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Abstract: In this work, we consider the (3+1)-dimensional Burgers equation with variable coeffi-
cients, which is frequently used to define the motion of solitary waves. Abundant lump waves are
constructed by taking the ansatz as a rational function. Furthermore, mixed solutions utilizing lump
waves, rogue waves, and kink solitons are obtained by combining the rational function with an
exponential function, resulting in fission and fusion phenomena.
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1. Introduction

Nonlinear evolution equations (NLEEs) have gained increasing attention in the field of
nonlinear science due to their many applications in various fields, such as fluid mechanics [1,2],
plasma physics [3], optics [4], biology [5], and condensed matter physics [6]. The most
important of these studies are meant to obtain soliton solutions. Many methods have been
developed, including the inverse scattering transformation [7,8], the Darboux transforma-
tion [9], Bäcklund transformations [10], and Hirota’s bilinear technique [11].

The lump waves in the Kadomtsev–Petviashvili (KP) equation were theoretically
predicted using the long wave limit approach [12]. This type of solution was observed in
optical fibers [13], which attracted the attention of researchers. Then, a symbolic computa-
tion approach was proposed to construct additional lump wave solutions of NLEEs, which
was successfully used in the KP equation [14], the BKP-Korteweg de-Vries (BKP-KdV)
equation [15], the KP3-4 equation [16], the higher-order KdV-5 equation [17], and many
more [18–21]. Furthermore, M-lump solutions were constructed by making some parame-
ters conjugate to each other [22]. The mixed lump wave solutions of the (2+1)-dimensional
Sawada–Kotera equation were obtained by an ingenious limit approach [23]. In addi-
tion, interesting research on lump waves, higher-order lump waves, and the interaction
between waves was conducted using the ansatz method, such as the spatial symmetric
(2+1)-dimensional dispersive wave model [24] and the (2+1)-dimensional Mel’nikov equa-
tion [25]. Compared to the version of NLEEs with constant coefficients, the one with
variable coefficients can obtain a larger number of new solutions for complex physical
models and describe realistic physical phenomena [26]. An example of this is the variable-
coefficients, high-order, nonlinear Schrödinger equation (VcHNLS). By using reductive
perturbation theory with long wave approximation, VcHNLS can be used to study the
propagation of pulse waves in deformable elastic vessels filled with inviscid blood [27].

Burgers-type equations are frequently used to define the motion of solitary waves in
many fields, such as ocean dynamics [28], vehicular traffic [29], and particle systems [30].
Recently, more exact solutions to Burgers-type equations have been constructed by various
methods, such as the nonlocal symmetry group reduction method [31], the consistent tanh
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expansion method [32], and the velocity resonance method [33]. In Ref. [34], soliton-like
and period-form solutions were gained using the extended tanh method. Based on the
ansatz method, lump solutions and period lump solutions were constructed in Ref. [35].
Two types of semi-rational solutions were unearthed for the constant-coefficient (3+1)-
dimensional Burgers equation [36]. By means of the test function method, lump waves and
mixed solutions were constructed for the generalized (2+1) Burgers equation with variable
coefficients [37]. In addition, by using white noise analysis, Hermite transformation of the
solitary wave solutions of the Wick-type stochastic Burgers equation (WSB) were discussed,
which evolved the density field of the weakly asymmetric exclusion process. The WSB is of
the form

Ut + p(t)(Uxx + U♢Ux) = W(t)♢R♢(t, U, Ux, Uxx), (1)

which is the perturbation of the Burgers equation with variable coefficients

ut + p(t)(uxx + uux) = 0. (2)

Here, p(t) is a function of t, W(t) defines the Gaussian white noise, and “♢” denotes
the Wick production in the Kondratiev distribution space [38]. Motivated by the above
scientific applications, the aim of this paper is to investigate additional new solutions to a
(3+1)-dimensional variable-coefficients Burgers equation (VcB):

uy + m(t)ux + n(t)uz + p(t)(uxx + 2vux)

+ q(t)(uyy + 2uuy) + r(t)(uzz + 2wuz) + s(t)ut = 0,

ux = vy, uz = wy,

(3)

with real functions u = u(x, y, z, t), v = v(x, y, z, t), and w = w(x, y, z, t), while m, n, p, q, r,
and s are any real functions with respect to time-independent variable t. However, mixed
lump waves and solitons and rogue waves of VcB (3) have not yet been found.

