time. ξij denotes the coefficient of interactive coupling between Ji
and Jj, with a range spanning from −1 to 1. The value of ξij is influenced by factors such
as prior cooperation frequency and level, as well as the smoothness of service interaction
and material transportation. A higher frequency and level of prior cooperation, along with
smoother service interaction and material transportation, result in a lower value of ξij;
conversely, the factors contribute to a higher value of ξij.

3.3.3. Time-Varying Service Reliability

Service reliability (SR) serves as a quantitative metric for assessing the congruency
between CMfg services and assigned manufacturing tasks. SR captures the functional align-
ment between cloud services and manufacturing objectives in terms of request–response
interactions. When SR exhibits temporal variations, it is termed time-varying service re-
liability. Key determinants of service matching include the availability of manufacturing
resources, equipment condition, technological proficiency, functional alignment, process
prerequisites, integrated manufacturing capabilities, the cumulative count of analogous
manufacturing tasks executed by CMfg services, the activity level of CMfg services, and
the proximity between manufacturing resources and the service objects mapped by CMfg
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services. Based on their inherent characteristics, the influencing factors can be categorized
as function, state, and distance factors.

(1) Function factor.
The function factor (FF) assesses the technical proficiency of CMfg services in exe-

cuting manufacturing tasks, considering factors such as the past performance of similar
tasks, service execution efficiency, service activity, and device performance. FFij specifically
quantifies the technical capability of the i-th cloud service in fulfilling the j-th manufactur-
ing task, with a value range of [0, 1]. Higher values of FFij indicate excellent equipment
performance, high service activity and execution rates, and a substantial history of success-
fully completing analogous tasks. Conversely, lower values reflect poorer performance in
these areas. In the case of complete mismatch between the i-th cloud service and the j-th
manufacturing task, FFij is assigned a value of 0.

(2) State factor.
The state factor SFij represents the objective status evaluation of the i-th cloud service’s

ability to undertake the j-th manufacturing task, ranging from 0 to 1. When CMfg services
boast a high idle rate of manufacturing resources and a strong willingness to accept
manufacturing tasks, SFij assumes a higher value. Conversely, a lower SFij value reflects a
less favorable state in terms of resource availability and task acceptance prospects.

(3) Distance factor.
The distance factor (DF) is employed to assess the influence of the relative proxim-

ity between manufacturing resources and users on the execution of CMfg services. DFij
specifically quantifies the distance impact between the manufacturing resource allocated
by the i-th CMfg service and the j-th user, with a value range of [0, 1]. A shorter dis-
tance corresponds to a higher DFij value, whereas a longer distance translates to a lower
DFij value.

In summary, the service reliability can be calculated based on function factor FFij, state
factor SFij and distance factor DFij as follows:

SRij = α1 × FFij + α2 × SFij + α3 × DFij, (12)

where SRij stands for the service reliability exhibited by the i-th CMfg service when un-
dertaking the j-th manufacturing task. The weight coefficients α1, α2 and α3 represent the
relative importance of the respective influencing factors, and α1 + α2 + α3 = 1.

With the passage of time, the equipment performance declines due to wear and aging,
and the technical level declines when it has not performed tasks for a long time. All of them
cause the service reliability to decline over time. Service transaction behavior is the most
important way to improve service reliability. When transaction occurs, the new service
reliability value can be calculated according to Equation (12). If there is no transaction
within a certain period of time, the service reliability declines with the passage of time. Its
attenuation rate is proportional to the current value of service reliability. The computation
formula is outlined as follows:

dSRij(t)
dt

= −τ2SRij(t), (13)

where τ2 is the attenuation coefficient of service reliability, and τ2 > 0. By solving the
differential equation, we can obtain that

SRij(t) = SRij(0)e−τ2t, (14)

where SRij(t) represents the value of SRij at time t, whereas SRij(0) signifies the initial
value of SRij at t = 0.

Combining Equations (12) and (14) can obtain that

SRij(t) = (µ − 1)SRij(0)e−τ2t + µ(α1 × FFij(t) + α2 × SFij(t) + α3 × DFij(t)) (15)
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where µ is a switching variable. If a CMfg service has transaction behavior at t, µ = 1, and
the calculated value SRij(t) is assigned to SRij(0). If a CMfg service has no transaction
behavior at t, µ = 0.

3.3.4. Composition Complexity

Composition complexity serves as a metric to assess the intricacy involved in SvcComp.
A lower composition complexity indicates a higher degree of service reliability and a greater
likelihood of successfully executing manufacturing tasks. The composition complexity can
be determined using cloud entropy, as outlined below [29].

CC =
N

∑
i=1

CEi = −
N

∑
i=1

Qi

∑
j=1

STij

TTi
ln

STij

TTi
(16)

where CC is the composition complexity. The total count of CMfg services within the
SvcComp scheme is represented by N. The cloud entropy specific to the i-th CMfg service is
denoted as CEi. Qi signifies the aggregate number of states the i-th CMfg service undergoes
to accomplish the designated manufacturing task. STij represents the duration of the i-
th CMfg service in its j-th state, while TTi denotes the overall time required for the i-th
CMfg service to complete the corresponding manufacturing task. Composition complexity
corresponds to the cumulative cloud entropy of all CMfg services within the SvcComp
scheme. A lower sum of cloud entropy indicates a reduced composition complexity and,
consequently, a superior service reliability.

3.3.5. Execution Time

The CMfg service execution time pertains to the response latency exhibited by CMfg
services in addressing manufacturing tasks. Given the intricate blend of online and offline
factors inherent in CMfg services, their execution time often surpasses that of conventional
web services. The duration encompasses the processing time of CMfg services, auxiliary
tasks like equipment maintenance and workpiece clamping, and the time expended on
material transportation throughout the service execution. The primary types of CMfg
SvcComp encompass sequential, parallel, choice, and cyclic compositions. The calculation
of CMfg SvcComp’s execution time can be formulated as follows:

ET =



N
∑

i=1
(PETi + AETi + LETi), if it is sequence composition;

max(PETi + AETi + LETi), if it is parallel composition;
N
∑

i=1
[θi · (PETi + AETi + LETi)], if it is choice composition;

ψ · (PETi + AETi + LETi), if it is cycle composition.

(17)

where, ET is the overall execution time of CMfg SvcComp. For each individual service
within the composition, PETi represents the processing time specific to the i-th service.
Similarly, AETi signifies the auxiliary time associated with the i-th service, while LETi
denotes the logistics time required. Furthermore, N indicates the comprehensive count of
CMfg services encompassed within the composition. When it comes to selecting services,
θi signifies the likelihood of choosing the i-th service within the choice composition, and
N
∑

i=1
θi = 1. Lastly, ψ represents the total number of cycles involved.

3.3.6. Execution Cost

The cost incurred by customers for utilizing CMfg services on an as-needed basis is
referred to as the CMfg service execution cost. This cost encompasses various elements,
including fees levied by service providers for CMfg services, expenses associated with
material transportation during service execution, and charges imposed by third-party cloud



Symmetry 2024, 16, 772 12 of 29

platforms for their services. The computation of the execution cost for a composition of
CMfg services can be performed according to the following method:

EC =



N
∑

i=1
(SECi + LECi + PECi), if it is sequence composition;

N
∑

i=1
(SECi + LECi + PECi), if it is parallel composition;

N
∑

i=1
[θi · (SECi + LECi + PECi)], if it is choice composition;

ψ · (SECi + LECi + PECi), if it is cycle composition.

