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Abstract: When optimizing a mechanical device, the symmetry principle provides important guidance.
Minimum gearbox mass and maximum gearbox efficiency are two single objectives that need to be
achieved when designing a gearbox, and they are not compatible. In order to address the multi-objective
optimization (MOO) problem with the above single targets involved in building a two-stage helical
gearbox with second-stage double gear sets, this work presents a novel application of the multi-criteria
decision-making (MCDM) method. This study’s objective is to identify the best primary design elements
that will increase the gearbox efficiency while lowering the gearbox mass. To carry this out, three main
design parameters were selected: the first stage’s gear ratio and the first and second stages’ coefficients
of wheel face width (CWFW). Furthermore, a study focusing on two distinct goals was carried out: the
lowest possible gearbox mass and the highest possible gearbox efficiency. Furthermore, the two stages of
the MOO problem are phase 1 and phase 2, respectively. Phase 2 solves the single-objective optimization
issue to minimize the difference between variable levels and the MOO problem to determine the optimal
primary design factors. To solve the MOO problem, the EAMR (Evaluation by an Area-based Method of
Ranking) method was also chosen. The following are important features of this study: First, a MCDM
method (EAMR technique) was successfully applied to solve a MOO problem for the first time. Secondly,
this work explored the power losses during idle motion to calculate the efficiency of a two-stage helical
gearbox with second-stage double gear sets. This study’s findings were used to identify the optimal
values for three important design variables to design a two-stage helical gearbox with second-stage
double gear sets.

Keywords: gearbox; two-stage helical gearbox; gear ratio; multi-objective optimization; EAMR method

1. Introduction

One of the most important parts of the drive is the gearbox. It can lower the torque
and speed transfer from the motor shaft to the working shaft. Of all the gearbox types,
the helical gearbox is the most widely used. This is because the structure of the helical
gearbox is straightforward. Its pricing is also reasonable because neither its fabrication nor
its design are complex. This is the reason why many scholars are trying to optimize the
helical gearbox.

A variety of methods have been used to solve the gearbox MOO problem. Using
the NSGA-II (Non-Dominated Sorting Genetic Algorithm II) method, Tudose L. et al. [1]
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conducted a MOO study for designing helical gears. The goal of the work was to lower both
the gearing mass and the flank adhesive wear speed. The MOO of a two-stage helical gear
train was solved by R. C. Sanghvi et al. [2] using three different approaches: the MATLAB
optimization toolbox, genetic algorithms (GA), and NSGA-II. The optimization of volume
and load-carrying capacity were two of the study’s goals. The results’ comparison indicated
that, with regard to both objectives, the NSGA-II approach yielded a better outcome than
the other methods. Kalyanmoy D. and Sachin J. [3] carried out a multi-speed gearbox
design optimization problem which had four conflicting objectives of design using the
NSGA-II technique. It was found from the study that to obtain the same output speed
requirement, a larger module is needed for larger delivered power. Also, for low-powered
gearboxes, the wear stress failure is more critical than bending stress failure; for high-
powered gearboxes, the opposite is true. Edmund S. M. and Rajesh A. [4] used the NSGA-II
and the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) approach
to solve a MOO by taking three objectives into consideration: the gearbox volume, the
power output, and the center distance. The study’s findings provide insights into the
design of small gearboxes. A two-stage helical gearbox was the subject of a MOO by M.
Patil et al. [5], with two objective functions: the lowest gearbox volume and the smallest
gearbox total power loss. Several tribological and design limitations were used for this
investigation. It has been observed that the multi-objective technique reduces the gearbox’s
overall power loss by half and that solutions derived from single-objective minimization
without tribological constraints have a significant probability of wear failure. A. Parmar
et al. [6] also used the NSGA-II method to solve an optimization study of a planetary
gearbox while accounting for significant regular mechanical and tribological constraints.
Utilizing the study’s conclusions resulted in a significant reduction in weight and power
loss when comparing the outcomes of single-objective optimization with and without
tribological limitations. In addition, the method has been applied in [7] to enhance the
hypoid gears’ operational features and in [8] to reduce the power loss and the vibrational
excitation caused by meshing.

