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Abstract: Aeolian sand is a low-quality natural resource widely distributed in Inner Mongolia, China.
Aeolian sand concrete has been developed as a primary raw material and tested to determine its frost
resistance durability. In this study, the mechanism of concrete durability damage and deterioration
was determined through the use of relative dynamic elastic modulus and mass loss ratio macroscopic
evaluation indices, scanning electron microscopy (SEM), and X-ray diffraction (XRD). According to
the mathematical statistics method, the marginal statistical distribution of each damage parameter
was obtained, and the Copula method of series structural failure mode was proposed to construct
the joint probability density function of concrete structural damage parameters. Structural reliability
was analyzed via the dual neural network method, and the reliability of aeolian sand concrete was
calculated in order to accurately predict the number of freeze–thaw cycles involved in structural
failure. The findings of the present study indicate that the relative dynamic elastic modulus decreases
progressively while mass loss increases gradually during an increasing number of freeze–thaw cycles.
This result effectively illustrates the degradation pattern of the aeolian sand concrete specimens’
frost resistance. The reliability analysis model developed in the present study can effectively capture
the correlation between structural reliability and freeze–thaw cycles in concrete structures, enabling
accurate prediction of the remaining lifespan of aeolian sand concrete.

Keywords: aeolian sand concrete; freeze–thaw cycle; dual neural network; dynamic elastic modulus;
mass loss rate

1. Introduction

Aeolian sand is a widely used material in engineering that can be used as a fine aggre-
gate to prepare concrete to ensure that it meets the requirements of general engineering
applications [1]. Research status of aeolian sand concrete has been studied and applied
as engineering material for a long time, and many scholars regarded aeolian sand as fine
aggregate. The use of aeolian sand to replace all or part of river sand in the preparation
of concrete had a certain scope and application prospect in the area where river sand
resources are scarce [2]. As for the workability of aeolian sand concrete, the research shows
that the partial replacement of river sand by aeolian sand can improve the workability
of concrete [3,4]. Both the collapse and water absorption of concrete increased with the
increase in the aeolian sand replacement rate [5]. For the mechanical properties of aeolian
sand concrete, the research shows that the strength of aeolian sand concrete was inversely
proportional to amount of aeolian sand [6]. The mechanical properties of aeolian sand
concrete can be improved effectively by using fiber, chemical admixtures and mineral
admixtures [7,8]. As for the frost resistance of aeolian sand concrete, the research shows
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that aeolian sand within 30% can effectively inhibit the freeze–thaw damage of light aggre-
gate concrete [9]. The introduction of aeolian sand can affect the spatial arrangement of
hydration products [10].

Regarding the chosen concrete reliability analysis method, a considerable amount of
research has been carried out by domestic and international scholars. Zhao Gaosheng et al.
used the finite volume method and the Monte Carlo simulation method to study the reliabil-
ity of marine concrete with different sections of the material being subjected to chloride ion
corrosion. The results of this study demonstrate that the finite volume method yields high
accuracy in reliability analysis and highlights the significant impact of section shape on the
durability of concrete structures [11]. Jiang et al. proposed a specific reliability evaluation
method based on multiple degradation factors. The copula function was applied to com-
bine two edge distribution functions in order to derive the joint distribution function, and
the residual durability reliability model was subsequently established. The validity of the
model was later verified using experimental data [12]. Lydia et al. established a mechanical
reliability model of reliability index and failure probability for square composite columns
filled with ordinary concrete and high-performance concrete under axial compression by
using the response surface method. The findings of their study indicate that the properties
and dimensions of the column play a crucial role in determining its strength and reliability.
This approach was applied to assess the responsiveness of random parameters in terms of
structural reliability [13]. Qiao Hongxia et al. established a freeze–thaw failure reliability
calculation model based on Palmgren’s theory to predict the remaining life of ceramic
powder reclaimed concrete. The reliability calculation model of freeze–thaw failure based
on the Palmgren model has been proven to be highly reliable through calculation and
verification. The model accurately depicts the correlation between the reliability of ceramic
powder recycled concrete and freeze–thaw cycles, making it a practical and applicable tool
in various scenarios [14]. The concrete life analysis of probability theory can be divided
into two categories: (1) the reliability function of concrete can be established by using the
Wiener distribution probability method to reflect the remaining life of specimens with the
optimal ratio [15,16], and (2), based on the Weibull probability method, a failure model can
be established with concrete mass loss and relative dynamic elastic modulus as indexes for
freeze–thaw reliability analysis [17,18]. According to the latest domestic and international
research findings in this field, a significant portion of studies are primarily focused on
qualitative research. The utilized analysis methodology predominantly delineates the
degradation patterns through experimental data, with minimal utilization of artificial
intelligence models for advanced life prediction and reliability analysis. Simultaneously,
the traditional approaches exhibit certain limitations in that they rely exclusively on linear
regression, making it challenging to ensure precise fitting accuracy for reliability models
characterized by strong nonlinearity.