(18)

where EC represents the overall execution cost of the CMfg SvcComp. SECi specifically
denotes the cost of the i-th service within the composition, whereas LECi pertains to the
logistics expenses associated with the same service. Additionally, PECi stands for the
service cost imposed by the cloud platform for the i-th service within the composition.

To comprehensively capture the performance and service excellence of potential CMfg
services and their compositions, an analysis has been conducted focusing on service re-
liability and credibility. Based on the analysis, six key quality evaluation criteria have
been identified: time-varying credibility, composition synergy, time-varying reliability,
composition complexity, execution time, and execution cost. These criteria form the foun-
dation for our study on CMfg SvcComp model construction, algorithm enhancement, and
case analysis.

3.4. Multi-Objective Optimization Model of CMfg SvcComp

Among the above six evaluation factors, time-varying service reliability, time-varying
service credibility, and composition synergy degree are positive evaluation factors, and their
maximum values are expected in the optimization goal. Composition complexity, execution
time, and execution cost are negative evaluation factors, and their minimum values are
expected in the optimization goal. Based on the above six evaluation factors, a mathematical
model for the multi-objective optimization of CMfg SvcComp is hereby established.

max Z1 = max
N

∑
i=1

m

∑
j=1

(SRij(t) · ζij), (19)

max Z2 = max
N

∑
i=1

m

∑
j=1

(SCij(t) · ζij), (20)

max Z3 = max
m

∑
j=1

j

∑
k=1

N

∑
p=1

N

∑
q=1

(CSpq · ζpj · ζqk), (21)

min Z4 = min CC = min (−
N

∑
i=1

Qi

∑
j=1

STij

TTi
ln

STij

TTi
), (22)

min Z5 = minET(PETi, AETi, LETi), (23)

min Z6 = min EC(SECi, LECi, PECi), (24)

s.t. ET(PETi, AETi, LETi) ≤ ETthreshold, (25)

EC(SECi, LECi, PECi) ≤ ECthreshold, (26)

N

∑
i=1

ζij ≥ 1, (27)

where Z1, Z2, Z3, Z4, Z5 and Z6 serve as the objective functions for optimizing CMfg
SvcComp. Equations (19)–(21) aim to maximize overall service reliability, credibility, and
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composition synergy, respectively. Conversely, Equations (22)–(24) strive to minimize com-
position complexity, execution time, and execution cost, respectively. Equations (25)–(27)
outline the constraints of CMfg SvcComp. Specifically, Equation (25) ensures that the
maximum execution time for manufacturing tasks does not exceed the threshold ETthreshold.
Equation (26) imposes a cost limit, ensuring that the total execution cost of manufacturing
tasks remains below the threshold, ECthreshold. Finally, Equation (27) ensures that each
manufacturing task is assigned to at least one CMfg service for execution. The variable ζij
serves as a switch; it takes a value of 1 if the j-th manufacturing task is assigned to the i-th
CMfg service, and 0 otherwise.

4. Improved Chaos Sparrow Search Algorithm

The sparrow search algorithm, a novel swarm intelligence optimization method in-
troduced in 2020, simulates the foraging behavior of sparrows. Although it has superior
performance, it has made slow progress in addressing the challenges of multi service com-
position optimization and is prone to local optimization traps. To enhance its performance,
the Bernoulli chaotic mapping formula is integrated, and the position calculation formulas
for explorer and scouter sparrows are fine-tuned. The improvement boosts the algorithm’s
search and development capabilities, leading to superior global optimization results, faster
convergence, and shorter runtimes. As a result, a novel and improved approach is provided
for tackling multi service composition optimization problems.

4.1. Basic Sparrow Search Algorithm

In the basic sparrow search algorithm (BSSA), a sparrow’s position corresponds to a
solution. Different sparrow positions represent different solutions. There are three types
of sparrows in the sparrow group, the explorer sparrow, follower sparrow, and scouter
sparrow, which correspond to the three behaviors of sparrows when foraging: (1) as an
explorer, searching and finding food; (2) as a follower, following the explorer for foraging;
and (3) as a scouter, detecting and monitoring predator threats, providing early warning
for the sparrow group, and deciding whether to give up the current food.

In the BSSA, the explorer sparrow position formula is given below.

x(t+1)
i,j =

x(t)i,j · exp( −i
ρ·MaxIteNum ), ϖ < Sa f Thr

x(t)i,j + Q · L, ϖ ≥ Sa f Thr
, (28)

where x(t)i,j represents the updated position of the j-th dimension of the i-th explorer sparrow
after the t-th iteration. The algorithm has a predefined maximum iteration count denoted
by MaxIteNum. The variable ρ is a randomly generated number within the range of (0, 1],
ensuring a uniform distribution. Q, on the other hand, is a random number drawn from
the standard Gaussian distribution within the interval [0, 1]. The matrix L, which consists
of all elements equal to 1, is related to 1 × m. Additionally, m signifies the total number
of dimensions in x(t)i,j . Lastly, ϖ is a randomly chosen number from the range [0, 1], and
called the warning value; Sa f Thr is a random number between [0.5, 1], and is called the
safety threshold.

The follower sparrow position formula is shown as follows:

x(t+1)
i,j =

 Q · exp(
x(t)w,j−x(t)i,j

i2 ), i > NumSpa
2

x(t+1)
b,j +

∣∣∣x(t)i,j − x(t+1)
b,j

∣∣∣ · A+ · L, i ≤ NumSpa
2

, (29)

where x(t+1)
b,j denotes the globally optimal foraging position attained by the explorer fol-

lowing the (t + 1)-th iteration. Conversely, x(t)w,j represents the globally poorest foraging
position recorded after the t-th iteration. Furthermore, A+ comprises a matrix derived from
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1 × m, with its elements randomly assigned to either 1 or −1, and A+ = AT · (AAT)
−1.

Lastly, NumSpa signifies the aggregate count of sparrows involved.
The scouter sparrow position formula is given below.

x(t+1)
i,j =


x(t)b,j + σ ·

∣∣∣x(t)i,j − x(t)b,j

∣∣∣, fi ̸= fb

x(t)i,j + ς ·
∣∣∣x(t)i,j −x(t)w,j

∣∣∣
| fi− fw |+ε

, fi = fb

, (30)

where x(t)b,j represents the globally optimal foraging position achieved after the t-th iteration.
σ serves as a step control parameter, a random number drawn from the standard Gaussian
distribution within the range [0, 1]. Additionally, ς is a uniformly distributed random
number between [−1, 1]. fi, fb and fw correspond to the fitness of the i-th sparrow, the
global best fitness, and the global worst fitness, respectively. Lastly, ε is a minute value that
ensures that the denominator of the formula remains nonzero, preventing any division by
zero errors.

4.2. Improved Chaos Sparrow Search Algorithm
4.2.1. SvcComp Coding Method

The improved chaos sparrow search algorithm (ICSSA) employs an integer encoding
approach to establish a correspondence between the position of sparrows and the SvcComp
scheme. In the CMfg environment, customer manufacturing task types include the single-
function requirement type and multiple-function requirement type. The single-function
requirement manufacturing task can be completed directly by the atomic CMfg service
mapping a single manufacturing resource. The complex manufacturing task with multiple
functional requirements needs to combine more than two atomic CMfg services. The
execution procedure encompasses several key steps: the decomposition of CMfg tasks,
matching of cloud services, selection of services, and composition of services. A complex
manufacturing task, encompassing multiple functional prerequisites, can be dismantled
into m distinct sub-tasks. Each sub-task is then assigned to a suitable candidate cloud
service for execution. Consequently, the SvcComp comprises m atomic cloud services,
collectively fulfilling the complex manufacturing task. In the ICSSA, a cloud SvcComp can
be represented by a sparrow, and the sparrow dimension is m, corresponding to m atomic
cloud services. The j-th dimension of a sparrow corresponds to the set Sj of candidate
cloud services for the j-th sub-task Jj within a complex manufacturing task. The set Sj
encompasses all potential cloud services suitable for executing the task Jj. The numerical
value of the j-th dimension signifies the specific cloud service chosen to fulfill the j-th task.
Within a sparrow group encompassing NumSpa sparrows, the spatial location of the i-th
sparrow can be represented by an m-dimensional vector, as detailed below.