The structure of this paper is as follows: Rational solutions are found by means of
the ansatz technique in Section 2. Section 3 is aimed at finding solutions to the interaction
between lump waves and multi-kink solitons. The details of the effects of the ansatz
function are provided, and some special types of interactions are unearthed, such as fission,
fusion, and rogue wave phenomena. Section 4 consists of discussion, some features, and
comments. It should be noted that the graphical representation of the solution was provided
by Maple.

2. Rational Solution of the (3+1)-Dimensional Variable-Coefficients Burgers Equation

An effective method for solving a PDE is to use the Hirota method [11]. In this section,
by means of this method, we seek the rational solution for VcB (3), and the first thing to do
is to use the following dependent variable transformation:

u = (ln f )y, v = (ln f )x, w = (ln f )z, (4)

and to rewrite VcB (3) in the following bilinear form:

f 2
y − f fyy + m(t)( f fxy − fx fy) + n(t)( f fyz − fy fz) + p(t)( f fxxy − fxx fy)

+ q(t)( f fyyy − fy fyy) + r(t)( f fyzz − fy fzz) + s(t)( fy ft − f fyt) = 0,
(5)

where f is a real function. In order to obtain the rational solution of VcB (3), we assume
that f has the following form:

f = ξ2 + ϕ2 + a9, (6)



Symmetry 2024, 16, 779 3 of 9

with ξ(x, y, z, t) = a1x + a2y + a3z + a4(t) and ϕ(x, y, z, t) = a5x + a6y + a7z + a8(t), where
a4(t) and a8(t) are any real functions related to t and ai (i = 1, 2, · · · , 9) are arbitrary real
parameters. Substituting Equation (6) into Equation (5) and vanishing all the coefficients of
x, y, z, and t, the relations among arbitrary constants are obtained as

p(t) = −
q(t)(a2

2 + a2
6)

a2
1 + a2

5
−

r(t)(a2
3 + a2

7)

a2
1 + a2

5
,

s(t) =
m(t)(a1a7 − a3a5) + a2a7 − a6a3

a7a4(t)′ − a3a8(t)′
,

n(t) =
m(t)[a1a8(t)′ − a5a4(t)′] + a2a8(t)′ − a6a4(t)′

a7a4(t)′ − a3a8(t)′
,

(7)

where a8(t)′ ≡ da8(t)
dt

references the derivative of a8(t) about t. Substituting Equations (6) and (7)
into the transformation u = (ln f )y, the exact solution is written as

u = (ln f )y = 2
(a1a2 + a5a6)x + (a2

2 + a2
6)y + (a2a3 + a6a7)z + a4(t)a2 + a8(t)a6

[a1x + a2y + a3z + a4(t)]2 + [a5x + a6y + a7z + a8(t)]2 + a9
. (8)

Here, we obtain two kinds of lump wave.

Example 1. When a4(t) = t, a8(t) = 3t + 4, m(t) = t2, r(t) = −t, a1 = 8, a2 = 1, a3 = 0.2,
a5 = a7 = 2, a6 = 0.01, and a9 = 4, their spatial structure and the propagation of the lump of u
are described in Figure 1 at t = −25, t = 0, and t = 25.

According to Figure 1, it can be found that the lump wave moves in the positive direction of
the y axis and the negative direction of the z axis. Figure 1a is the three-dimensional image of the
lump solution, which shows the spatial structure with a peak and a trough, and the solution decays
in all spatial directions.

Figure 1. The propagations of the lump wave, u, given by Equation (8) in Example 1: (a) The
three-dimensional structure plot at t = 0; (b) The evolution plot of t = −25, 0, 25, with the red line
indicating the movement track of the lump.