A neural network can accurately fit nonlinear functions; as a result, it possesses a multi-
tude of applications in material constitutive relations and parameter fitting. Gasperlin M. et al.
proposed the basic mathematical model of a neural network to predict the viscoelastic be-
havior of an emulsion system with a certain degree of accuracy [19]. Xue J. et al. introduced
a highly effective approach leveraging artificial neural networks. Taking typical concrete
materials as an example, the authors established a macroscopic analytical strength criterion
from three steps of the nonlinear homogenization process. This model can effectively
predict the friction coefficient and cohesion of porous cement slurry on a microscopic scale
with good accuracy [20]. Al-Haik M. S. et al. studied the stress–relaxation behavior of
polymer composites based on artificial neural networks and predicted a broader range of
nonlinear models more accurately [21]. Logsig function and Tansig function are commonly
used as activation functions of neurons in traditional neural networks. As general function
approximators, they have the following disadvantages: the calculation process of the neural
network is separated from the fitting equation, which leads to poor generalization ability
and low accuracy of the fitting calculation [22].
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Based on the recent results of domestic and international research, most studies remain
in the qualitative research stage, and the analysis method utilized primarily describes the
performance degradation law with experimental data [23]. When probability theory is
used for analysis, life prediction and reliability are usually analyzed via linear regression.
Because the correlation between damage parameters cannot be accurately described and
the failure surface is highly nonlinear, the accuracy and efficiency of reliability analysis are
not high. In the present study, aeolian sand with low-quality natural resources was used
as concrete fine aggregate. Firstly, we carried out a frost resistance durability test on the
aeolian sand concrete, and the microstructural characterization of the concrete was used
to determine the durability damage and deterioration mechanism of the concrete through
the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD). Secondly, the
joint probability density function of damage parameters was constructed using a statistical
method and the Copula function to accurately describe the correlation between damage
parameters. Finally, due to the highly nonlinear failure surface, the dual neural network
method was used to calculate the reliability and failure probability of wind-accumulated
sand concrete under different mix ratios, and the reliability function was established to
describe the relationship between the reliability of concrete and the freeze–thaw cycle. This
method was used to reflect the concrete’s remaining life, providing theoretical guidance for
engineering practice and relevant evaluation and identification.

2. Test Process and Scheme Design

In the present study, we considered the design requirements of hydraulic concrete in
cold areas in northwestern China. The study involved the use of replacement rates of 20%,
40% and 60% of aeolian sand to substitute natural river sand. Egg gravel and light pumice
stone were taken as coarse aggregates. An air-entraining agent was added to improve the
frost resistance of the concrete for use in concrete test blocks. Six groups of concrete test
designs were combined, as shown in Table 1, where OC represents ordinary concrete and
LAC represents lightweight aggregate concrete.

Table 1. Mixture ratios of aeolian sand concrete samples.

Group OC–20% OC–40% OC–60% LAC–20% LAC–40% LAC–60%

Cement/kg·m−3 320 320 320 320 320 320
Fly ash/kg·m−3 80 80 80 80 80 80

River sand/kg·m−3 600 450 300 600 450 300
Aeolian sand/kg·m−3 150 300 450 150 300 450

Crushed stone/kg·m−3 1060 1060 1060 / / /
Pumice stone/kg·m−3 / / / 700 700 700

Water/kg·m−3 180 180 180 180 180 180
Admixture/kg·m−3 6.80 6.80 6.80 6.80 6.80 6.80

The compressive strength of concrete was initially assessed under various mix ratios
following the guidelines outlined in the Standard Test Method for Mechanical Properties of
Ordinary Concrete (GB/T 50081-2019) [24] as indicated in Figure 1.
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3. Durability Test Results and Analysis
3.1. Failure Analysis Based on Dynamic Elastic Modulus and Mass

The relative dynamic elastic modulus and mass loss rate indicate the extent of failure
in aeolian sand concrete after being subjected to a freeze–thaw cycle. The dynamic elastic
modulus relative to the initial value was measured after every 25 freeze–thaw cycles.