Xi = (Xi,1, Xi,2, · · · , Xi,j, · · · , Xi,m), j = 1, 2, 3, · · · , m. (31)

The sparrow group can be represented by a set as outlined below.

X = {X1, X2, · · · , Xi, · · · , XNumSpa}, i = 1, 2, 3, · · · , NumSpa, (32)

where Xi,j represents the j-th dimension of the positional vector associated with the i-th
sparrow. The numerical value of Xi,j signifies the specific cloud service chosen from the
candidate set Sj for task Jj during the process of SvcComp. NumSpa denotes the overall count
of sparrows within the sparrow group. Additionally, Figure 2 illustrates the correlation
between the sparrow and the SvcComp. Furthermore, m corresponds to the dimensionality
of the sparrow variable Xi. The sparrow code values in Figure 2 represent calling the
corresponding green service options and using the corresponding green manufacturing
resource options.
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4.2.2. Fitness Function Construction

Sparrows with better fitness can obtain food first. Serving as food explorers, the
sparrows steer the entire flock towards the food source. The ICSSA incorporates a weighted
summation technique to formulate its fitness function. The efficacy of the ICSSA is gauged
by the weighted aggregate of relative deviations across all objective functions, collectively
referred to as the weighted relative deviation.

∆i =
3

∑
k=1

δk

(
Zr,k − Zi,k

Zr,k

)
−

6

∑
k=4

δk

(
Zr,k − Zi,k

Zr,k

)
, (33)

where ∆i denotes the weighted relative deviation, whereas Zi,1, Zi,2, Zi,3, Zi,4, Zi,5 and Zi,6
represent the six objective function values pertaining to the CMfg SvcComp scheme for the
i-th sparrow. Additionally, Zr,1, Zr,2, Zr,3, Zr,4, Zr,5 and Zr,6 serve as the reference values
for the six objective functions, established during the initialization phase of the algorithm.
The reference values correspond to the objective function values of the CMfg SvcComp
scheme associated with a randomly chosen sparrow. Furthermore, δ1, δ2, δ3, δ4, δ5 and δ6
represent the respective weight coefficients assigned to each of the six objective functions,

and
6
∑

k=1
δk = 1.

A smaller weighted relative deviation indicates a superior SvcComp scheme. Utiliz-
ing the formula for the weighted relative deviation, the fitness function of the ICSSA is
constructed in the following manner:

fi = Γ −
(

3

∑
k=1

δk

(
Zr,k − Zi,k

Zr,k

)
−

6

∑
k=4

δk

(
Zr,k − Zi,k

Zr,k

))
(34)
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where fi represents the fitness score of the i-th sparrow, while Γ denotes a significantly
large positive constant. The sparrow with better fitness value means that it is closer to
high-quality food sources and has higher priority in obtaining food.

4.2.3. Improve the Position Formula of the Explorer Sparrow

Sparrows exhibiting superior fitness values are privileged in accessing food resources,
and as such, they guide the entire sparrow population towards the food source. As evident
in Equation (28), the explorer sparrow in the BSSA initially converges towards the first
global optimal solution, limiting its search scope and predisposing it to local extrema,
thereby compromising search precision. To address the issue, the ICSSA incorporates
Bernoulli chaotic operations and the global optimal solution from the preceding generation
into the position calculation formula of the explorer sparrow, as delineated in Equation (35).
Bernoulli chaotic operation is used to generate chaotic sequences. It has the characteristics
of nonlinearity, ergodicity, randomness, and so on. Furthermore, the updated formula
takes into account the positions of both the previous generation’s explorer sparrow and
the previous generation’s global optimal sparrow, thereby effectively safeguarding the
algorithm from converging prematurely towards local optima.

X(t+1)
i,j =

X(t)
i,j + ω(X(t)

Bes,j − X(t)
i,j ) · B(t) ϖ < Sa f Thr

X(t)
i,j + Q · L ϖ ≥ Sa f Thr

(35)

where x(t)i,j represents the updated position of the j-th dimension of the i-th explorer sparrow

after the t-th iteration. X(t)
Bes,j represents the globally optimal solution attained after the

completion of the t-th iteration. Q is a random number drawn from the standard Gaussian
distribution within the interval [0, 1]. The matrix L, which consists of all elements equal to
1, is related to 1 × m. Additionally, m signifies the total number of dimensions in x(t)i,j . ϖ is a
randomly chosen number from the range [0, 1], and is called the warning value. Sa f Thr is
a number between [0.5, 1], and is called the safety threshold. If ϖ < Sa f Thr, Equation (35)
signifies the absence of predators in proximity to the explorer sparrow, enabling it to
conduct a thorough search. Conversely, when ϖ ≥ Sa f Thr, Equation (35) suggests that
some sparrows have detected predators, necessitating the entire group to relocate to safer
regions promptly. B(t) is the value of the t-th iteration Bernoulli chaotic sequence, and is
calculated as follows.

To surpass the optimization performance achieved by the random numbers employed
in the standard sparrow algorithm formula, Bernoulli chaotic operations are incorporated
during the initialization phase of the sparrow population, as detailed in Equation (36).

B(t) =

{
B(t−1)

1+λ B(t) ∈ (0, 1 − λ]
B(t−1)−1+λ

λ B(t) ∈ (1 − λ, 1)
(36)

where λ is the control parameter. The initial value of the Bernoulli chaotic sequence is set
as a uniform random number in the (0, 1) interval.

Inspired by the concept of inertia weight, a dynamic weight factor ω is incorporated
into the position formula of the explorer sparrow, as outlined in Equation (37). Initially,
the factor assumes a larger value, facilitating effective global exploration. As the iteration
nears completion, it adjusts dynamically, enabling enhanced local search capabilities and
accelerated convergence.

ω =
e2(1− t

MaxIteNum ) − e−2(1− t
MaxIteNum )

e2(1− t
MaxIteNum ) + e−2(1− t

MaxIteNum )
(37)

where t means the t-th iteration. MaxIteNum signifies the utmost iteration count of
the algorithm.
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4.2.4. Improve the Position Formula of the Follower Sparrow

The formula for determining the position of the follower sparrow has been enhanced
as follows:

X(t+1)
i,j =


Q · e

X(t)
Wor,j − X(t)

i,j

i2 , i >
NumSpa

2
X(t+1)

Exp,j +
1
m

m
∑

j=1
(ς · (

∣∣∣X(t)
i,j − X(t+1)

Exp,j

∣∣∣)), i ≤ NumSpa
2

(38)

where X(t+1)
Exp,j is the best foraging position of the explorer sparrows after the (t + 1)-th

iteration. After the t-th iteration, X(t)
Wor,j represents the globally poorest foraging position.