Example 2. When a4(t) = e
t
4 , a8(t) = e

t
4 , m(t) = −t, r(t) = t, a1 = a6 = 1, a2 = 4,

a3 = a5 = a7 = 2, and a9 = 4, the three-dimensional structure plots of the lump wave solution are
obtained, and it is obvious that when t < 0, the lump wave remains stationary. On the contrary,
when t > 0, the lump wave starts to move, and with the increase of t, the lump wave quickly moves
away from the initial position. The lump wave solution is stable when it exists alone. Could the
lump wave maintain its properties after colliding with solitons or other nonlinear waves? Next, we
will discuss the interaction between solitons and lump waves below.

3. Interaction between Solitons and Lump Waves

In the following section, we focus on constructing the interaction solutions between
lump waves and solitons by combining the rational functions and exponential functions.
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First of all, we take the function f as the ansatz with the following rational–exponential
function:

f = ξ2 + ϕ2 + a9 + λ1(t)eϕ1x+ϕ2y+ϕ3z+ϕ4(t) + λ2(t)e−ϕ1x−ϕ2y−ϕ3z−ϕ4(t), (9)

with ξ(x, y, z, t) = a1x + a2y + a3z + a4(t) and ϕ(x, y, z, t) = a5x + a6y + a7z + a8(t),
where a4(t), a8(t), and ϕ4(t) are any real functions related to t, and the parameters
ai (i = 1, 2, · · · , 9) and ϕi (i = 1, 2, 3) are determined real parameters. By substi-
tuting Equation (9) into Equation (5) and vanishing the different powers of the variables x,
y, z, and t, we obtain a series of algebraic equations on the undetermined parameters. We
will discuss two cases questioning whether λ1(t) is equal to zero, and the same number of
cases questioning whether λ2(t) is zero is similar to that not discussed here.

Case 1: λ1(t) = 0
After solving these algebraic equations, a set of constraining relations is obtained

as follows:

s(t) =
m(t)(a3a5 − a1a7) + a3a6 − a2a7

a3a8(t)′
, q(t) = −

(a2
1 + a2

5)p(t)
a2

2 + a2
6

−
(a2

3 + a2
7)r(t)

a2
2 + a2

6
,

λ2(t) = c1 exp
[ ∫ g1

(a2
2 + a2

6)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
,

g1 = (a2
2 + a2

6)[(a8(t)′ϕ1 − a5ϕ4(t)′)a3 + (a7ϕ4(t)′ − a8(t)′ϕ3)a1]m(t)

+ a3
3a8(t)′ϕ2

2r(t) + [ϕ2
2a2

7a8(t)′r(t) + (ϕ2 − ϕ2
3r(t))a2

2a8(t)′

+ (ϕ2 − ϕ2
3r(t))a2

6a8(t)′]a3 + a2(a2
2 + a2

6)(a7ϕ4(t)′ − a8(t)′ϕ3),

− [ϕ2
1(a2

2 + a2
6)− ϕ2

2(a2
1 + 2a2

5)]a8(t)′a3,

n(t) = − a1m(t) + a2

a3
, λ1(t) = 0, a4(t) = c2,

(10)

with the integral constant c1. The interaction solution between the lump wave and the
soliton of the (3+1)-dimensional VcB is constructed:

u = 2(ln f )y =
4a2ξ + 4a6ϕ − 2ϕ2c1l1

ξ2 + ϕ2 + c1l1 + a9
, (11)

where

ξ = a1x + a2y + a3z + c2, ϕ = a5x + a6y + a7z + a8(t),

l1 = exp
[ ∫ g1

(a2
3 + a2

7)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
e−ϕ1x−ϕ2y−ϕ3z−ϕ4(t).