An auto encoder and bidirectional long short-term memory (BLSTM) are used in
a neural network-based model presented by Sreenatha, M. and P. Mallikarjuna [9] to
categorize the state of the gearbox for wind turbines into excellent or bad (broken tooth)
condition. To assess the trade-off between three functions—axle stiffness, assemblability
score, and overall mass—a MOOP is performed in [10]. By creating the Pareto front in
this work, a precise and effective trade-off between the gearbox design’s objectives may be
made, enabling one to choose the optimum gearbox design in a logical manner. A. Kumar
et al. [11] conducted a study on optimization of a three-stage wind turbine gearbox with
two objectives: minimizing weight and minimizing power loss. In the study, the standard
mechanical design restrictions as well as tribological constraints were considered and
various synthetic-based ISO VG PAO (Polyalphaolefin) oils were used. It was reported that
PAO 320 oil performs better than the other two grades (PAO 680 and 1000). Also, the power
loss is significantly reduced with tribological restriction for the selected model. A spur gear
set design optimization technique was established by Jawaz Alam and Sumanta Panda [12]
to decrease gear weight, contact stress, and ideal film thickness at the contact site. This
work combined particle swarm optimization, particle swarm optimization-based teaching
learning optimization, and Jaya methods to ensure a significant decrease in weight and
contact stress of a profile-modified spur gear set with sufficient film thickness at the site of
contact. The study’s conclusions show that, compared to traditional designs, the gear design
with optimal addendum coefficient values inside the design space is significantly better. G.
Istenes and J. Polák [13] conducted research to cooperatively optimize an electric motor and
a gearbox in order to construct a drive system for electric automobiles. Reducing the weight
of the driving system and total energy waste was the aim of this work. The optimization
results were compared with previous research to emphasize the added possibilities of
cooperative optimization. It was reported that increasing the gear ratio boosts the system’s
overall efficiency if the overall drive system is adjusted.
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The multi-objective design of transmission using helical gear pairs is investigated
by Sabarinath P. et al. [14]. Gear volumes and the opposing number of overlap ratio are
indications of the objective functions. The optimization issue in this study was solved using
the Parameter Adaptive Harmony Search Algorithm (PAHS). In [15], an optimal multi-
objective study of a cycloid pin gear planetary reducer is described. Using Pareto optimal
solutions, the reducer volume, turning arm bearing force, and pin maximum bending
stress were examined with the aim of reducing all three of these objectives. According
to the study’s findings, the updated algorithm can produce Pareto optimum solutions
that are superior to those produced by the routine design. In [16], the optimization of
tooth modifications for spur and helical gears was solved using a mono-objective self-
adaptive algorithm technique. This strategy is based on particle swarm optimization (PSO)
technology. The maximal contact pressures and root mean square values of the transmission
error signal were improved with the multi-objective optimization. The multi-objective
design of transmission using helical gear pairs is investigated in [16]. The Taguchi and
Grey relation analysis (GRA) methods were recently used by X.H. Le and N.P. Vu [17] to
investigate the MOO problem of building a two-stage helical gearbox. Two goals were
chosen for this study: the lowest gearbox mass and the highest gearbox efficiency. The
study’s findings were used to determine the ideal values for the five key design elements
that encompass creating a two-stage helical gearbox. In order to maximize the gearbox
efficiency and minimize the gearbox volume, the optimal primary design parameters
for a two-stage bevel helical gearbox were also determined in [18] using a combination
of Taguchi and GRA approaches. Moreover, these methods were applied to solve the
optimization of a two-stage helical gearbox with second-stage double gear sets in [19] to
increase the efficiency and reduce the mass of the gearbox.

Analysis shows that numerous investigations into the MOO problem of helical gear-
box have been conducted up to this point. Power loss in gears has been the subject of
numerous studies ([2,4,5,17,18], etc.). But the study previously stated did not take into
consideration the power loss that happens while a gear is idling or when it is immersed in a
lubricant during bath lubrication. In addition, a range of methods have been used to solve
MOO problems, such as the NSGA-II method [1–8], Parameter Adaptive Harmony Search
Algorithm (PAHS) [14], PSO method [16], Taguchi and GRA [17–19], etc. Among them, the
NSGA-II approach is more frequently employed to solve the MOO problem. Nevertheless,
a set of a lot of solutions is typically obtained when the MOO problem is solved using the
NSGA-II approach (for instance, 389 Pareto optimum solutions [2]). As a result, to obtain
the final results, it is required to combine the NSGA-II approach with another method, like
TOPSIS (as in [4]).

While helical gearbox MOO has been extensively studied, MCDM’s technique has not
been used to find the optimal primary design parameters for these gearboxes. This paper
presents the results of a MOO study conducted on a two-stage helical gearbox with double
gear sets in the second stage. The two main objectives of this optimization effort are to
reduce the gearbox mass and increase the gearbox efficiency. Additionally, the first stage’s
gear ratio and the CWFW for both stages—three optimal fundamental design characteristics
for the gearbox—were looked at. Furthermore, the optimization task was approached using
the EAMR method, and the weights of the criteria were determined using the Entropy
method. One of the main findings of this research is the suggestion to apply an MCDM
technique to solve MOO problems in conjunction with two-step problem solving, tackling
single- and multi-objective problems. Moreover, the problem’s solutions are more effective
than those of earlier studies.

2. Optimization Problem

In this part, the gearbox mass and efficiency are first calculated in order to build the
optimization problem. Next, the specified objective functions and constraints are given. To
facilitate calculations, the nomenclature used in the optimization problem are presented
in Table 1.
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Table 1. The nomenclature for optimization problem.