Q is a random number adhering to the [0, 1] standard Gaussian distribution, while ς is a
uniformly distributed random number within the range [−1, 1]. Additionally, NumSpa
signifies the total sparrow population. Equation (38) stipulates that when i > NumSpa

2 , the
follower sparrow’s position is determined by multiplying a standard Gaussian distributed
random number with an exponential function with the natural number e as its base. When
the sparrow population converges, its value conforms to the standard Gaussian distribution
random number. When i ≤ NumSpa

2 , the follower sparrow assumes a random position that
lies close to the present globally optimal location.

4.2.5. Improve the Position Formula of the Scouter Sparrow

The formula for determining the position of the scouter sparrow has been enhanced
as follows:

X(t+1)
i,j =

 X(t)
Bes,j + γ1(X(t)

i,j − X(t)
Bes,j) fi ̸= fBes

X(t)
Bes,j + γ2(X(t)

Wor,j − X(t)
Bes,j) fi = fBes

(39)

where γ1 and γ2 are the sparrow motion control coefficients, which control the sparrow
motion direction and step length. γ1 and γ2 are uniformly distributed random numbers
within the range of [−1, 1]. Equation (39) illustrates that when the scouter sparrow occupies
the current globally optimal position, it relocates to a nearby position. The dispersion level
of its new position is influenced by the disparity between the global optimal and worst
positions, as well as the step size control factor γ1. Conversely, if the sparrow is not situated
at the global optimal position, it steers towards the optimal location, with the distance
determined by the difference between the global optimum and its current position, along
with the step size control factor γ2.

In the ICSSA, the sparrow’s roles as explorer, follower, and scouter are interchanged.
However, the proportion of sparrows with three roles remains constant, and explorers
typically comprise 10% to 20% of the overall population. Serving as the foraging leader
of the sparrow group, the explorer sparrow possesses a vast search area and continuously
updates its position in search of food sources. The follower sparrow follows the explorer
to forage for higher fitness. In order to avoid the threat of predators, the ICSSA randomly
selects 10~20% of the sparrows as scouters for surveillance and warning, so as to timely
warn the whole sparrow group of anti-hunting behavior when the predators appear. In
the proposed algorithm, the Bernoulli chaotic operator changes the symmetry of the
old sparrow search algorithm, increases the uncertainty and randomness of the searcher
sparrow position in the new algorithm, and affects the position update and movement
strategies of the follower and scouter sparrows. The asymmetric chaotic characteristic
brings better global search ability and optimization performance to the new algorithm.

4.3. Algorithm Steps

Illustrated in Figure 3, the key procedures of the ICSSA are outlined below:
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Step 1: Initialize the sparrow population, including the total number of sparrows,
NumSpa; the maximum iteration number, MaxIteNum; the explorer ratio, ExpRat; the
scouter ratio, ScoRat; the safety threshold, SafThr; the Bernoulli chaotic sequence control
parameter, λ; and so on. A sparrow is randomly selected and the six objective function
values of its corresponding CMfg SvcComp scheme are taken as reference values and
assigned to Zr,1, Zr,2, Zr,3, Zr,4, Zr,5 and Zr,6.

Step 2: Calculate time-varying credibility, composition synergy, time-varying reliability,
composition complexity, execution time, and execution cost.

Step 3: Determine the weighted relative deviation and fitness score for each
individual sparrow.

Step 4: Select a subset of sparrows with superior fitness values as explorers, based on
the explorer ratio, ExpRat, and subsequently update their positions utilizing Equation (35).
Compare every explorer sparrow’s positions, and obtain the best one, XExp.

Step 5: Select some sparrows as scouters according to the scouter ratio, ScoRat, and
update the scouter sparrows’ positions utilizing Equation (39).

Step 6: The remaining sparrows assume the role of followers and undergo position
updates in accordance with Equation (38).

Step 7: Compare every sparrow’s fitness value, fi, in the population with the global
optimal fitness value, fBes. If fi > fBes, replace fBes with fi, and replace XBes with Xi.
Compare fi with the global worst fitness value, fWor. If fi < fWor, replace fWor with fi, and
replace XWor with Xi.

Step 8: Assess the termination criteria of the algorithm. If the iteration count attains
the preset maximum or fulfills other designated end conditions, halt the algorithm iteration
and output the result; otherwise, proceed to step 2.
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5. Simulation Experiments and Analysis
5.1. Experimental Condition Setting

In order to verify the performance of the proposed ICSSA in solving multi-objective
optimization problems, the WFG and DTLZ series test issues are selected, and the inverse
generation distance (IGD) index and hyper volume (HV) index are used to evaluate the
convergence of the algorithm and the diversity of its population. Convergence and diversity
are two key metrics for multi-objective evolutionary algorithms. The algorithm achieves
better diversity and convergence when the IGD value is smaller and the HV value is larger.
In the experiment, each algorithm was independently run 25 times on each test question,
and the results of the ICSSA were compared with the other algorithms using a rank sum
test at a significance level of 0.05.

The computer configuration for the experiment is Intel Core i3-3110M CPU, 2.4 GHz
main frequency, and 4G memory; the BSSA [53], PSO [3], SGA [46] and NSGA-III [54]
are used as comparative algorithms. BSSA is the basic sparrow search algorithm; PSO is
the particle swarm optimization algorithm; SGA is the standard genetic algorithm; and
NSGA-III is the third-generation non-dominated sorting genetic algorithm. Under the same
conditions, each algorithm is subjected to 25 independent experiments and compared. The
population size of each algorithm is set to 120 and the number of iterations is 300. Other
algorithm parameters are referenced from the corresponding literature.

5.2. Analysis of Experimental Results

Tables 1 and 2 record the mean and variance of IGD and HV, respectively. In the tables,
the preceding values represent the mean of IGD or HV, while the values in parentheses
represent their standard deviation. The last row shows the test results of the ICSSA
compared to other algorithms. The symbol “+” indicates that the ICSSA performs better
than the other algorithms, “-” indicates that the ICSSA is inferior to the other algorithms,
and “=” indicates that the ICSSA performs similarly to the other algorithms. On the mean
of IGD, the ICSSA outperforms BSSA, PSO, SGA, and NSGA-III in 10 out of 15 test issues.
In the other four test issues, WFG2, DTLZ2, DTLZ3, and DTLZ7, NSGA-III performs
the best, and the ICSSA is second best or third best. In the WFG3 test issue, the PSO
algorithm has the best test results, and the test results of the ICSSA are suboptimal. On the
variance of IGD, the ICSSA has 12 out of 15 test issues with smaller variances than other
algorithms. In the test issues WFG1, WFG3, WFG5, DTLZ3, and DTLZ7, the variance of
the ICSSA test results is much smaller than that of BSSA PSO, SGA, and NSGA-III. On
other testing issues, although the IGD variance results of the ICSSA are not the best, they
all reached suboptimal levels, indicating that the ICSSA has good robustness. In terms of
HV performance indicators, the ICSSA outperforms BSSA, PSO, SGA, and NSGA-III in 12
out of 15 test issues. In the test issues WFG2, DTLZ2 and DTLZ3, the NSGA-III test results
are the best, and the ICSSA performs suboptimally.

Table 1. IGD values of ICSSA, BSSA, PSO, SGA, and NSGA-III algorithm test results.

