Geometric Features of the Hurwitz–Lerch Zeta Type Function Based on Differential Subordination Method
Abstract
:1. Introduction
- is convex or
- is starlike.
2. Proposed Logarithm-Hurwitz–Lerch Zeta Function
3. Geometric Features of
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodman, A.W. Univalent Functions; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Sokół, J.; Ibrahim, R.W.; Ahmad, M.Z.; Al-Janaby, H.F. Inequalities of harmonic univalent functions with connections of hypergeometric functions. Open Math. 2015, 13, 691–705. [Google Scholar] [CrossRef]
- Al-Janaby, H.F.; Ahmad, M.Z. Differential inequalities related to Salagean type integral operator involving extended generalized Mittag-Leffler function. J. Phys. Conf. Ser. 2018, 1132, 012061. [Google Scholar] [CrossRef]
- Srivastava, H.M. A new family of the λ-generalized Hurwitz-Lerch zeta functions with applications. Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [Google Scholar] [CrossRef]
- Riemann, G.F.B. Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Königl. Preuss. Akad. Wiss. Berlin 1859, 2, 671–680, Reprinted in Das Kontinuum und Andere Monographen (Ed. H. Weyl). New York: Chelsea, 1972. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company: New York, NY, USA, 1954; Volume II. [Google Scholar]
- Srivastava, H.M.; Choi, J. Series Associated with the Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2001. [Google Scholar]
- Rainville, E.D. Special Functions; Macmillan: New York, NY, USA, 1960. [Google Scholar]
- Hadamard, J. Sur la distribution des zéros de la fonction et ses conséquences arithmétiques. Bull. Société Mathématique Fr. 1896, 24, 199–220. [Google Scholar] [CrossRef]
- de la Vallee-Poussin, C.J. Recherches Analytiques sur la Théorie des Nombres Premiers; Imprimeur de l’Académie Royale de Belgique: Bruxelles Hayez, Belgium, 1896. [Google Scholar]
- Hurwitz, A. Einige Eigenschaften der Dirichletschen Funktionen die bei der Bestimmung der Klassenanzahlen Binärer quadratischer Formen auftreten. Z. Für Math. Phys. 1882, 27, 86–101. [Google Scholar]
- Yen, C.-E.; Lin, M.-L.; Nishimoto, K. An integral form for a generalized Zeta function. J. Fract. Calc. 2002, 22, 99–102. [Google Scholar]
- Nishimoto, K.; Yen, C.-E.; Lin, M.-L. Some integral forms for a generalized Zeta function. J. Fract. Calc. 2002, 22, 91–97. [Google Scholar]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inform. Sci. 2011, 5, 390–444. [Google Scholar]
- Lipschitz, R. Untersuchung einer aus vier Elementen gebildeten Reihe. J. Reine Angew. 1857, 54, 313–328. [Google Scholar]
- Lerch, M. Note sur la fonction . Acta Math. 1887, 11, 19–24. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK, 1963. [Google Scholar]
- Goyal, S.P.; Laddha, R.K. On the generalized Riemann zeta function and the generalized Lambert transform. Ganita Sandesh 1997, 11, 99–108. [Google Scholar]
- Petojević, A. A note about the Pochhammer symbol. Math. Moravica 2008, 12-1, 37–42. [Google Scholar] [CrossRef]
- Lin, S.D.; Srivastava, H.M. Some families of the Hurwitz–Lerch zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
- Ferreira, C.; López, J.L. Asymptotic expansions of the Hurwitz-Lerch zeta function. J. Math. Anal. Appl. 2004, 298, 210–224. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subordination results and integral means inequalities for k-uniformly starlike functions defined by convolution involving the Hurwitz-Lerch Zeta function. Stud. Univ. Babeş-Bolyai Math. 2010, LV, 69–82. [Google Scholar]
- Hadi, S.H.; Darus, M. (p, q)-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with (p, q)-Hurwitz zeta function. Turk. J. Math. 2022, 46, 25. [Google Scholar] [CrossRef]
- Garg, M.; Jain, K.; Kalla, S.L. A further study of general Hurwitz–Lerch zeta function. Algebras Groups Geom. 2008, 25, 311–319. [Google Scholar]
- Jankov, D.; Pogany, T.K.; Saxena, R.K. An extended general Hurwitz-Lerch Zeta function as a Mathieu series. Appl. Math. Lett. 2011, 24, 1473–1476. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jolly, N.; Bansal, M.K.; Jain, R. A new integral transform associated with the λ-extended Hurwitz-Lerch zeta function. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2019, 113, 1679–1692. [Google Scholar] [CrossRef]
- Choi, J.; Parmar, R.K. An Extension of the Generalized Hurwitz-Lerch Zeta function of two variables. Filomat 2017, 31, 91–96. [Google Scholar] [CrossRef]