Parameter Nomenclature Units

Allowable contact stress of stages i (i = 1 ÷ 2) ASi Mpa

Allowable shear stress of shaft material [τ] MPa

Arc of approach on i stage βai -

Arc of recess on i stage βri -

Base circle radius of the pinion R01i mm

Base circle radius of the gear R02i mm

Center distance of stage 1 aw1 mm

Center distance of stage 2 aw2 mm

Coefficient of wheel face width of stage 1 Xba1 -

Coefficient of wheel face width of stage 2 Xba2 -

Coefficient of gear material ka Mpa1/3

Contacting load ratio for pitting resistance kHβ -

Diameter of shaft i dsi mm

Efficiency of a helical gearbox ηhb -

Efficiency of the i stage of the gearbox ηgi -

Efficiency of a helical gear unit ηhg -

Efficiency of a rolling bearing pair ηb -

Friction coefficient f -

Friction coefficient of bearing fb -

Gearbox ratio (or total gearbox ratio) ugb

Gear ratio of stage 1 u1 -

Gear ratio of stage 2 u2 -

Gear width of stage 1 bw1 mm

Gear width of stage 2 bw2 mm

Gearbox mass mgb kg

Gear mass mg kg

Shaft mass ms kg

Gearbox housing mass mgh kg

Gear mass of stage 1 mg1 kg

Gear mass of stage 2 mg2 kg

Hydraulic moment of power losses TH Nm

ISO Viscosity Grade number VG40 -

Length of shaft i lsi mm

Load of bearing i Fi N

Mass density of gearbox housing materials ρgh kg/m3

Mass of shaft j (j = 1 ÷ 3) msj kg

Mass density of shaft material ρs kg/m3

Outside radius of the pinion Re1i mm

Outside radius of the gear Re2i mm

Output torque Tout Nmm

Pitch diameter of the pinion of stage 1 dw11 mm

Pitch diameter of the gear of stage 2 dw21 mm

Pitch diameter of the pinion of stage 2 dw12 mm

Pitch diameter of the gear of stage 2 dw22 mm

Power loss in the gears Plg Kw
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Table 1. Cont.

Parameter Nomenclature Units

Power loss in the bearings Plb Kw

Power loss in the seals Pls Kw

Power loss in the idle motion Pzo Kw

Pressure angle α rad.

Peripheral speed of bearing vb m/s

Sliding velocity of gear v m/s

Total power loss in the gearbox Pl -

Torque on the pinion of stage i (i = 1 ÷ 2) T1i Nmm

Volume coefficients of the pinion e1 -

Volume coefficients of the gear e2 -

Volume of gearbox housing Vgh dm3

Volumes of bottom housing A VA dm3

Volumes of bottom housing B VB dm3

Volumes of bottom housing B VC dm3

Weight density of gear materials ρg kg/m3

2.1. Calculation of Gearbox Mass

The gearbox mass mgb, is calculated with

mgb = mg + mgh + ms (1)

in which mg, mgh, and ms can be found in detail as follows:
(+) Determining mg:

mg = mg1 + 2·mg2 (2)

in which

mg1 = ρg·
(

π·e1·d2
w11·bw1

4
+

π·e2·d2
w21·bw1

4

)
(3)

mg2 = ρg·
(

π·e1·d2
w12·bw2

4
+

π·e2·d2
w22·bw2

4

)
(4)

bw1 = Xba1·aw1 (5)

bw2 = Xba2·aw2 (6)

dw1i = 2·awi/(ui + 1) (7)

dw2i = 2·awi·ui·/(ui + 1) (8)

In the above Equations, i = 1 ÷ 2; ρg = 7800 (kg/m3) because the material of the gears
is steel; e1 = 1 and e2 = 0.6 [20]; and awi can be found with [20]

awi = ka·(ui + 1)· 3

√
T1i·kHβ/

(
[ASi]

2·ui·Xbai

)
(9)

where T1i (i = 1 ÷ 2) is determined by the following equations:

T11 = Tout/
(

ugb·η2
hg·η

3
b

)
(10)

T12 = Tout/
(

2·u2·ηhg·η2
be

)
(11)

(+) Determining mgh:
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For the gearbox, mgh can be calculated by

mgh = ρgh·Vgh (12)

in which Vgh can be found by (see Figure 1)

Vgh = 2·VA + 2·VB + 2·VC (13)

wherein
VA = L·H·SG (14)

VB = L·B1·1.5·SG (15)

VC = B2·H·SG = (B1 − 2·SG)·H·SG (16)
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In the above Equations, L, H, B1, and SG are calculated by [21]

L = (d w11 + dw21/2 + dw12/2 + dw22/2 + 22.5)/0.975 (17)

H = max(dw21; dw22) + 8.5·SG (18)

B1 = bw1 + 2·bw2 + 5·SG (19)

SG = 0.005·L + 4.5 (20)

(+) Determining ms:
For the gearbox, ms can be determined by

ms = ∑3
j=1 msj (21)
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where
msj = ρs·π·d2

sj·lsj/4 (22)

In (22), lsj is determined by (see Figure 1)

ls1 = B1 + 1.2·ds1 (23)

ls2 = B1 (24)

ls3 = B1 + 1.2·ds3 (25)

The diameter of the shaft j (j = 1 ÷ 3) can be found by [20]

dsj =
[
T1j/(0.2·[τ])

]1/3 (26)

In the above Equations, ρg = ρs = 7800 (kg/m3) as the gear and shaft materials are
steel; [τ] = 17 (Mpa) [20].