Pij =
Eij

Ei0
× 100% (1)

where Eij is the dynamic elastic modulus of specimens in Group i after 25j freeze–thaw
cycles; Ei0 is the dynamic elastic modulus of specimens in Group i at the beginning of the
cycle; and Pij is the relative dynamic elastic modulus, i = 1 . . . 6, j = 1 . . . 8.

The mass loss rate of aeolian sand concrete specimen after every 25 freeze–thaw cycles is

Wij =
Mi0 − Mij

Mi0
× 100% (2)

where Mij is the mass of group i specimens after 25j freeze–thaw cycles; Mi0 is the
mass of Group i specimens at the beginning of the cycle; and Wij is the mass loss rate,
i = 1 . . . 6, j = 1 . . . 8.

The relative dynamic elastic modulus of both types of aeolian sand concrete decreases
as the number of freeze–thaw cycles increases, with OC–20% and OC–60% exhibiting sig-
nificant attenuation, as depicted in Figure 2. After 200 freeze–thaw cycles, this attenuation
reaches more than 60%; in contrast, LAC–20% and LAC–40% attenuated less than 5%. Based
on the relative dynamic elastic modulus index, aeolian sand lightweight aggregate concrete
exhibits superior frost resistance compared to ordinary concrete containing aeolian sand.
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The quality loss rate of the two types of zeolite sand concrete was found to increase
with an increase in the number of freeze–thaw cycles, as depicted in Figure 3. OC–60% and
LAC–60% showed a significant mass loss, and after 200 freeze–thaw cycles, their loss rate
was found to be more than 5%; in comparison, the mass loss rate of the other four types of
concrete was relatively low. Concrete with aeolian sand replacement rates of 20% and 40%
showed better freeze–thaw failure resistance than concrete with a 60% replacement rate.

With the increasing number of freeze–thaw cycles, the damage to the surface and
internal structure of eolian sand concrete is aggravated. These results are in accordance with
the relevant requirements of the Test Method for Long–term Performance and Durability of
Ordinary Concrete (GB/T 50082-2009) [25]. In the process of the freeze–thaw cycle, when
the mass loss rate of concrete exceeds 5% or the relative dynamic elastic modulus decays to
less than 60%, it is considered that concrete has reached the normal service limit state, that
is, it has reached the damage state.
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3.2. Scanning Electron Microscope (SEM) Microstructure

Through the use of field–emission scanning electron microscopy (SEM) magnified
500 times [26], the macro frost resistance of the concrete was determined at the microstruc-
tural level, and the microstructural morphology of the aeolian sand concrete interface
transition zone with different mix ratios before and after the freeze–thaw cycle was ob-
served, as shown in Figures 4 and 5.
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Figure 4. SEM microstructure diagram of eolian sand concrete with different mix ratios before the
freeze–thaw cycle (×500). (a) No. 1 group (OC–20%); (b) No. 4 group (LAC–20%); (c) No. 2 group
(OC–40%); (d) No. 5 group (LAC–40%); (e) No. 3 group (OC–60%); (f) No. 6 group (LAC–60%).
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Figure 5. SEM microstructure diagram of eolian sand concrete with different mix ratios after the
freeze–thaw cycle (×500). (a) No. 1 group (OC–20%); (b) No. 4 group (LAC–20%); (c) No. 2 group
(OC–40%); (d) No. 5 group (LAC–40%); (e) No. 3 group (OC–60%); (f) No. 6 group (LAC–60%).

As can be seen from Figures 3 and 4, after 200 freeze–thaw cycles, the interface
transition zone between OC–20% and OC–60% aggregate and cement slurry shows obvious
gaps, the two phases of cement slurry and aggregate appear to show a peeling phenomenon,
and the integrity of the interface transition zone worsens. The OC–40% aggregate and
cement paste interface transition zone appeared to show small micro–cracks, with no
obvious cracks, and its integrity was found to be satisfactory. For the LAC–20% and LAC–
40% aggregate and cement slurry interface transition zone, we found some fine cracks
and pores, with the fine cracks existing independently of each other with no connectivity
and penetration phenomena, and the integrity was found to be satisfactory. However,
the transition zone between the interface of LAC–60% lightweight aggregate and cement
slurry peeled off entirely, and the cracks’ size was larger. The stable “nested” structure was
disturbed, and the integrity worsened significantly.