(12)

Example 3. When the parameters are selected as

a1 = 8, a2 = c2 = ϕ3 = 1, a3 =
1
5

, a5 = a7 = c1 = 2, a6 =
1

100
, a9 = 4,

ϕ1 = ϕ2 =
1
2

, r(t) = t, a8(t) = 3t + 3, m(t) =
1

2t2 , p(t) =
1
10

, ϕ4(t) = t.
(13)

The solution utilizing an interaction between a kink wave and a lump wave is obtained
as shown in Figure 2. Figure 2a–c show the three-dimensional plot at t = −50, t = 0, and
t = 200, respectively. According to the figures, it is found that the speed of the kink soliton
is greater than that of the lump wave and that the kink soliton can catch up with the lump
wave in this time period. In the process of interaction, the amplitude of the lump wave
becomes smaller and smaller until the lump wave is completely engulfed and continues to
spread. The convergence phenomenon of kink solitons and lump waves is observed.
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Figure 2. The mixed solution utilizing kink soliton and lump waves. (a–c) The three-dimensional
plots of t = −50, t = 0, and t = 200.

Case 2: λ1(t) ̸= 0
By the same operation, the solution of the interaction between a soliton and a lump

wave is obtained as

u = 2(ln f )y =
4a2ξ + 4a6ϕ + 2ϕ2(c1l1 − c2l2)

ξ2 + ϕ2 + c1l1 + a9
, (14)

where

ξ = a1x + a2y + a3z + a4(t), ϕ = a5x + a6y + a7z + a8(t),

l1 = exp
[ ∫ −g1

(a2
3 + a2

7)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
eϕ1x+ϕ2y+ϕ3z+ϕ4(t),

l2 = exp
[ ∫ g2

(a2
3 + a2

7)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
e−ϕ1x−ϕ2y−ϕ3z−ϕ4(t).

(15)

The corresponding parameters satisfy the following requirements:

s(t) =
m(t)(a3a5 − a1a7) + a3a6 − a2a7

a3a8(t)′
, q(t) = −

(a2
1 + a2

5)p(t)
a2

2 + a2
6

−
(a2

3 + a2
7)r(t)

a2
2 + a2

6
,

λ1(t) = c1 exp
[ ∫ −g1

(a2
2 + a2

6)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
,

g1 = (a2
2 + a2

6)[a3ϕ2
1 p(t) + a3ϕ2

3r(t)− a1ϕ3m(t) + a3ϕ1m(t)− a2ϕ3

+ a3ϕ2]a8(t)′ − a3ϕ2
2 [(a2

1 + a2
5)p(t) + (a2

3r + a2
7)r(t)]a8(t)′

+ (a2
2 + a2

6)[a1a7m(t)− a3a5m(t) + a2a7 − a3a6]ϕ4(t)′,

λ2(t) = c2 exp
[ ∫ g2

(a2
2 + a2

6)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
,

g2 = −(a2
2 + a2

6)[a3ϕ2
1 p(t) + a3ϕ2

3r(t) + a1ϕ3m(t)− a3ϕ1m(t) + a2ϕ3

− a3ϕ2]a8(t)′ + a3ϕ2
2 [(a2

1 + a2
5)p(t) + (a2

3r + a2
7)r(t)]a8(t)′

+ (a2
2 + a2

6)[a1a7m(t)− a3a5m(t) + a2a7 − a3a6]ϕ4(t)′,

n(t) = − a1m(t) + a2

a3
, a4(t) = c3.

(16)

Here, we obtain two different forms by taking m(t) as 2
t2 and et, and when m(t) is taken

to the non-even power of t, the solution will have singularity, which will not be discussed.
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Example 4. The appropriate parameters are selected as

a3 = a5 = a7 = c1 = c3 = p(t) = 2, a1 = 8, ϕ1 = ϕ2 =
1
2

, c2 = ϕ3 = 1,

a2 = a9 = 4, a6 = 0.01, a8(t) = 3t + 4, q(t) = r(t) = ϕ4(t) = t, m(t) =
2
t2 .

(17)

Then, the corresponding interaction solution between two kink solitons and a lump wave can be
described by Figure 3a–e. We find that the two kink waves keep moving in opposite directions along
the z axis. When t < 0, the lump wave appears between the two kink solitons, and the two kink
solitons gradually swallow the lump wave until there are only two kink solitons in the space at
t > 0. Finally, the lump wave gradually appears between the two kink waves. The density plot in
Figure 3f shows that the lump wave disappears completely between the two kink solitons at t = 0.
After the interaction between the lump wave and the soliton, the amplitudes, shapes, and velocities
remain unchanged.