Issues ICSSA BSSA PSO SGA NSGA-III

WFG1 1.703 × 10−5 (8.064 × 10−7) 3.149 × 10−4 (9.586 × 10−6) + 5.941 × 10−5 (1.874 × 10−5) + 3.205 × 10−5 (9.363 × 10−3) + 2.261 × 10−5 (9.501 × 10−6) +
WFG2 1.964 × 10−4 (1.655 × 10−6) 4.734 × 10−4 (7.681 × 10−6) = 5.906 × 10−5 (3.765 × 10−6) − 3.813 × 10−4 (3.522 × 10−6) = 8.584 × 10−5 (3.203 × 10−5) −
WFG3 8.575 × 10−5 (1.322 × 10−7) 8.264 × 10−4 (3.959 × 10−5) + 7.942 × 10−5 (4.092 × 10−6) − 9.545 × 10−4 (3.565 × 10−6) + 3.938 × 10−4 (8.723 × 10−6) +
WFG4 3.379 × 10−5 (1.906 × 10−6) 8.905 × 10−4 (2.652 × 10−6) + 9.182 × 10−5 (1.652 × 10−5) + 2.930 × 10−4 (2.689 × 10−4) + 6.045 × 10−5 (2.102 × 10−5) +
WFG5 3.141 × 10−5 (3.407 × 10−6) 1.781 × 10−4 (4.809 × 10−5) + 3.332 × 10−5 (1.307 × 10−5) + 2.130 × 10−4 (6.643 × 10−4) + 2.494 × 10−4 (1.328 × 10−4) +
WFG6 8.399 × 10−5 (6.465 × 10−7) 9.779 × 10−5 (9.534 × 10−7) = 1.207 × 10−4 (1.722 × 10−5) + 2.408 × 10−4 (2.481 × 10−6) + 9.473 × 10−5 (2.138 × 10−6) +
WFG7 2.460 × 10−5 (5.745 × 10−6) 5.795 × 10−4 (8.552 × 10−6) + 7.018 × 10−4 (5.826 × 10−6) + 9.184 × 10−5 (2.293 × 10−6) = 6.010 × 10−5 (1.285 × 10−6) =
WFG8 2.695 × 10−4 (5.953 × 10−4) 3.798 × 10−3 (8.123 × 10−3) + 2.583 × 10−3 (1.219 × 10−4) + 7.405 × 10−3 (2.149 × 10−3) + 3.240 × 10−3 (6.775 × 10−4) +
DTLZ1 2.643 × 10−4 (1.493 × 10−5) 1.462 × 10−3 (3.399 × 10−4) + 1.635 × 10−3 (3.678 × 10−5) + 2.723 × 10−4 (4.843 × 10−4) + 2.787 × 10−3 (7.211 × 10−4) +
DTLZ2 4.005 × 10−3 (5.898 × 10−5) 4.139 × 10−3 (3.628 × 10−5) = 4.612 × 10−3 (4.231 × 10−5) = 4.813 × 10−3 (4.499 × 10−4) + 4.930 × 10−4 (3.695 × 10−4) −
DTLZ3 5.853 × 10−2 (7.844 × 10−5) 7.013 × 10−2 (3.185 × 10−3) + 5.909 × 10−3 (1.328 × 10−4) − 4.810 × 10−2 (2.163 × 10−3) + 4.828 × 10−3 (1.861 × 10−4) −
DTLZ4 5.570 × 10−4 (3.397 × 10−5) 4.165 × 10−2 (2.467 × 10−4) + 3.617 × 10−2 (4.615 × 10−5) + 3.335 × 10−2 (4.039 × 10−5) + 4.408 × 10−3 (4.548 × 10−4) +
DTLZ5 4.940 × 10−4 (3.773 × 10−5) 3.769 × 10−2 (4.194 × 10−4) + 4.198 × 10−3 (3.428 × 10−4) + 4.782 × 10−3 (4.258 × 10−3) + 5.352 × 10−4 (2.529 × 10−5) =
DTLZ6 5.549 × 10−4 (4.494 × 10−4) 4.323 × 10−3 (3.594 × 10−3) + 3.097 × 10−3 (4.938 × 10−3) + 3.119 × 10−3 (4.119 × 10−3) + 3.437 × 10−3 (5.678 × 10−4) +
DTLZ7 5.578 × 10−4 (3.963 × 10−5) 3.537 × 10−2 (4.887 × 10−4) + 3.571 × 10−3 (9.137 × 10−3) + 4.034 × 10−2 (1.673 × 10−3) + 5.320 × 10−4 (3.449 × 10−4) +

(+/=/−) (12/3/0) (11/1/3) (13/2/0) (10/2/3)
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Table 2. HV values of ICSSA, BSSA, PSO, SGA, and NSGA-III algorithm test results.

Issues ICSSA BSSA PSO SGA NSGA-III

WFG1 7.590 × 10−1 (8.111 × 10−4) 4.736 × 10−1 (2.388 × 10−2) + 2.469 × 10−1 (7.416 × 10−3) + 2.404 × 10−1 (4.654 × 10−2) + 6.746 × 10−1 (3.979 × 10−3) +
WFG2 6.766 × 10−1 (3.528 × 10−3) 4.906 × 10−1 (3.027 × 10−2) + 5.709 × 10−1 (6.061 × 10−2) + 4.365 × 10−1 (5.437 × 10−3) = 6.983 × 10−1 (6.015 × 10−3) =
WFG3 6.370 × 10−1 (3.876 × 10−3) 3.953 × 10−1 (4.129 × 10−2) + 6.317 × 10−1 (8.259 × 10−2) + 4.943 × 10−1 (1.114 × 10−2) + 5.885 × 10−1 (8.532 × 10−3) =
WFG4 3.523 × 10−1 (2.559 × 10−3) 1.859 × 10−1 (1.099 × 10−2) + 3.374 × 10−1 (2.504 × 10−3) = 1.058 × 10−1 (1.387 × 10−2) + 3.017 × 10−1 (3.641 × 10−3) =
WFG5 3.488 × 10−1 (2.708 × 10−4) 1.735 × 10−1 (2.628 × 10−2) + 3.193 × 10−1 (4.418 × 10−3) + 2.658 × 10−1 (4.681 × 10−2) + 2.695 × 10−1 (2.974 × 10−4) =
WFG6 2.915 × 10−1 (7.222 × 10−4) 2.842 × 10−1 (2.648 × 10−3) + 1.683 × 10−1 (1.972 × 10−2) + 1.131 × 10−1 (1.321 × 10−2) + 2.605 × 10−1 (1.625 × 10−3) +
WFG7 2.758 × 10−1 (4.446 × 10−4) 1.691 × 10−1 (2.186 × 10−2) + 1.429 × 10−1 (7.218 × 10−3) + 1.763 × 10−1 (4.688 × 10−2) + 1.907 × 10−1 (6.864 × 10−4) =
WFG8 3.943 × 10−1 (4.296 × 10−4) 3.167 × 10−1 (5.194 × 10−3) + 2.043 × 10−1 (4.644 × 10−4) = 1.953 × 10−1 (1.543 × 10−4) = 3.272 × 10−1 (3.027 × 10−3) +
DTLZ1 6.713 × 10−1 (4.638 × 10−4) 5.462 × 10−1 (9.202 × 10−4) = 6.623 × 10−1 (7.853 × 10−3) = 4.873 × 10−1 (4.116 × 10−2) + 5.635 × 10−1 (2.581 × 10−3) +
DTLZ2 4.139 × 10−1 (2.033 × 10−4) 3.112 × 10−1 (1.829 × 10−2) + 3.912 × 10−1 (3.245 × 10−3) + 3.103 × 10−1 (3.074 × 10−2) + 4.240 × 10−1 (3.452 × 10−3) +
DTLZ3 3.478 × 10−1 (1.699 × 10−4) 2.743 × 10−1 (2.648 × 10−2) + 3.109 × 10−1 (2.923 × 10−3) + 2.410 × 10−1 (1.953 × 10−2) + 3.963 × 10−1 (3.787 × 10−3) +
DTLZ4 4.860 × 10−1 (2.452 × 10−4) 3.465 × 10−1 (2.696 × 10−3) + 2.857 × 10−1 (5.425 × 10−2) + 2.635 × 10−1 (1.502 × 10−2) + 3.728 × 10−1 (3.345 × 10−2) +
DTLZ5 4.652 × 10−1 (3.106 × 10−3) 3.729 × 10−1 (1.933 × 10−2) + 3.488 × 10−1 (2.715 × 10−2) + 3.672 × 10−1 (2.738 × 10−2) + 4.230 × 10−1 (2.243 × 10−3) =
DTLZ6 4.859 × 10−1 (4.424 × 10−4) 3.613 × 10−1 (2.763 × 10−2) + 2.477 × 10−1 (2.306 × 10−2) + 2.309 × 10−1 (1.858 × 10−2) + 2.737 × 10−1 (1.825 × 10−3) +
DTLZ7 3.718 × 10−1 (7.866 × 10−4) 3.677 × 10−1 (8.731 × 10−4) = 3.340 × 10−1 (2.417 × 10−3) + 2.584 × 10−1 (2.627 × 10−3) + 3.450 × 10−1 (8.816 × 10−4) =