2.2. Calculation of Gearbox Efficiency

For the gearbox, ηgb is determined by

ηgb = 100 − 100·Pl
Pin

(27)

wherein Pl can be calculated by [22]

Pl = Plg + Plb + Pls + PZ0 (28)

in which Plg, Plb, Pls, and Pzo can be found by
(+) Determining Plg:

Plg = ∑2
i=1 Plgi (29)

in which
Plgi = Pgi·

(
1 − ηgi

)
(30)

where ηgi can be determined by [23]

ηgi = 1 −
(

1 + 1/ui
βai + βri

)
· fi

2
·
(

β2
ai + β2

ri

)
(31)

In (31), βai and βri are found by [23]

βai =

(
R2

e2i − R2
02i
)1/2 − R2i· sin α

R01i
(32)

βri =

(
R2

e1i − R2
01i
)1/2 − R1i· sin α

R01i
(33)

where f is calculated by the following Equations [17]:

- If v ≤ 0.424 (m/s):
f = −0.0877·v + 0.0525 (34)

- If v > 0.424 (m/s):
f = 0.0028·v + 0.0104 (35)

(+) Determining Plb [22]:
Plb = ∑6

i=1 fb·Fi·vi (36)

in which i = 1 ÷ 6 and fb = 0.0011 (the radical ball bearings with angular contact were
selected) [14].
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(+) Determining Ps [22]:
Ps = ∑2

i=1 Psi (37)

where i is the ordinal number of seal (i = 1 ÷ 2), and Psi can be found by

Psi = [145 − 1.6·toil + 350·loglog(VG40 + 0.8)]·d2
s ·n·10−7 (38)

(+) Determining Pzo [22]:

PZ0 = ∑k
i=1 THi·

π·ni
30

(39)

in which k = 2 is the total number of gear pairs of the gearbox; n is the number of revolutions
of a driven gear; THi is calculated by [22]

THi = CSp·C1·e
C2 ·v
vt0 (40)

where CSp = 1 in the case of stage 1 when the involved oil has to pass until the mesh; in
another instance (for stage 2) (Figure 2), CSp can be determined by

CSp =

(
4·emax

3·hC

)1.5
·2·hC

lhi
(41)

wherein lhi is determined by [22]

lhi = (1.2 ÷ 2.0)·da2i (42)

In (40), C1 and C2 are calculated by [22]

C1 = 0.063·
(

e1 + e2

e0

)
+ 0.0128·

(
b
b0

)
(43)

C2 =
e1 + e2

80·e0
+ 0.2 (44)

in which e0 = b0 = 10 (mm).
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2.3. Objective Functions and Constrains
2.3.1. Objectives Functions

The MOO problem in this paper has two single objectives:
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- Minimizing the mass of the gearbox:

min f1(X) = mgb (45)

- Maximizing the efficiency of the gearbox:

min f2(X) = ηgb (46)

where the vector representing the design variables is denoted by X. There are three
primary design factors for a two-stage helical gearbox with second-stage double gear sets:
u1, Xba1, Xba2, AS1, and AS2. Furthermore, it was shown that AS1 and AS2’s maximum
values correspond to their ideal values [17]. As a result, the three primary design aspects in
this work, u1, Xba1, and Xba2, were chosen as the variables for the optimization problem,
and the result is

X = {u1, Xba1, Xba2} (47)

2.3.2. Constrains

The following limitations must be met by the multi-objective function:

1 ≤ u1 ≤ 9 and 1 ≤ u2 ≤ 9 (48)

0.25 ≤ Xba1 ≤ 0.4 and 0.25 ≤ Xba2 ≤ 0.4 (49)

