On Quasi-Subordination for Bi-Univalency Involving Generalized Distribution Series
Abstract
:1. Introduction and Preliminaries
Significance of Studying Bi-Univalent Functions in Geometric Function Theory
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olatunji, S.O.; Oladipob, A.T.; Panigrahi, T. On quasi-subordination for bi-univalency involving generalized distribution series associated with remodelled s-sigmoid function. Int. J. Nonlinear Anal. Appl. 2023, 14, 2214–2222. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications, Series of Monographs and Text Books in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 2000; Volume 225. [Google Scholar]
- Ma, W.C.; Minda, D. A Unified Treatment of Some Special Cases of Univalent Functions. In Lecture Notes Anal. I, Proceedings of the Conference on Complex Analysis, Tianjin, China, 17–20 August 1992; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Akgül, A. On quasi subordination for analytic and biunivalent function class. arXiv 2017, arXiv:1709.04503v1. [Google Scholar]
- Altintas, O.; Owa, S. Majorizations and quasi-subordinations for certain analytic functions. Proceeding Jpn. Acad. A 1992, 68, 181–185. [Google Scholar] [CrossRef]
- Lee, S.Y. Quasi-subordinate functions and coefficient conjectures. J. Korean Math. Soc. 1975, 12, 43–50. [Google Scholar]
- Mohd, M.H.; Darus, M. Fekete-Szegö problems for Quasi-subordination classes. Abstr. Appl. Anal. 2012, 2012, 192956. [Google Scholar] [CrossRef]
- Nehari, Z. Conformal Mappings; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Yalcin, S.; Atshan, W.G.; Hassan, H. Coefficients assessment for certain subclasses of bi-univalent functions related with quais-subordination. Publ. I’Lnstitut Math. 2020, 108, 55–66. [Google Scholar]
- Olatunji, S.O.; Sakar, F.M.; Breaz, N.; Aydogan, S.M.; Oluwayemi, M.O. Bi-Univalency of m-Fold Symmetric Functions Associated with a Generalized Distribution. Mathematics 2024, 12, 169. [Google Scholar] [CrossRef]
- Palpandy, G.; Sokol, J.; Sivasubramanian, S. The Fekete-Szegö functional associated with Kth root transformation using quasi-subordination. Comptes Rendus Math. 2015, 353, 617–622. [Google Scholar]
- Robertson, M.S. Quasi-subordination and coefficient conjectures. Bull. Am. Math. Soc. 1970, 76, 1–9. [Google Scholar] [CrossRef]
- Pommenrenke, C.H. Univalent Functions; Vandenhoeck and Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Bell, E.T. The iterated exponential integers. Ann. Math. 1938, 39, 539–557. [Google Scholar] [CrossRef]
- Canifield, E.R. Engel’s inequality for Bell-numbers. J. Combin. Theory Ser. A 1995, 72, 184–187. [Google Scholar] [CrossRef]
- Qi, F. Some inequalities for Bell-numbers. Proc. Sci. Math. Sci. 2017, 127, 551–564. [Google Scholar] [CrossRef]
- Ramanujan, B.C. Reaches their hand from their grave to snatch your theorems from you. Asia Pac. Math. Newsl. 2011, 1, 8–13. [Google Scholar]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for Starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Yalcin, S.; Marimuthu, K.; Uma, J. Generalized distribution for analytic function classes associated with error functions and Bell numbers. Boletín Soc. MatemáTica Mex. 2024, 30, 377–384. [Google Scholar]
- Porwal, S. Generalized distribution and its geometric properties associated with univalent functions. J. Complex Anal. 2018, 2018, 8654506. [Google Scholar] [CrossRef]
- Oladipo, A.T. Generalized distribution associated with univalent functions in conical domain. Analele Univ. Oradea Fasc Mat. 2019, 26, 161–167. [Google Scholar]
- Oladipo, A.T. Bounds for Probabilities of the Generalized Distribution Defined by Generalized Polylogarithm. Punjab Univ. J. Math. 2019, 51, 19–26. [Google Scholar]