3.3. X-ray Diffraction (XRD) Phase Analysis

In order to better determine the phase composition of the two types of aeolian sand
concrete cement slurry, X-ray diffraction (XRD) was used for phase composition analysis.
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Figure 6 shows the XRD phase analysis of OC–40% and LAC–40% aeolian sand concrete
before and after a freeze–thaw cycle.
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Based on the phase analysis of aeolian sand concrete cement slurry before and after the
freeze–thaw cycle, Figure 5 shows that the primary chemical constituents present are SiO2,
C–S–H gel, CH and AFt. Due to the complex hydration reaction involved in the self–setting
and hardening of concrete, other components with weak diffraction peak strength have
little influence on the freeze–thaw failure of concrete.

From the above analysis and comparison of microstructural morphology and phase
composition, it can be seen that the physical change predominates in the freeze–thaw cycle
of the two types of aeolian sand concrete; in contrast, the chemical composition of hydration
products has a weak influence. The physical changes primarily result from alterations in
dynamic relative elastic modulus and mass loss rate, leading to the eventual freeze–thaw
failure of the concrete.

4. Construction of Aeolian Sand Concrete Damage Parameter Joint Probability
Density Function

The sample size of concrete damage parameter data obtained in the experimental
section of the present study is small, and the distribution law of data samples cannot
be known due to many uncertain factors. Therefore, the key to accurately describing
the parameter joint probability density function is determining whether reliability can be
accurately calculated.

4.1. Damage Parameter Distribution Law

The statistical analysis software SPSS (version 26) was used to draw the distribution
histogram of the relative dynamic elastic modulus P and mass loss rate W of OC–20%
under 200 freeze–thaw cycles, as shown in Figure 7. It can be seen from the figure that the
distribution of P and W is basically symmetric. Figure 8 is the P–P figure of P and W, and it
can be seen that each observation point is roughly around a straight line.

In summary, the relative dynamic elastic modulus P and mass loss rate W distributions
can be considered normal distributions. Thus, it is necessary to write the two–parameter
edge probability density function f1(P) and f2(W) as

f1(P) =
1√

2πb2
1

exp

[
− (x1 − a1)

2

2b2
1

]
(3)
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f2(W) =
1√

2πb2
2

exp

[
− (x2 − a2)

2

2b2
2

]
(4)

where a1 = 60.6598 and b1 = 7.3395; a2 = 0.8499 and b2 = 0.0101.
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4.2. Copula Method for Series Structure Failure Mode

For a series structure system, a single component failure will lead to structural system
failure, and then, the series system reliability Pr can be expressed as follows:

Pr = P(Z1 > 0 ∩ Z2 > 0 ∩ · · · ∩ ZS > 0) =
S
∩

s=1
Zs> 0 (5)

The safety domain of series system S = {x|
S
∩

s=1
Zs > 0} is obtained, and the failure

domain of two variables series structure failure modes is shown in Figure 9.
If we have the joint probability density function fX(x) of random variable x = [x1, x2,

. . ., xn]T, then the theoretical reliability of the series system can be determined.

Pr =
∫

S
∩

s=1
Zs>0

fX(x)dx =
∫

· · ·
∫

S
∩

s=1
Zs>0

fX(x1, x2, . . . , xn)dx1dx2 · · ·dxn (6)
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Figure 9. Failure domain of the series structure system.

As shown in Equation (6), accurately determining the joint probability density function
of concrete damage parameters is crucial for determining the reliability of concrete struc-
tures. However, constructing this joint probability density function has consistently posed
a significant challenge. Based on this challenge, a construction method of performance
parameters’ joint probability density function based on the Copula function is proposed in
the present paper.

According to Sklar’s theorem [27], the joint distribution function of variable x1, x2, . . .,
xn is expressed as F(x1, x2, · · · , xn)

F(x1, x2, · · · , xn) = C(F1(x1), F2(x2), · · · , Fn(xn); θ) = C(u1, u2, · · · , un; θ) (7)

where ui = Fi(xi) is the edge distribution function of the variable Xi; C(u1, u2, · · · , un; θ) is
a Copula function; and θ is the related parameters of the Copula function.