3. Methodology
3.1. Method to Solve the Multi-Objective Optimization

Three primary design factors are chosen as variables for the MOO problem, as men-
tioned in Section 2.3. Table 2 lists these variables along with their minimum and maximum
values. In reality, it is challenging to solve the MOO problem using an MCDM tech-
nique. The reason is because there are a lot of options or potential solutions when it
comes to dealing with a MOO problem. To ensure the accuracy of the parameters and
avoid missing the optimization problem’s solution, the three parameters in this work
have limits, as shown in Table 2, and the difference between variables is 0.02. As a result,
the number of options (or experimental runs) that must be determined and compared
is (9 − 1)/0.02·(0.4 − 0.25)/0.02·(0.4 − 0.25)/0.02 = 22, 500 (runs). The OMO problem
cannot be solved directly with the MCDM method due to the enormous number of options.
In order to determine the ideal values for the three primary design variables, the MOO
issue in this work was approached using the EAMR method. The two objectives were
minimum gearbox mass and maximum gearbox efficiency. To solve the MOO problem for a
two-stage helical gearbox with second-stage double gear sets, a simulation experiment was
built. Moreover, because this is a simulation experiment, the number of experiments can
be raised without a consideration of the budget for each experiment by utilizing the full
factorial design. Because there are three experimental variables (as previously specified)
and five levels for each variable, the result will be 53 = 125 experiments. However, Table 2
indicates that u1 has the broadest spread among the three specified variables (ranging from
1 to 9). As a result, even with five levels, there was still a significant disparity between
the levels of this variable (in this case, ((9 − 1)/4 = 2). To close this gap, reduce time, and
improve the accuracy of the outcomes, a strategy for resolving multi-objective issues was
proposed (Figure 3). The two parts of this procedure are as follows: phase 1 factors solve
the MOO problem to identify the optimal primary design, and phase 2 factors solve the
single-objective optimization problem to minimize the gap between levels. Additionally,
in the process of addressing the multi-objective problem, the EAMR issue will be rerun
using the smaller distance between two levels of the u1 if the variable’s levels are not
sufficiently close to one another or if the best answer is not appropriate for the requirement
(see Figure 3).
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Table 2. Input parameters.

Parameter Symbol Lower Limit Upper Limit

Gearbox ratio of first stage u1 1 9
CWFW of stage 1 Xba1 0.25 0.4
CWFW of stage 2 Xba2 0.25 0.4
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3.2. Method to Solve MCDM Problem:

The EAMR technique is implemented in the following stages [24]:

- Step 1: Creating the decision-making matrix:

Xd =


xd

11 · · · xd
1n

xd
21 · · · xd

21
... · · ·

...
xd

m1 · · · xd
mn

 (50)

where 1 ≤ d ≤ k, the decision maker’s number is k, and their indication is denoted
by d.

- Step 2: For each criterion, ascertain the mean value of each possibility by

xij =
1
k

(
x1

ij + x2
ij + · · ·+ xk

ij

)
(51)

- Step 3: Determine the weights of creation:
- Step 4: Find each criterion’s weighted average:

wj =
1
k

(
w1

j + w2
j + · · ·+ wk

j

)
(52)

- Step 5: Calculate nij using

nij =
xij

ej
(53)
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in which ej is determined by

ej = maxi∈{1,...,m}
(

xij
)

(54)

- Step 6: Find the normalized weight using

vij = nij·wj (55)

- Step 7: Determine the criteria’s normalized score:
(+) When criteria j is greater as better:

G+
i = v+i1 + v+i2 + · · ·+ v+im (56)

(+) When criteria j is smaller as better:

G−
i = v−i1 + v−i2 + · · ·+ v−+

im (57)

- Step 8: Calculate the ranking values (RVs) from Gi
+ and Gi

−:
- Step 9: Calculate the alternatives’ evaluation score using

Si =
RV
(
G+

i
)

RV
(
G−

i
) (58)

The best option is the one with the largest Si.

3.3. Method to Find the Weight of Criteria:

In this paper, the Entropy technique was used to establish the weights of the criteria.
The actions listed below can be used to put this strategy into practice [25].

- Calculate indicator normalized values as follows:

pij =
xij

m + ∑m
i=1 x2

ij
(59)

- Determine the Entropy for each indicator as follows:

mej = −∑m
i=1

[
pij × ln

(
pij
)]

−
(

1 − ∑m
i=1 pij

)
× ln

(
1 − ∑m

i=1 pij

)
(60)

- Find the weight of each indicator as follows:

wj =
1 − mej

∑m
j=1
(
1 − mej

) (61)

4. Single-Objective Optimization

In this study, a direct search strategy was used to solve the single-objective opti-
mization problem. Furthermore, an Excel computer program was created to solve two
single-objective problems: reducing gearbox mass and optimizing gearbox efficiency. The
following are some of the program findings’ figures and observations (calculated with
ugb = 20). Figure 4 shows the relationship between ηgb and u1. It is evident that ηgb achieves
its maximum value at an optimal value of u1. Figure 5 shows how u1 and mgb are related.
When u1 is at its optimal value, mgb reaches its lowest value (Figure 4). Figures 6 and 7
show the associations between Xba1 and Xba2 as well as ηgb and mgb, respectively. These
results (Figures 6a and 7a) demonstrate that as Xba1 and Xba2 rise, ηgb will fall. However, as
Xba1 and Xba2 rise, mgb also rises (Figures 6b and 7b). Figure 8 illustrates the link between
the ideal gear ratio, u1, for the first stage and the overall gearbox ratio, ut. Moreover,
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Table 3 displays newly computed restrictions for the variable u1 based on the outcomes of
single-objective problems.
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Table 3. New constraints of u1.