(+/=/−) (13/2/0) (12/3/0) (13/2/0) (8/7/0)

Figures 4 and 5 provide box plots of the distribution of IGD and HV values, respec-
tively, from which it can be observed that the ICSSA outperforms BSSA, PSO, SGA, and
NSGA-III in most test issues, especially in the HV index, and showed good test results,
indicating that the ICSSA has a wide spatial distribution range and good diversity. The
ICSSA mostly outperforms other algorithms in terms of IGD metrics. In the WFG3 testing
issue, the PSO algorithm achieved good results in the IGD mean test but poor results in the
HV mean test, indicating that the distribution range of non-inferior solutions found by the
PSO algorithm in the problem is limited. The ICSSA is suboptimal in the IGD mean test
but has the best results in the HV mean and variance. Based on comprehensive analysis,
regarding the WFG3 issue, the ICSSA is superior to PSO. In the testing issues of WFG2,
DTLZ2 and DTLZ3, the NSGA-III algorithm has the best testing performance, but the
ICSSA is suboptimal and has a small difference from the optimal value. Further in-depth
research on neighborhood relationships can improve the performance of the algorithm.
The above analysis indicates that the ICSSA searches for non-inferior solutions with a wide
distribution and good diversity, which reduces unnecessary computational consumption
while ensuring the accuracy of the solution and the convergence of the algorithm, and
effectively balances the convergence and diversity in solving multi-objective problems.
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Figure 5. Box plots of HV distribution for ICSSA, BSSA, PSO, SGA, and NSGA-III algorithms.

6. Application Example

Taking the manufacturing tasks of two disinfection robots (DRs) based on CMfg
SvcComp as an example, the above SvcComp model and ICSSA are applied and analyzed.

A manufacturing task for a DR can be segmented into five distinct sub-tasks: the
robot body production sub-task, J1; the driver module production sub-task, J2; the painting
sub-task, J3; the disinfection module production sub-task, J4; and the electrical control
module production sub-task, J5. The five sub-tasks are independent of each other. J1, J2, J4
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and J5 are parallel relations, and they all have sequence relations with J3. The alignment of
manufacturing tasks with cloud services, as determined by the ICSSA, is outlined in Table 3.
Specifically, manufacturing tasks J1, J2, J3, J4 and J5 correspond to cloud service sets S1, S2,
S3, S4 and S5, which encompass 4, 2, 3, 5, and 4 cloud services, respectively. SS, SH and VR
represent the service score factor, service honesty factor, and visit rate factor. ET, LET, PET
and AET represent execution time [hours], logistics time [hours], continuous processing
time [hours] and auxiliary time [hours] for equipment maintenance, respectively. UC
represents the unit time execution cost [USD/hour]. PEC represents cloud platform service
cost [USD]. Time-varying service reliability, SR, is calculated according to Equation (15),
and α1 = 0.4, α2 = 0.3 and α3 = 0.3. According to Equations (10) and (16), time-varying
service credibility, SC, and composition complexity, CC, are calculated, respectively, and
β1 = 0.3, β2 = 0.4 and β3 = 0.3. The calculation results are shown in Table 3. RR represents
the number of recommendation records. DR represents the number of dishonest records.
The users’ scoring values, US, are shown in Table 4, where USh,i represents the h-th user’s
scoring value for the i-th CMfg service. The attenuation coefficient values are τ1 = τ2= 0.01.

Table 3. Matching relationship between cloud services and manufacturing tasks.

Jj J1 J2 J3 J4 J5

Sj S1 S2 S3 S4 S5

Si,j S1,1 S2,1 S3,1 S4,1 S1,2 S2,2 S1,3 S2,3 S3,3 S1,4 S2,4 S3,4 S4,4 S5,4 S1,5 S2,5 S3,5 S4,5

FF 0.4 0.4 0.2 0.8 0.8 0.6 0.8 0.4 0.2 0.8 0.4 0.2 0.6 0.8 0.6 0.4 0.8 0.2
SF 0.5 0.8 0.6 0.8 0.8 0.8 0.9 0.7 0.7 0.3 0.6 0.4 0.6 0.9 0.8 0.3 0.8 0.6
DF 0.4 0.8 0.4 0.8 0.8 0.4 1 0.8 1 0.8 0.4 0.4 1 1 0.8 0.4 1 0.4
SR 0.43 0.64 0.38 0.80 0.80 0.60 0.81 0.77 0.83 0.65 0.46 0.32 0.72 0.89 0.72 0.37 0.86 0.38
RRi 139 140 119 145 144 150 144 111 146 114 150 146 110 142 126 148 150 129
DRi 5 3 5 3 3 2 2 2 1 5 6 3 4 4 5 3 4 4
VNi 221 215 182 216 200 220 223 188 225 213 212 193 217 216 248 183 215 195
SSi 0.663 0.667 0.653 0.472 0.693 0.700 0.467 0.733 0.800 0.733 0.622 0.576 0.792 0.558 0.773 0.538 0.867 0.625
SHi 0.965 0.979 0.960 0.980 0.980 0.987 0.986 0.982 0.993 0.958 0.962 0.980 0.965 0.973 0.962 0.980 0.974 0.970
VRi 1.000 0.973 0.824 0.977 0.909 1.000 0.991 0.837 1.000 0.982 0.977 0.889 1.000 0.995 1.000 0.738 0.867 0.786
SC 0.885 0.884 0.827 0.827 0.873 0.905 0.832 0.864 0.937 0.898 0.865 0.832 0.924 0.855 0.917 0.775 0.910 0.811
ET 99 91 58 63 60 70 45 47 48 74 89 80 74 88 75 87 67 90

LET 7 4 7 4 4 7 2 4 2 4 7 7 2 2 4 7 2 7
PET 23 27 33 27 28 33 32 23 22 33 27 33 27 19 27 23 29 21
AET 3 1 2 3 3 1 2 2 3 1 1 2 2 2 2 3 2 3
UC 47 40 64 55 60 46 41 46 44 50 55 50 51 45 57 66 65 65
PEC 5 5 3 3 3 3 2 2 2 5 5 5 3 5 3 5 3 5

Table 4. User’s scoring value.