- Girgaonkar, V.B.; Joshi, S.B.; Yadav, P.P. Certain special subclasses of analytic function associated with bi-univalent functions. Palest. J. Math. 2017, 6, 617–623. [Google Scholar]
- Hamzat, J.O.; Oladipo, A.T.; Oros, G.I. Bi-Univalent problems involving certain new subclasses of generalized multiplier transform on analytic functions associated with modified sigmoid function. Symmetry 2022, 14, 1479. [Google Scholar] [CrossRef]
- Long, P.; Murugusundaramoorthy, G.; Tang, H.; Wang, W. Subclasses of analytic and bi-univalent functions involving a generalized Mittag–Leffler function based on quasi-subordination. J. Math. Comput. Sci. 2022, 26, 379–394. [Google Scholar] [CrossRef]
- Olatunji, S.O.; Oluwayemi, M.O.; Oros, G.I. Coefficient Results concerning a New Class of Functions Associated Gegenbauer Polynomials and Convolution in Terms of Subordination. Axioms 2023, 12, 360. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. Quasi-subordinations for certain subclasses of bi-univalent function. Math. Adv. Pure Appl. Sci. 2018, 2, 56–64. [Google Scholar]
- Shehab, N.H.; Juma, A.R. Quasi-subordination of bi-univalent functions involving convolution operators. AIP Conf. Proc. 2022, 2398, 060062. [Google Scholar] [CrossRef]
- Bell, E.T. Exponential polynomials. Ann. Math. 1934, 35, 258–277. [Google Scholar] [CrossRef]
- Hamzat, J.O.; Oluwayemi, M.O.; Alb Lupaş, A.; Wanas, A.K. Bi-univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points. Fractal Fract. 2022, 6, 483. [Google Scholar] [CrossRef]
- Song, Y.; Yong, K.; Wang, X. Disturbance Interval Observer-Based Robust Constrained Control for Unmanned Aerial Vehicle Path Following. Drones 2023, 7, 90. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Hamzat, J.O. Some properties of a new subclass of m-Fold Symmetric bi-Bazilevic functions associated with modified sigmoid Functions. Tbil. Math. J. 2021, 14, 107–118. [Google Scholar]
- Hamzat, J.O.; Oladipo, A.T.; Fagbemiro, O. Coefficient Bounds For Certain New Subclass of m-Fold Symmetric Bi-Univalent Functions Associated with Conic Domains. Trends Sci. Tech. J. 2018, 3, 807–813. [Google Scholar]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Bulboacă, T. The second Hankel determinant for subclasses of bi-univalent functions associated with a nephroid domain. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. A Matemáticas 2022, 116, 145. [Google Scholar] [CrossRef]
- Oztürk, R.; Aktaş, İ. Coefficient Estimate and Fekete-Szegö Problems for Certain New Subclasses of Bi-univalent Functions Defined by Generalized Bivariate Fibonacci Polynomial. Sahand Commun. Math. Anal. 2024, 19, 2. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olatunji, S.O.; Oluwayemi, M.O.; Porwal, S.; Alb Lupas, A. On Quasi-Subordination for Bi-Univalency Involving Generalized Distribution Series. Symmetry 2024, 16, 773. https://doi.org/10.3390/sym16060773
Olatunji SO, Oluwayemi MO, Porwal S, Alb Lupas A. On Quasi-Subordination for Bi-Univalency Involving Generalized Distribution Series. Symmetry. 2024; 16(6):773. https://doi.org/10.3390/sym16060773
Chicago/Turabian StyleOlatunji, Sunday Olufemi, Matthew Olanrewaju Oluwayemi, Saurabh Porwal, and Alina Alb Lupas. 2024. "On Quasi-Subordination for Bi-Univalency Involving Generalized Distribution Series" Symmetry 16, no. 6: 773. https://doi.org/10.3390/sym16060773
APA StyleOlatunji, S. O., Oluwayemi, M. O., Porwal, S., & Alb Lupas, A. (2024). On Quasi-Subordination for Bi-Univalency Involving Generalized Distribution Series. Symmetry, 16(6), 773. https://doi.org/10.3390/sym16060773