Taking the derivative of Equation (5), the joint probability density function of variables
x1, x2, . . ., xn is written as fX(x1, x2, . . . , xn)

fX(x1, x2, . . . , xn) = f1(x1) f2(x2) . . . fn(xn)c(F1(x1), F2(x2) . . . Fn(xn); θ)

= c(u1, u2, · · · , un; θ)
n
∏
i=1

fi(xi)
(8)

where fi(xi) is the edge probability density function of variables x1, x2, . . ., xn and
c(u1, u2, · · · , un; θ) =

∂nC(u1,u2,··· ,un ;θ)
∂u1∂u2···∂un

is the density function of the Copula function.
Table 2 shows the common Copula function types.

Table 2. Copula function types.

Copula Types Copula Distribution Function
C(u1, u2, · · · , un; θ)

θ Range of Values

Gaussian φn
(

φ−1(u1), φ−1(u2), · · · , φ−1(un); θ
)

[−1, 1]

Gumbel
exp

−
[

n
∑

i=1
(−ln ui)

θ
]1

θ

 [1, ∞)

Clayton
(

n
∑

i=1
ui

−θ − n + 1
)−

1
θ (0, ∞)

Frank − 1
θ ln

1 +

n
∏
i=1
(e−θui−1)

(e−θ−1)n−1

 n = 2, θ ∈ (−∞, ∞) ∩ (θ ̸= 0)
n ≥ 3, θ ∈ (0, ∞)
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Table 2. Cont.

Copula Types Copula Distribution Function
C(u1, u2, · · · , un; θ)

θ Range of Values

No. 16
1
2

(
A +

√
A2 + 4θ

)
A =

n
∑

i=1
ui − n + 1 − θ

(
n
∑

i=1

1
ui

− n + 1
) n = 2, θ ∈ [0, ∞)

n ≥ 3, θ ∈ (0.1863, ∞)

Plackett
B−

√
B2−4u1u2θ(θ−1)

2(θ−1)
B = 1 + (θ − 1)(u1 − u2)

(0, ∞)\{1}

4.3. Construction of Concrete Structures Damage Parameter Joint Probability Density Function

The joint probability density function fX(P,W) construction of the relative dynamic
elastic modulus P and mass loss rate W under 200 freeze–thaw cycles of OC–20% is taken
as an example to illustrate the method.

We first drew the test scatter plot for P and W, with the black dots shown in Figure 10.
As can be seen from the figure, there is a positive correlation between the two parame-
ters; therefore, the function that can express the positive correlation was selected as the
Copula function. To construct a two–parameter joint probability density function, relevant
parameter values of each Copula function were obtained, as shown in Table 3.
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Figure 10. Scatter plots of simulated variables for different copula functions. (a) Plackett Copula;
(b) Frank Copula; (c) Clayton Copula; (d) Gaussian Copula.

Table 3. θ value of related parameters for each Copula function.

Copula Function Gaussian Plackett Frank Clayton

θ value 0.33 2.97 2.25 0.59

Figure 10 shows the scatter plots simulated by each Copula function when the number
of simulations n = 200. It can be seen from the figure that the scatter plot generated by each
Copula function can suitably cover the original observed data of relative dynamic elastic
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modulus and mass loss rate, demonstrating the ability of the Copula function to fit the
measured data.

The joint probability density function fX(P, W) of relative dynamic elastic modulus P
and mass loss rate W can be written as:

fX(P, W) = f1(P) f2(W)c( f1(P), f2(W); θ) (9)

5. Analysis of Reliability Results Based on the Dual Neural Network

Considering that the performance function of the concrete structure is Z = G(P,W),
the joint probability distribution function of basic random variable X = (P,W) is FX(P,W),
and the joint probability density function is fX(P,W), then the reliable probability Pr of the
concrete structure can be written as follows:

Pr =
∫

Z>0
dFX(P, W) =

∫
Z>0

fX(P, W)dX

=
∫
· · ·

∫
Z>0 fX(P, W)dPdW

(10)

It is widely known that a concrete structural system consists of two series of per-
formance function components. According to the Standard Test Method for Long–Term
Performance and Durability of Ordinary Concrete (GB/T 50082-2009), once the relative dy-
namic elastic modulus reaches 60% or the mass loss rate reaches 5%, the concrete specimen
meets the failure criteria. Its performance function expression is shown in Equation (11):{

G1(P) = P − 60%
G2(W) = 5% − W

(11)

5.1. Dual Neural Network Method

The reliability of a concrete structure can be calculated based on the defined series
structural reliability.