USh,i S1,1 S2,1 S3,1 S4,1 S1,2 S2,2 S1,3 S2,3 S3,3 S1,4 S2,4 S3,4 S4,4 S5,4 S1,5 S2,5 S3,5 S4,5

US1 2 3 3 2 5 4 2 3 4 3 4 3 5 1 3 2 5 3
US2 3 2 3 3 3 3 3 4 5 2 3 2 3 3 4 3 4 3
US3 2 3 4 4 3 2 2 3 5 3 2 1 4 2 5 5 4 5
US4 3 3 2 1 2 3 1 5 3 4 2 1 2 4 5 4 4 2
US5 5 5 5 2 4 4 2 5 5 4 2 2 4 3 4 1 3 2
US6 5 4 3 3 5 5 1 4 3 5 2 4 5 3 5 3 5 2
US7 3 5 4 4 4 5 3 2 5 3 2 3 5 2 5 2 5 3
US8 4 5 2 2 4 5 2 4 5 3 3 5 4 2 5 3 5 4
US9 4 2 4 1 3 4 1 3 5 4 5 4 3 1 5 2 4 4
US10 2 5 2 2 2 3 1 5 4 5 4 3 3 5 5 3 2 3
US11 2 2 4 3 1 2 2 5 3 5 5 1 4 4 2 4 5 5
US12 3 1 3 3 4 1 3 4 2 5 4 3 5 3 4 2 4 4
US13 4 3 5 2 3 2 5 4 4 1 1 2 4 3 1 4 5 1
US14 3 5 4 1 3 3 4 3 5 2 3 4 4 2 4 2 5 2
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Table 4. Cont.

USh,i S1,1 S2,1 S3,1 S4,1 S1,2 S2,2 S1,3 S2,3 S3,3 S1,4 S2,4 S3,4 S4,4 S5,4 S1,5 S2,5 S3,5 S4,5

US15 5 4 3 2 5 3 3 3 5 5 2 3 2 1 3 1 5 4
US16 3 3 2 1 5 5 2 2 3 3 5 3 4 3 4 2 -- 2
US17 -- 2 4 2 4 4 2 5 4 4 2 5 5 4 3 2 -- 3
US18 -- 3 3 3 5 4 3 2 3 5 5 -- 5 3 4 4 -- 5
US19 -- -- 4 2 3 5 2 4 2 4 -- -- 4 4 3 3 -- 3
US20 -- -- 3 4 3 4 2 3 5 5 -- -- 3 -- 2 4 -- 2
US21 -- -- 1 4 2 3 3 3 4 2 -- -- 5 -- 5 3 -- 4
US22 -- -- 5 2 2 2 -- 4 3 -- -- -- 5 -- 5 5 -- 2
US23 -- -- 2 3 4 3 -- 3 4 -- -- -- 4 -- 4 1 -- 3
US24 -- -- 3 1 4 4 -- 4 5 -- -- -- 3 -- 5 3 -- 4
US25 -- -- 4 2 3 5 -- 5 5 -- -- -- -- -- 5 2 -- --
US26 -- -- 4 -- 4 4 -- 4 4 -- -- -- -- -- 5 1 -- --
US27 -- -- 3 -- 5 3 -- 3 5 -- -- -- -- -- 1 2 -- --
US28 -- -- 3 -- 2 2 -- 4 3 -- -- -- -- -- 1 4 -- --
US29 -- -- 2 -- 3 3 -- 5 2 -- -- -- -- -- 5 1 -- --
US30 -- -- 4 -- 4 5 -- 2 5 -- -- -- -- -- 4 -- -- --

According to Equation (11), the SvcComp synergy values of DR manufacturing tasks
are calculated and shown in Table 5.

Table 5. Calculation results of service composition synergy.

Si,j S1,1 S2,1 S3,1 S4,1 S1,2 S2,2 S1,3 S2,3 S3,3 S1,4 S2,4 S3,4 S4,4 S5,4 S1,5 S2,5 S3,5 S4,5

S1,1 1.000 1.919 1.586 1.636 1.606 1.707 1.000 1.000 1.000 1.747 1.899 1.808 1.747 1.889 1.758 1.879 1.677 1.833
S2,1 1.919 1.000 1.637 1.692 1.659 1.769 1.000 1.000 1.000 1.813 1.978 1.879 1.813 1.967 1.824 1.956 1.736 1.967
S3,1 1.586 1.637 1.000 1.921 1.967 1.829 1.000 1.000 1.000 1.784 1.652 1.725 1.784 1.659 1.773 1.667 1.866 1.744
S4,1 1.636 1.692 1.921 1.000 1.952 1.900 1.000 1.000 1.000 1.851 1.708 1.788 1.851 1.716 1.840 1.724 1.940 1.822
S1,2 1.606 1.659 1.967 1.952 1.000 1.857 1.000 1.000 1.000 1.811 1.674 1.750 1.811 1.682 1.800 1.690 1.896 1.989
S2,2 1.707 1.769 1.829 1.900 1.857 1.000 1.000 1.000 1.000 1.946 1.787 1.875 1.946 1.795 1.933 1.805 1.957 1.889
S1,3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.957 1.938 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S2,3 1.000 1.000 1.000 1.000 1.000 1.000 1.957 1.000 1.979 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S3,3 1.000 1.000 1.000 1.000 1.000 1.000 1.938 1.979 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
S1,4 1.747 1.813 1.784 1.851 1.811 1.946 1.000 1.000 1.000 1.000 1.831 1.925 2.000 1.841 1.987 1.851 1.905 1.989
S2,4 1.899 1.978 1.652 1.708 1.674 1.787 1.000 1.000 1.000 1.831 1.000 1.899 1.831 1.989 1.843 1.978 1.753 1.644
S3,4 1.808 1.879 1.725 1.788 1.750 1.875 1.000 1.000 1.000 1.925 1.899 1.000 1.925 1.909 1.938 1.920 1.838 1.700
S4,4 1.747 1.813 1.784 1.851 1.811 1.946 1.000 1.000 1.000 2.000 1.831 1.925 1.000 1.841 1.987 1.851 1.905 1.677
S5,4 1.889 1.967 1.659 1.716 1.682 1.795 1.000 1.000 1.000 1.841 1.989 1.909 1.841 1.000 1.852 1.989 1.761 1.778
S1,5 1.758 1.824 1.773 1.840 1.800 1.933 1.000 1.000 1.000 1.987 1.843 1.938 1.987 1.852 1.000 1.862 1.893 1.500
S2,5 1.879 1.956 1.667 1.724 1.690 1.805 1.000 1.000 1.000 1.851 1.978 1.920 1.851 1.989 1.862 1.000 1.770 1.522
S3,5 1.677 1.736 1.866 1.940 1.896 1.957 1.000 1.000 1.000 1.905 1.753 1.838 1.905 1.761 1.893 1.770 1.000 1.533
S4,5 1.833 1.967 1.744 1.822 1.989 1.889 1.000 1.000 1.000 1.989 1.644 1.700 1.677 1.778 1.500 1.522 1.533 1.000