ut
u1

Lower Limit Upper Limit

10 1.76 2.4
15 2.49 2.99
20 3.17 3.52
25 3.76 4.01
30 4.19 4.63
35 4.58 5.23
40 4.93 5.80

5. Multi-Objective Optimization

A computer program was created based on the optimization (in Section 2) to carry
out the simulation experiment. The gearbox ratios of 10, 15, 20, 25, 30, 35, and 40 were
all included for the analysis. This problem, with ugb = 30, has the answers displayed
below. This total gearbox ratio was used for the 125 initial testing cycles (as specified in
Section 3.1). The experiment’s output values, the gearbox mass and efficiency, will be used
as input parameters by EAMR to resolve the MOO issue. Figure 9 illustrates the procedure
for determining the optimal major design values when using the EAMR technique. The
distance between the two levels of each variable will decrease with each EAMR’s step.
For instance, in step 1, u1 increases from 4.19 to 4.63 when ugb = 30 (Table 3). As a result,
(4.63–4.19)/4 = 0.11 is the distance between the two levels of u1. This procedure will be
repeated until there is less than 0.02 separating the two levels of u1. The primary design
parameters and output responses for ugb = 30 in the fourth and final iteration of the EAMR
experiment are shown in Table 4. The criteria’s weights were established using the Entropy
technique (see Section 3.3) as follows: First, use Equation (59) to obtain the normalized
values of pij. Use Equation (60) to determine each indicator mej’s Entropy value. Finally,
use Equation (61) to find the weight of the criteria wj. The weights of mgb and ηgb for
the most recent EAMR experiment were determined to be 0.4886 and 0.5114, respectively.
Guidelines for using the EAMR technique in multi-objective decision making are given
in Section 3.2. After that, the decision matrix should be assembled using Formula (50),
considering the fact that k = 1 and there is only one result set. Determine the mean of the
choices for each criterion using Equation (51), bearing in mind that xij = xij since k = 1.
The average weighted values can then be obtained using Formula (52) while noting that
wj = wj because k = 1. Utilizing Formula (53) and the definition of ej given by (54), obtain
nij. Next, use Formula (55) to compute vij. Use Equation (56) for gearbox efficiency and



Symmetry 2024, 16, 783 14 of 19

Equation (57) for gearbox mass to calculate the values of Gi. Finally, calculate the Si value
using Formula (58). Table 5 shows the outcomes of the option ranking and the EAMR
approach’s computation of various parameters (for the final run of the EAMR). Out of all
the possibilities provided, option 26 is the most ideal one, according to the table. The best
values for the main design elements are therefore u1 = 4.31, Xba1 = 0.25, and Xba2 = 0.25
(see Table 4).
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Table 4. Main design parameter and output results for ut = 30 in the 3rd run of EAMR.

Trial. u1 Xba1 Xba2 mgb (kg) ηgb (%)

1 4.29 0.25 0.25 222.74 96.04
2 4.29 0.25 0.29 226.18 95.97
3 4.29 0.25 0.33 229.60 95.92
4 4.29 0.25 0.36 232.98 95.86
5 4.29 0.25 0.40 236.32 95.79
6 4.29 0.29 0.25 223.95 95.45

. . .

25 4.29 0.40 0.40 240.91 93.04
26 4.31 0.25 0.25 222.69 96.02
27 4.31 0.25 0.29 226.13 95.97

. . .

51 4.34 0.25 0.25 222.65 96.00
52 4.34 0.25 0.29 226.08 95.95
53 4.34 0.25 0.33 229.50 95.88

. . .

76 4.36 0.25 0.25 222.60 95.98
77 4.36 0.25 0.29 226.04 95.93
78 4.36 0.25 0.33 229.45 95.86

. . .

101 4.38 0.25 0.25 222.56 95.95
102 4.38 0.25 0.29 225.99 95.91
103 4.38 0.25 0.33 229.41 95.84

. . .

123 4.38 0.40 0.33 234.09 93.01
124 4.38 0.40 0.36 237.45 92.95
125 4.38 0.40 0.40 240.77 92.88

The color describes the best option.
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Table 5. Calculated results and ranking of options by EAMR method for ut = 30.

Trial.
nij vij Gij

Ri Rank
mgb ηgb mgb ηgb mgb ηgb

1 0.9246 1.0000 0.4517 0.5114 0.4517 0.5114 1.1322 3
2 0.9389 0.9993 0.4587 0.5111 0.4587 0.5111 1.1142 15
3 0.9531 0.9988 0.4656 0.5108 0.4656 0.5108 1.0970 29
4 0.9671 0.9981 0.4725 0.5105 0.4725 0.5105 1.0804 48
5 0.9809 0.9974 0.4793 0.5101 0.4793 0.5101 1.0644 75
6 0.9296 0.9939 0.4542 0.5083 0.4542 0.5083 1.1192 7

. . .