Pr =
∫ µW+4δW

µW−4δW

∫ µP+4δP

µP−4δP

I(G1(P), G2(W), P, W) · fX(P, W)dPdW (12)

where the indicated function I(G1(P), G2(W), P, W) takes on 1 when min (G1(P), G2(W)) > 0;
otherwise, it is equal to 0.

It can be observed that neural network A, which comprises three layers, can represent
the original function of multiple integrals, as stated by a multi–layer neural network capable
of approximating any nonlinear function with high precision. The network structure is
shown in Figure 11. The input and output relation in scalar form is:

Y∗ =
m

∑
j=1

wj f (
n

∑
i=1

k jixi + bj) + c (13)

It can be respectively determined via the partial derivation of variables x1, x2, · · · , xn

y∗ =
∂nY

∂x1∂x2 · · · ∂xn
=

m

∑
j=1

k j1k j2 · · · k jnwj f (n)(
n

∑
i=1

k jixi + bj) (14)

If Wj = k j1k j2 · · · k jnwj, Equation (14) can be written as a function of network output
and input variables:

y∗ =
m

∑
j=1

Wj f (n)(
n

∑
i=1

k jixi + bj) (15)
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If f = ex, Equation (15) can be simplified as

y∗ =
m

∑
j=1

Wj f (
n

∑
i=1

k jixi + bj) (16)

The neural network B structure is illustrated in Figure 12.
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Evidentially, the original function of integrand y∗ in Equation (16) is Y∗. Therefore,
neural network A and neural network B are considered dual neural networks [28].

By comparing Equations (13) and (16), it can be seen that the original function network
and integrand function network have the same network structure and are both three–layer
neural networks with n input, single output, and m hidden layer elements. The above
two networks are related in connection weight, threshold, and activation function type.
In the integrated function network B, the connection weight from the input layer to the
hidden layer element is k ji, the connection weight from the hidden layer to the output
layer element is Wj. Original function network A the connection weight from the input
layer to the hidden layer unit is k ji, the connection weight of the hidden layer to the output

layer unit is Wj/
n
∏
i=1

k ji, the threshold value of the output layer unit is c. Based on the

above structure, it can be observed that when network B in a dual neural network satisfies
the given relation and approximates the integrand function in the integral, network A
approximates the original function.

It can be seen from the theory of multivariate integration that the integral value can be
expressed as the weighted algebraic sum of the original function Y∗ at the hypercube ver-
tices D∗ = {(x1, x2, · · · , xn)

∣∣x1
1 ≤ x1 ≤ x2

1, x1
2 ≤ x2 ≤ x2

2, · · · , x1
n ≤ xn ≤ x2

n}, specifically
expressed as follows:
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J∗ =
2

∑
m1=1

2

∑
m2=1

· · ·
2

∑
mn=1

(−1)

n
∑

k=1
mk

Y∗(xm1
1 , xm2

2 , · · · , xmn
n ) (17)

The dual neural network method was used to integrate Equation (12), and the reliabil-
ity of OC–20% under 200 freeze–thaw cycles was determined.

The variables P and W are divided into equal parts in the interval 100, and the
integrand function network B is crossed in pairs to form the input sample point, and the
network output value of the corresponding sample point is calculated using the integrand
function. The training sample is shown in Table 4.

Table 4. Training samples of network B.

W
P

31.3018 31.8890 32.4761 . . .. . . 89.4306 90.0178

0.8095 0 0 0 . . .. . . 0.0868 × 10−8 0.0680 × 10−8

0.8103 0 0 0 . . .. . . 0.1136 × 10−8 0.0837 × 10−8

0.8111 0 0 0.0732 × 10−8 . . .. . . 0.1458 × 10−8 0.1260 × 10−8

..
..

..

..
..

..

..
..

..

..
..

..

. . .. . . . . .. . . . . .. . .

0.8895 0.0898 × 10−8 0.1286 × 10−8 0.1766 × 10−8 . . .. . . 0.1284 × 10−8 0.0877 × 10−8

0.8903 0.0744 × 10−8 0.0873 × 10−8 0.1245 × 10−8 . . .. . . 0.0915 × 10−8 0.0702 × 10−8

Using the dual neural network relation, the original function network A is obtained.
The vertices of the hypercube in the input sample of network B are simulated through
network A, and the sample points are shown in Table 5. The numerical solution of the
integral, namely the structural reliability, can be obtained by substituting the simulation
values into Equation (17).