The program of the ICSSA is written in MATLAB R2015a. The execution time con-
straint ETthreshold is 500 h, and the execution cost constraint ECthreshold is USD 70,000. The
sparrow population NumSpa comprises 50 individuals, and the maximum iteration count
MaxIteNum is set to 180. Γ = 99 and λ = 0.5. The weight coefficients for six objective
functions are designated as δ1 = δ3 = δ5 = δ6 = 0.2 and δ2 = δ4 = 0.1. After 87 iterations, the
ICSSA converges and the population optimal fitness value is 99.101. In the corresponding
optimal SvcComp scheme, the time-varying service reliability is 6.161, the composition
complexity is 8.81, the time-varying service credibility is 7.085, the composition synergy
is 40.854, the execution time is 182 h, and the execution cost is USD 33,921. The optimal
SvcComp scheme is represented by the sparrow position code 4114342313. The code’s
interpretation, as depicted in Figure 6, is as follows: for the first DR manufacturing task J1,1,
the fourth cloud service from set S1 is selected; for J2,1, the first service from S2 is selected;
for J3,1, the first from S3 is selected; for J4,1, the fourth from S4 is selected; and for J5,1, the
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third from S5 is selected. Similarly, for the second DR manufacturing task, J1,2 selects the
fourth service from S1; for J2,2, the second from S2 is selected; for J3,2, the third from S3
is selected; for J4,2, the first from S4 is selected; and for J5,2, the third from S5 is selected.
The average execution time stands at 18.73 s, and the iteration curves pertaining to its key
parameters are exhibited in Figure 7. Figure 7a shows the time-varying service reliability
iteration curve; Figure 7b shows the time-varying service credibility iteration curve. When
the sparrow population iterates to the 87th iteration, the algorithm tends to be stable. The
optimal individual fitness iteration curve is shown as the red curve in Figure 8.
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In the case of the same maximum iteration number and total number of sparrows,
five algorithms such as the ICSSA, BSSA [53], PSO [3], SGA [46] and NSGA-III [54] are
employed to address the identical SvcComp optimization problem. According to Figure 8,
the ICSSA attains the optimal solution in the 87th iteration, BSSA in the 92nd, PSO in the
95th, SGA in the 126th, and NSGA-III in the 97th iteration. All five algorithms were tested
on the same portable computer, featuring an Intel Core i3-3110M CPU, a 2.4 GHz main
frequency, and 4G of memory. The equipment is manufactured by Lenovo in Shenzhen,
China. It takes 18.73 s for ICSSA, 19.25 s for BSSA, 19.81 s for PSO, 26.68 s for SGA,
and 20.54 s for NSGA-III. The preceding experimental outcomes clearly demonstrate that
when addressing the multi-objective optimization challenge of CMfg SvcComp, the ICSSA
exhibits superior convergence velocity and reduced solution time in comparison to the
BSSA, PSO, SGA, and NSGA-III. As evident in Table 6, the SvcComp strategy generated
by the ICSSA surpasses both the Minimum Execution Time Service Composition scheme
(METSC) and the Minimum Execution Cost Service Composition scheme (MECSC) in terms
of service reliability, credibility, and composition synergy. Furthermore, when compared
to the outcomes of other algorithms, the ICSSA achieves the lowest weighted relative
deviation and offers the finest overall quality of service. Overall, the ICSSA boasts the most
comprehensive performance, which greatly aids users in making more rational decisions
from the perspective of the overall service quality of cloud SvcComp. It can help enterprises
build a better and more reliable manufacturing industry chain in today’s complex and
volatile international environment.
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Table 6. Comparison of DR manufacturing task SvcComp optimization results.

Algorithm Run Time Iterations SvcComp Optimization
Results SRsum CCsum SCsum CSsum ETsum ECsum ∆

ICSSA 18.73 s 87 {S4,1, S1,2, S1,3, S4,4, S3,5,
S4,1, S2,2, S3,3, S1,4, S3,5,}

6.161 8.81 7.085 40.854 182 33921 −0.101

BSSA 19.25 s 92 {S3,1, S1,2, S3,3, S1,4, S1,5,
S1,1, S4,2, S4,3, S2,4, S3,5,}

5.663 9.143 6.919 40.686 123 34088 −0.098

PSO 19.81 s 95 {S4,1, S1,2, S1,3, S1,4, S3,5,
S2,1, S2,2, S3,3, S4,4, S1,5,}

5.978 9.694 7.188 40.627 139 34018 −0.099

SGA 26.68 s 126 {S1,1, S1,2, S4,3, S1,4, S1,5,
S3,1, S4,2, S2,3, S2,4, S3,5,}

5.978 9.694 7.188 40.367 139 34018 −0.098

NSGA-III 20.54 s 97 {S4,1, S1,2, S1,3, S4,4, S3,5,
S2,1, S2,2, S3,3, S1,4, S1,5,}

5.978 8.907 7.188 40.627 139 34018 −0.099

METSC — — {S3,1, S1,2, S2,3, S1,4, S3,5,
S4,1, S2,2, S1,3, S4,4, S1,5,}

5.482 9.102 6.711 40.686 122 34138 −0.085

MECSC — — {S4,1, S2,2, S1,3, S1,4, S1,5,
S4,1, S2,2, S1,3, S1,4, S1,5,}

5.51 8.536 6.78 38.914 240 33042 −0.034

7. Conclusions

Given the significance of manufacturing entity reliability and service reputation in
shaping the transformation and progress of the manufacturing industry in the new era, this
paper delves into the analysis and examination of CMfg services’ time-varying reliability
and credibility. Additionally, it explores the application of the ICSSA in addressing the
multi-objective optimization challenges associated with CMfg SvcComp, along with the
establishment of a comprehensive evaluation model that takes into account both time-
varying reliability and credibility. The key contributions of this paper can be summarized
as follows.

(1) The primary factors influencing the performance of CMfg SvcComp are thoroughly
investigated, including the quantitative methods of time-varying reliability and time-
varying credibility of CMfg services. Combining the four new attributes of time-varying
reliability, composition complexity, time-varying credibility, and composition synergy with
the two traditional attributes of execution time and execution cost, integrating subjective
and objective factors and natural and social factors, a new CMfg SvcComp service quality
model is constructed, and the individual fitness function is constructed by the weighted
sum method. The comprehensive performance of the SvcComp is assessed using the
weighted relative deviation. A smaller weighted relative deviation indicates superior
overall performance of the SvcComp.
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(2) A refined chaos sparrow search algorithm is introduced to address the optimization
model for CMfg SvcComp. The enhanced approach incorporates the Bernoulli chaotic
mapping formula to enhance the sparrow search algorithm. Furthermore, modifications
are made to the position calculation formulas for both the explorer and scouter sparrows.
The modifications not only enhance the algorithm’s global search capabilities during its
initial stages, but also mitigate premature convergence, resulting in a more comprehensive
solution space. Additionally, the algorithm is designed to focus on local fine searches in its
later stages, thereby improving optimization accuracy.

(3) The WFG and DTLZ test function series are chosen for analysis, and the inverse
generation distance (IGD) index and the hyper volume (HV) index are utilized to assess the
convergence and diversity characteristics of various algorithms including the ICSSA, BSSA,
PSO, SGA, and NSGA-III. Through simulation experiments, it is evident that the ICSSA
demonstrated superior performance in a majority of the testing scenarios. Specifically,
with regard to the IGD mean, the ICSSA exhibited lower mean values in 12 out of 15 test
issues compared to the other algorithms. Similarly, in terms of HV performance, the ICSSA
surpassed BSSA, PSO, SGA, and NSGA-III in 12 of the 15 test cases.

(4) Utilizing DR manufacturing tasks as a representative example, the proposed
multi-objective optimization model and algorithm for CMfg SvcComp are implemented,
contrasted, and thoroughly analyzed. Their effectiveness is confirmed through rigorous
verification. This case study demonstrates that, in comparison to BSSA, SGA, and PSO, the
ICSSA exhibits superior solution quality and a swifter convergence rate for addressing the
multi-objective optimization problem related to CMfg SvcComp. The SvcComp scheme
solved by the ICSSA has better comprehensive performance, which is helpful for cloud
service users to make more reasonable decisions.
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