- Ghanim, F.; Batiha, B.; Ali, A.H.; Darus, M. Geometric Properties of a Linear Complex Operator on a Subclass of Meromorphic Functions: An Analysis of Hurwitz-Lerch-Zeta Functions. Appl. Math. Nonlinear Sci. 2023, 8, 2229–2240. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. A certain subclass of univalent meromorphic functions defined by a linear operator associated with the Hurwitz-Lerch zeta function, Rad Hrvatske akademije znanosti i umjetnosti. Mat. Znan. 2019, 23, 71–83. [Google Scholar]
- Al-Janaby, H.F.; Ghanim, F.; Darus, M. On The Third-Order Complex Differential Inequalities of -Generalized-Hurwitz–Lerch Zeta Functions. Mathematics 2020, 8, 845. [Google Scholar] [CrossRef]
- Nisar, K.S. Further extension of the generalized Hurwitz-Lerch Zeta function of two variables. Mathematics 2019, 7, 48. [Google Scholar] [CrossRef]
- Nadeem, R.; Usman, T.; Nisar, K.S.; Baleanu, D. Analytical properties of the Hurwitz–Lerch zeta function. Adv. Differ. Equ. 2020, 2020, 466. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. Sum of the Hurwitz-Lerch Zeta Function over Natural Numbers: Derivation and Evaluation. J. Math. 2022, 2022, 3591775. [Google Scholar] [CrossRef]
- Mehrez, K.; Agarwal, P. Integral representations of the multi-parameter Hurwitz–Lerch zeta function and applications. J. Anal. 2023, 31, 1707–1728. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations, Theory and Applications; A series of Monographs and Textbooks in Pure and Applied Mathematics; CRC Press: New York, NY, USA, 2000; 480p. [Google Scholar]
- Zayed, H.; Bulboacă, T. Sandwich results for higher order fractional derivative operators. Mat. Stud. 2018, 49, 52–66. [Google Scholar] [CrossRef]
- Attiy, A.A.; Aouf, M.K.; Ali, E.E.; Yassen, M.F. Differential subordination and superordination results associated with Mittag-Leffler function. Mathematics 2021, 9, 226. [Google Scholar] [CrossRef]
- Lupaş, A.A.; Oros, G.I. Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Reem, O.R.; Kassim, A. A Study of a Certain Family of Multivalent Function Associated with Subordination. Iraqi J. Sci. 2021, 62, 3009–3019. [Google Scholar]
- Abdulnabi, F.F.; Al-Janaby, H.F.; Ghanim, F.; Lupaș, A. Some Results on Third-Order Differential Subordination and Differential Superordination for Analytic Functions Using a Fractional Differential Operator. Mathematics 2023, 11, 18. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Strong differential subordination. Turk. J. Math. 2009, 33, 249–257. [Google Scholar] [CrossRef]
- Oros, G.I. Strong differential superordination. Acta Univ. Apulensis 2009, 19, 101–106. [Google Scholar]
- Merkes, E.P.; Scott, W.T. Starlike hypergeometric functions. Proc. Am. Math. Soc. 1961, 12, 885–888. [Google Scholar] [CrossRef]
- Ruscheweyh, S.; Singh, V. On the order of starlikeness of hypergeometric functions. J. Math. Anal. App. 1986, 113, 1–11. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for confluent hypergeometric functions. Complex Var. Theory Appl. 1998, 36, 73–97. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Rønning, F. Starlikeness properties for convolutions involving hypergeometric series. Ann. Univ. Mariae Curie-Sklodowska 1998, 52, 141–155. [Google Scholar]
- Ponnusamy, S. Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput. Appl. Math. 1998, 88, 327–337. [Google Scholar] [CrossRef]
- Layth, T.K.; Ahmed, M.A.; Al-Janaby, H.F. Convexity properties for integro-differential operators proposed by Hurwitz-Lerch Zeta Type functions. Iraqi J. Sci. 2023, 64, 6483–6492. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulnabi, F.F.; F. Al-Janaby, H.; Ghanim, F.; Lupaș, A.A. Geometric Features of the Hurwitz–Lerch Zeta Type Function Based on Differential Subordination Method. Symmetry 2024, 16, 784. https://doi.org/10.3390/sym16070784
Abdulnabi FF, F. Al-Janaby H, Ghanim F, Lupaș AA. Geometric Features of the Hurwitz–Lerch Zeta Type Function Based on Differential Subordination Method. Symmetry. 2024; 16(7):784. https://doi.org/10.3390/sym16070784
Chicago/Turabian StyleAbdulnabi, Faten F., Hiba F. Al-Janaby, Firas Ghanim, and Alina Alb Lupaș. 2024. "Geometric Features of the Hurwitz–Lerch Zeta Type Function Based on Differential Subordination Method" Symmetry 16, no. 7: 784. https://doi.org/10.3390/sym16070784
APA StyleAbdulnabi, F. F., F. Al-Janaby, H., Ghanim, F., & Lupaș, A. A. (2024). Geometric Features of the Hurwitz–Lerch Zeta Type Function Based on Differential Subordination Method. Symmetry, 16(7), 784. https://doi.org/10.3390/sym16070784