25 1.0000 0.9688 0.4886 0.4955 0.4886 0.4955 1.0141 121
26 0.9244 0.9998 0.4516 0.5113 0.4516 0.5113 1.1322 1
27 0.9386 0.9993 0.4586 0.5111 0.4586 0.5111 1.1144 12

. . .

51 0.9242 0.9996 0.4515 0.5112 0.4515 0.5112 1.1322 4
52 0.9384 0.9991 0.4585 0.5110 0.4585 0.5110 1.1144 11
53 0.9526 0.9983 0.4654 0.5106 0.4654 0.5106 1.0970 27

. . .

76 0.9240 0.9994 0.4514 0.5111 0.4514 0.5111 1.1322 2
77 0.9383 0.9989 0.4584 0.5108 0.4584 0.5108 1.1144 14
78 0.9524 0.9981 0.4653 0.5105 0.4653 0.5105 1.0970 26

. . .

101 0.9238 0.9991 0.4514 0.5110 0.4514 0.5110 1.1320 5
102 0.9381 0.9986 0.4583 0.5107 0.4583 0.5107 1.1144 13
103 0.9523 0.9979 0.4652 0.5104 0.4652 0.5104 1.0970 30

. . .

123 0.9717 0.9685 0.4747 0.4953 0.4747 0.4953 1.0433 100
124 0.9856 0.9678 0.4816 0.4950 0.4816 0.4950 1.0279 115
125 0.9994 0.9671 0.4883 0.4946 0.4883 0.4946 1.0129 125

Table 6 shows the optimal values for the main design parameters that correspond to
the remaining ugb values of 10, 20, 25, 30, 35, and 40, being a continuation of the previous
discussion. The following conclusions can be drawn using the information in this table:

Table 6. Optimum values of main design parameters.

No.
ut

10 15 20 25 30 35 40

u1 2.04 2.74 3.36 3.85 4.31 4.76 5.16
Xba1 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Xba2 0.25 0.25 0.25 0.25 0.25 0.25 0.25

The lowest values that correspond to the optimal values for Xba1 and Xba2 are Xba1
= 0.25 and Xba2 = 0.25. This result is also consistent with the observations stated in [20].
This is due to the fact that in order to achieve the intended minimum gearbox mass, the
coefficients Xba1 and Xba2 must be as small as possible. Lowering these coefficients will
result in a decrease in the gear widths (represented by Equations (5) and (6)) and, in turn,
the gear mass (represented by Equations (3) and (4)).

Figure 10 shows that there is a definite first-order relationship between the ideal values
of u1 and ugb. Additionally, it was found that the following regression equation (with
R2 = 0.9901) can be used to calculate the optimal values of u1:
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u1 = 0.1025·ut + 1.1832 (62)
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After determining u1, the optimal value of u2 can be determined via the formula below:

u2 = ut/u1 (63)

To evaluate the model’s outcomes for determining the ideal values when calculated
using the EAMR method (new method), the findings of this study are compared with those
acquired using the Taguchi and Gray Relational Analysis method (old method) in [20]. The
ideal values of u1 corresponding to different ugb generated by the two approaches were
compared and are shown in Figure 11. Additionally, Figures 12 and 13 show the gearbox
mass and efficiency data derived from the old and new techniques, respectively. The results
presented show that in comparison to the calculations made with the old method, the new
approach produces a significantly lower gearbox mass (from 4.9 to 21.6%) and significantly
improved gearbox efficiency (from 40.7 to 0.5%) when ugb changes from 15 to 40.

Symmetry 2024, 16, x FOR PEER REVIEW 16 of 19 
 

 

𝑢ଵ = 0.1025 ∙ 𝑢௧ + 1.1832 (62)

After determining u1, the optimal value of u2 can be determined via the formula be-
low: 𝑢ଶ = 𝑢௧/𝑢ଵ (63)

 
Figure 10. Optimum gear ratio of the first stage versus total gearbox ratio. (The solid line if the 
values of optimum gear ratio of the first stages with different total gearbox ratio. The dashed line 
describes the regression equation for that.) 

To evaluate the model’s outcomes for determining the ideal values when calculated 
using the EAMR method (new method), the findings of this study are compared with 
those acquired using the Taguchi and Gray Relational Analysis method (old method) in 
[20]. The ideal values of u1 corresponding to different ugb generated by the two approaches 
were compared and are shown in Figure 11. Additionally, Figures 12 and 13 show the 
gearbox mass and efficiency data derived from the old and new techniques, respectively. 
The results presented show that in comparison to the calculations made with the old 
method, the new approach produces a significantly lower gearbox mass (from 4.9 to 
21.6%) and significantly improved gearbox efficiency (from 40.7 to 0.5%) when ugb changes 
from 15 to 40. 