Table 5. Simulation samples of network A.

P 90.0178 90.0178 31.3018 31.3018
W 0.8903 0.8095 0.8903 0.8095

Through the above calculation, the structural reliability and failure probability of
OC–40%, OC–60%, LAC–20%, LAC–40% and LAC–60% under 200 freeze–thaw cycles can
be similarly obtained, as outlined in Tables 5 and 6. To further illustrate the performance
of the proposed method, the Weibull probability distribution model (WPDM) was used
for evaluation.

Table 6. Reliability calculation results using different methods.

Proposed Method WPDM MCS

OC–20% 0.977767 0.965796 0.993645
OC–40% 0.997963 0.964356 0.995638

LAC–20% 0.997523 0.957360 0.997687
LAC–40% 0.997778 0.978825 0.993260

Maximum relative error 1.598% 3.142% ——

5.2. Weibull Probability Distribution Model (WPDM)

The decay model expression of aeolian sand concrete total failure energy U under
freeze–thaw cycles was established using the Weibull probability distribution as follows:

Un = U0(1 − Dn) (18)
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where U0 represents the total failure energy of concrete in the absence of freeze–thaw action;
Un denotes the total failure energy of concrete after n freeze–thaw cycles; and Dn is the
damage variable after n times freeze–thaw.

Assume that fn represents the probability density function following n freeze–thaw
cycles.

fn =
b
a

(n
a

)b−1
exp

[
−
(n

a

)b
]

(19)

where a is the shape parameter and b is the size parameter.
The failure probability distribution function is derived by integrating Equation (19).

Fn = 1 − exp
[
−
(n

a

)b
]

(20)

The relationship between failure probability and the number of freeze–thaw cycles is
shown in Equation (20). The freeze–thaw failure of aeolian sand concrete is the result of
the long–term accumulation of freeze–thaw damage; thus, the damage variable and failure
probability are simultaneously superimposed. After n times freeze–thaw cycles of aeolian
sand concrete, Dn represents the damage degree and Fn represents failure probability. When
the concrete reaches freeze–thaw failure, Dn = Fn = 1, the failure probability is equivalent to
the damage degree:

Dn = 1 − exp
[
−
(n

a

)b
]

(21)

5.3. Analysis of Reliability Results

In addition, Monte Carlo simulation (MCS) with 1 million sample points was used
to evaluate the reliability of the series structure system, and the results are listed in
Tables 6 and 7.

Table 7. Failure probability calculation results using different methods.

Proposed Method WPDM MCS

OC–60% 0.997732 0.995572 0.998655
LAC–60% 0.985404 0.964223 0.996215

Maximum relative error 1.085% 3.211% ——

Similarly, according to the above method, the reliability and failure probability can be
determined under 25, 50, . . ., and 175 freeze–thaw cycles; a custom neural network was
constructed with reliability and failure probability as inputs and the number of freeze–thaw
cycles as outputs. According to the empirical equation [29], the number of hidden layer
elements was taken as the hidden layer m = 5 and activation function f = e−x. After
training 1000 steps, the relative dynamic modulus and mass loss rate under the same
freeze–thaw cycle were taken as the x– and y–axis coordinates, and the fitting curve was
drawn, as shown in Figure 13. The maximum relative error of the fitting results compared
with the training output sample is listed in Table 8.

Table 8. Maximum relative error of fitting.

Category OC–20% OC–40% OC–60% LAC–20% LAC–40% LAC–60%

Maximum
relative error 1.43 × 10−4 4.29 × 10−6 1.82 × 10−5 2.80 × 10−4 4.41 × 10−4 1.11 × 10−6
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If either the relative dynamic elastic modulus loss or mass loss meets the failure
standard, the material is considered to have failed. Following training of the custom neural
network, the predicted input samples that have reached failure are taken as the input of the
neural network, and the number of freeze–thaw cycles when failure is obtained, as shown
in Table 9.

Table 9. Freeze–thaw cycle failure times of aeolian sand concrete.

Category OC–20% OC–40% OC–60% LAC–20% LAC–40% LAC–60%

Freeze–thaw cycle failure 258 302 162 343 378 127

From the reliability calculation results of different methods shown in Tables 6 and 7, it
can be seen that with MCS as the exact solution, the calculation accuracy of the proposed
method depicted in this paper is better than that of the WPDM, and the maximum relative
error is less than 2%.