Figure 3. The solution for the interaction between two kink solitons and a lump wave: (a–e) the
three-dimensional plots at t = −35, t = −5, t = 0, t = 5, and t = 35. (f) The density plots at t = 0.

Example 5. We select the parameters as

a3 = a5 = a7 = c1 = c3 = p(t) = 2, a1 = 8, ϕ1 = ϕ2 =
1
2

, c2 = ϕ3 = 1,

a2 = a9 = 4, a6 = −1, a8(t) = 3t + 4, q(t) = r(t) = ϕ4(t) = t, m(t) = et.
(18)

The interaction solution for two kink solitons and a lump wave is obtained, and the dynamic behavior
of the solution is shown in Figure 4. As shown in Figure 4a–c, the three-dimensional plots of the
interaction between two kink solitons and a lump wave are presented at x = −10, x = 0, and
x = 30, respectively. It can be found that two kink waves move in the same direction with the same
velocity along the negative direction of the z axis. When x < 0, the lump wave gradually appears
between the two kink waves, and when x > 0, the two kink solitons gradually swallow the lump
wave until there are only two kink solitons in the space, that is, the phenomenon of splitting occurs
first, followed by converging. The phenomenon of the splitting and then polymerizing of two solitons
and a lump wave also exists in the (3+1)-dimensional constant coefficient Burgers equation [35]
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and other (3+1)-dimensional nonlinear systems [39]. For the variable-coefficients equation, when
the appropriate parameters are utilized, the subsequent phenomena of first the convergence and then
the splitting of two solitons and a lump wave can be obtained.

Figure 4. The interaction between two kink solitons and a lump wave. (a–c) The three-dimensional
plots at x = −10, x = 0, and x = 30.

Example 6. In this section, we attempt to reveal the rogue wave excited by the two kink solitons for
a VcB (3). Let

u = 2(ln f )y =
4a2ξ + 4a6ϕ + 2ϕ2(c1l1 − c2l2)

ξ2 + ϕ2 + c1l1 + a9
, (19)

where

ξ = a1x + a2y + a3z + c3, ϕ = a5x + a6y + a7z + a8(t),

l1 = exp
[ ∫ −g1

(a2
3 + a2

7)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
eϕ1x+ϕ2y+ϕ3z+ϕ4(t),

l2 = exp
[ ∫ g2

(a2
3 + a2

7)(a1a7m(t)− a3a5m(t) + a2a7 − a3a6)
dt
]
e−ϕ1x−ϕ2y−ϕ3z−ϕ4(t).

(20)

The corresponding parameters satisfy the following requirements:

a3 = a5 = a7 = c1 = c3 = p(t) = 2, a1 = 8, ϕ1 = ϕ2 =
1
2

, c2 = ϕ3 = 1,

a2 = a9 = 4, a6 = −1, a8(t) = sin(t) + 4, q(t) = r(t) = ϕ4(t) = t, m(t) = t2 + 6.
(21)

As seen in Figure 5, Equation (19) is a rogue wave excited by two kink solitons. Figure 5d
shows that a rogue wave generates at x = 0, and the middle fold of the kink soliton becomes higher
than before.

Figure 5. The rogue wave with two solitons. (a–c) The three-dimensional plots at x = −20, x = 0,
and x = 20. (d) The evolution plot of x = −20, 0, 20.

4. Discussion

In this paper, a (3+1)-dimensional variable-coefficients Burgers equation (3) has been
investigated, evolving from a bilinear form. Rational and rational–exponential solutions
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have been constructed via the direct ansatz method. By choosing the arbitrary functions
suitably, the solutions involving rational and rational–exponential functions become lump
waves and lump–kink waves, respectively. Based on a deep study, the lump solution
driven by the bilinear form is a stable peak as the time increases, and the fission and fusion
phenomena between soliton and lump waves have been discussed. Moreover, we attained
a lump wave excited by two kink solitons. Finally, our study is not restricted to water rogue
waves [40,41], but is also evident among rogue waves excited by two kink solitons. It may
be applied to hydrodynamics and particle systems.
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