 
Figure 11. Optimum values of u1 calculated by old and new methods. Figure 11. Optimum values of u1 calculated by old and new methods.



Symmetry 2024, 16, 783 17 of 19
Symmetry 2024, 16, x FOR PEER REVIEW 17 of 19 
 

 

 
Figure 12. Minimum gearbox mass values calculated by old and new methods. 

 
Figure 13. Maximum gearbox efficiency values calculated by old and new methods. 

6. Conclusions 
The EAMR approach was utilized in this study to solve the MOO problem related to 

the design of a two-stage helical gearbox with a second-stage double gear set. The study’s 
goal was to identify the best critical design parameters that maximize the gearbox effi-
ciency while reducing the gearbox mass. To carry this out, three essential design compo-
nents were chosen: the CWFW for the first and second stages, and the first-stage gear ratio. 
In addition, there were two steps in the MOO problem solution process. Phase 1 was ded-
icated to solving the single-objective optimization problem of reducing the difference be-
tween variable values, whereas phase 2 was concerned with determining the optimal pri-
mary design factors. The following findings were drawn from this work: 
- The single-objective optimization problem speeds up and simplifies the resolution of 

the MOO problem by bridging the gap between variable levels. 
- Equation (62) and Table 6 present the optimal values for the three main design pa-

rameters of a two-stage helical gear gearbox with second-stage double gear sets based 
on this study’s findings. 

- Two single targets were assessed concerning the principal design parameters. 
- By using the EAMR technique repeatedly until the required results are attained, the 

MOO problem can be solved more precisely (u1 has an accuracy of less than 0.02). 

Figure 12. Minimum gearbox mass values calculated by old and new methods.

Symmetry 2024, 16, x FOR PEER REVIEW 17 of 19 
 

 

 
Figure 12. Minimum gearbox mass values calculated by old and new methods. 

 
Figure 13. Maximum gearbox efficiency values calculated by old and new methods. 

6. Conclusions 
The EAMR approach was utilized in this study to solve the MOO problem related to 

the design of a two-stage helical gearbox with a second-stage double gear set. The study’s 
goal was to identify the best critical design parameters that maximize the gearbox effi-
ciency while reducing the gearbox mass. To carry this out, three essential design compo-
nents were chosen: the CWFW for the first and second stages, and the first-stage gear ratio. 
In addition, there were two steps in the MOO problem solution process. Phase 1 was ded-
icated to solving the single-objective optimization problem of reducing the difference be-
tween variable values, whereas phase 2 was concerned with determining the optimal pri-
mary design factors. The following findings were drawn from this work: 
- The single-objective optimization problem speeds up and simplifies the resolution of 

the MOO problem by bridging the gap between variable levels. 
- Equation (62) and Table 6 present the optimal values for the three main design pa-

rameters of a two-stage helical gear gearbox with second-stage double gear sets based 
on this study’s findings. 

- Two single targets were assessed concerning the principal design parameters. 
- By using the EAMR technique repeatedly until the required results are attained, the 

MOO problem can be solved more precisely (u1 has an accuracy of less than 0.02). 

Figure 13. Maximum gearbox efficiency values calculated by old and new methods.

6. Conclusions

The EAMR approach was utilized in this study to solve the MOO problem related to
the design of a two-stage helical gearbox with a second-stage double gear set. The study’s
goal was to identify the best critical design parameters that maximize the gearbox efficiency
while reducing the gearbox mass. To carry this out, three essential design components
were chosen: the CWFW for the first and second stages, and the first-stage gear ratio.
In addition, there were two steps in the MOO problem solution process. Phase 1 was
dedicated to solving the single-objective optimization problem of reducing the difference
between variable values, whereas phase 2 was concerned with determining the optimal
primary design factors. The following findings were drawn from this work:

- The single-objective optimization problem speeds up and simplifies the resolution of
the MOO problem by bridging the gap between variable levels.

- Equation (62) and Table 6 present the optimal values for the three main design param-
eters of a two-stage helical gear gearbox with second-stage double gear sets based on
this study’s findings.

- Two single targets were assessed concerning the principal design parameters.
- By using the EAMR technique repeatedly until the required results are attained, the

MOO problem can be solved more precisely (u1 has an accuracy of less than 0.02).
- The experimental data’s extraordinary degree of concordance with the proposed

model of u1 verifies their reliability.
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- The results show that the novel approach to the MOO issue outperforms the prior
method (the Taguchi and GRA approaches) in terms of yielding superior results.

- The proposed method of utilizing the MCDM method to solve the MOOP can be
applied for the design of a gearbox when teaching mechanical students and for
industry applications.

- The limitation of this study is that a statistical analysis was not conducted on the ex-
perimental data. Therefore, the proposed further research direction is to use statistical
methods to analyze the experimental data.
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