It can be seen from Table 8 that the fitting accuracy of the custom neural network model
for the freeze–thaw cycle failure of aeolian sand concrete is higher. Among the various
types of aeolian sand concrete, the highest relative error is 4.41 × 10−4, with the remaining
errors all falling below this value, with some found to be even as low as 1.0 × 10−6 orders
of magnitude, demonstrating excellent calculation accuracy.

Based on the proposed method described in this paper, the reliability analysis model
was obtained to accurately calculate the reliability of various types of aeolian sand concrete
to accurately predict the number of freeze–thaw cycles of various types of aeolian sand
concrete during failure.

As can be seen from Table 9, OC–60% and LAC–60% fail first, and the number of
freeze–thaw cycles for these samples is 162 and 127, respectively, which is consistent with
the test results. This result verifies the effectiveness of the custom neural network model.
The freeze–thaw cycle durability of the aeolian sand concrete with equal replacement rates
of 20% and 40% is evidently better than that of the aeolian sand concrete with 60% aeolian
sand concrete, and the optimal ratio is the aeolian sand concrete with a replacement rate of
40%. The reliability of light aggregate concrete with aeolian sand replacement rates of 20%
and 40% is slightly better than that of ordinary concrete with aeolian sand, with the best
concrete being LAC–40%, and the number of freeze–thaw cycles reaching 378.

6. Conclusions

In this study, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were
employed to repeatedly assess the damage parameters of aeolian sand concrete structures,
with their relative dynamic elastic modulus and mass loss rate under various freeze–thaw
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cycles being ultimately determined. The edge statistical distribution of each damage
parameter was determined using mathematical statistics. Considering the correlation
between damage parameters, the reliability of aeolian sand concrete structures can be more
accurately reflected. The Copula method was utilized to develop the joint probability
density function for the damage parameters of concrete structures, and structural reliability
was determined using a dual neural network approach. Using the above methods enabled
the accurate prediction of freeze–thaw cycle failure times for aeolian sand concrete and the
following conclusions can be drawn:

(1) In the reliability analysis of aeolian sand concrete freeze–thaw failure, the relative
dynamic elastic modulus attenuation and mass loss rate reflect the law of specimens
changing with changes in the number of freeze–thaw cycles. The relative dynamic
elastic modulus decreases as the number of freeze–thaw cycles increases, with signifi-
cant decreases observed in OC–20% and OC–60%. Additionally, the mass loss rate
increases with the number of freeze–thaw cycles. The mass loss rate of OC–60% and
LAC–60% increased significantly, and both exceeded the failure standard of 5%.

(2) The reliability analysis model proposed in this paper can effectively describe the
deterioration trend in the frost resistance of aeolian sand concrete specimens. With
MCS of 1 million sample points as the theoretical solution, the maximum relative
error of WPDM reliability and failure probability calculation results is greater than
3% under 200 freeze–thaw cycles, and the maximum relative error of the proposed
method is close to 1%, which reflects suitable calculation accuracy. Based on the
test data, the proposed reliability analysis model can directly reflect the reliability
of the test piece and its remaining life to provide relevant theoretical guidance and
maintenance diagnosis for practical engineering.

(3) According to the prediction of the custom neural network model, the aeolian sand
concrete with a replacement rate of 60% has the lowest number of freeze–thaw cycles,
all less than 200, while the aeolian sand concrete with a replacement rate of 40% has the
highest number of freeze–thaw cycles, all more than 300. Therefore, the optimal ratio
is the aeolian sand concrete sample with a replacement rate of 40%. The reliability of
lightweight aggregate concrete containing aeolian sand is slightly better than ordinary
concrete containing aeolian sand under freeze–thaw cycles.

(4) The advantage of the method described in this paper is that the construction of the
edge probability density function of damage parameters and the selection of the
Copula function can be independently carried out, and a joint probability density
function construction method based on the Copula function is proposed, which
provides a new method for the accurate description of the correlation of damage
parameters of aeolian sand concrete structures.

(5) In the present study, mass loss and relative dynamic elastic modulus were used as
indicators to study the freeze–thaw cycle damage of aeolian sand concrete under
different mix ratios, and the dual neural network method was used to model the
performance degradation process of aeolian sand concrete for reliability analysis,
which provides a theoretical basis for the effective utilization of aeolian sand and
other low–quality natural resources. This, in turn, creates conditions for the extensive
use of aeolian sand concrete in engineering practice.
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