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Abstract: The interest in special complex functions and their wide-ranging implementations in
geometric function theory (GFT) has developed tremendously. Recently, subordination theory has
been instrumentally employed for special functions to explore their geometric properties. In this
effort, by using a convolutional structure, we combine the geometric series, logarithm, and Hurwitz—-
Lerch zeta functions to formulate a new special function, namely, the logarithm-Hurwitz-Lerch zeta
function (LHL-Z function). This investigation then contributes to the study of the LHL-Z function
in terms of the geometric theory of holomorphic functions, based on the differential subordination
methodology, to discuss and determine the univalence and convexity conditions of the LHL-Z
function. Moreover, there are other subordination and superordination connections that may be
visually represented using geometric methods. Functions often exhibit symmetry when subjected to
conformal mappings. The investigation of the symmetries of these mappings may provide a clearer
understanding of how subordination and superordination with the Hurwitz-Lerch zeta function
behave under different transformations.

Keywords: holomorphic function; Hurwitz-Lerch zeta function; univalent function; convolution
product; differential subordination

1. Introduction

Special function theory (SFT) is a significant branch of mathematical sciences as most
of those functions are solutions of (fractional or ordinary) differential equations and have
great implementations in science and engineering. This term refers to specific mathematical
functions that are naturally generalized elementary functions, usually named after early
creators. They are formulated as infinite series or integrative representations. Lots of
special functions have been posed in a complex domain. Consequently, they are analytical
functions. Interesting special functions comprise the Gamma function, Beta function,
Hypergeometric function, Hurwitz-Lerch zeta function, Wright function, Meijer G-function,
Mittag-Leffler function, and others. Recently, several investigations of generalized versions
and implementations of special functions have been conducted. In the 20th century, SFT
played a significant role in the development of geometric function theory (GFT), which
examines the behavior and geometric features of normalized holomorphic functions on the
open unit disk [1]. Specifically, in 1985, De Branges [2] used the class of hypergeometric
functions as a mathematical tool for solving the renowned coefficient problem, namely,
“Bieberbach conjecture”, posed by Bieberbach in 1916, ref. [1], which contributed to the
advancement of GFT. Since then, diverse studies on GFT connected to SFT have extensively
appeared to develop geometric outcomes, for instance, Sok¢ét et al. [3] and Al-Janaby and
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Ahmad [4]. In this context, the famed sort of SFT is the general Hurwitz-Lerch zeta (HL-Z)
function formulated on a complex domain. It originally dates back to the 18th century
and is included in the analytic class. It is one of the higher transcendental functions of
great importance in science that involves number theory and applied statistics [5]. The zeta
function was initially introduced by Euler in 1737 on the real domain, and it was stated

as follows:
> 1
=y - M
L

It is also named the Euler zeta function. Following this, in 1859, Riemann [6] (see also
for details, Erdélyi et al. [7] in 1953 and Srivastava and Choi [8] in 2001) imposed extended
Euler’s formula (1) to the complex domain, called Riemann-zeta function given as follows:
for Z(t) > 1

2)
It continues analytically to C, (except for a simple pole at T = 1 with residue 1), which

is also prominent and named the Euler-Riemann zeta function or (p—series). The integral
representation of (2) is stated as follows: for () > 1,

1 [e9)
- T(1) / G)
0
where I'(T f e~ “w™ !dw indicates the famed Euler’s Gamma function proposed by

Euler [9]. Rlemann zeta function is utilized as a vital tool to prove the remarkable conjecture
in number theory, namely, the “prime number distribution theorem,” by employing it to
yield the merits of prime numbers representing the zeros of this function, which are closely
related to the distribution of prime numbers. This eminent conjecture was stated by Gauss
and Legendre earlier than 1830 and proved by Hadamard [10] and Poussin in 1896 [11].
Later, in 1882, Hurwitz [12] provided a generalized version of Riemann zeta function
as follows:

TU:; pl—i-(f 4)

where, 2(1) > 1, and ¢ € C — Z, . It continues meromorphically to C, (except for a
simple pole at T = 1 with residue 1) and is called the Hurwitz-zeta function. The integral
representation of (4) is stated as follows: for Z(t) > 1, and %(c) > 0,

* wT™ 1 e ow
7:(1.0) = £ / w. 5)
0

1—ew

Additionally, the specific case of the Hurwitz-zeta function includes the Riemann-zeta
function given in (2), that is, for o = 1, yields #;(7,1) = %;(7). Moreover, in 2002, Yen
et al. [13] discussed and attained the integral representation of (5) based on the sum:

o—1 1 < w1 g~ (r+K)w

where (1) > 1, #(c) > 0, and ¢ € N. In the same year, Nishimoto et al. [14] achieved the
specific case of the above representation (6) when x = 2. In this framework, a more general
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Z (1=

T,0,0)

special function related to the Hurwitz-zeta function is the Lerch-zeta function or Lipschitz
Lerch-zeta function as follows (see [15]):

o L2umip

u=0 (:u + U)T/ (7)

Z(p,7,0) =

where 0 € C—Z,, #(t) > 1, when p € R\Z, and %(t) > 0, when p € Z. This
function (7) generalizes the Hurwitz-zeta function (4), which occurs when p = 0, that
is, Z;(t,0,0) = #;(7,0), and the Riemann-zeta function (2), which occurs when p = 0,
and o = 1, thatis, Z;(7,1,0) = R;(7). From a historical perspective, this function was
proposed by Lipschitz [16] in 1857 for real p and T > 0 but is attributed after Lerch [17]
verified in 1887 that, for the imaginary part of pJ(p) and 0 < T < 1, it attains a functional
equation, namely Lerch’s transformation formula, stated as follows:

_ (27[)7-(1—'(7'[){6””/2 —2rip «%(T —0,p) +e” mit/2 ,~2mia(1- )3§(T o1 —P)} )

Afterward, the Hurwitz Lerch-zeta (HL-Z) function, symbolized by #«(z, T,0), is
provided as follows (see [7] and [18]):

Hp = 9
(z,7,0) ;y—l—a )

where 0 € C—-7Z;, T € C, when |z| < 1, and %(7) > 1, when |z| = 1. It continues
meromorphically to C, (except for a simple pole at T = 1 with residue 1). Notice that
the HL-Z function (9) is a generalized version of the Lerch-zeta function (7) Z; (7,0, p) =
Hz (e, T,0), the Hurwitz-zeta function (4) H;(t,0) = H%(1,7,0), and the Riemann-
zeta function (2) Rz (7) = Z#(1,7,1). Further, the integral representation of (8) is rendered
as follows:

1 vt w1 p—ow

% 7 7 -
%(z7.0) F(T)O 1—ze v

dw, (10)

where, Z(c) >0, (1) > 0when |z| £1, (z # 1), #(7) > 1, whenz = 1.

Since then, the analysis and investigation of the HL-Z function, its generalized formu-
las, and its multi-parameters extension have become a catalyst appealing to a lot of scholars.
In 1997, Goyal and Laddha [19] adapted the HL-Z function and made it more general:

ad ’Y zH
?/ , _ 11
(z,7,7,0) Eo# TETN (11)

where, y € C,0 € C—Z;, v € C,when |z| <1, (T —7) > 1, when [z| = 1and (7),
refers to the Pochhammer symbol formulated by [2]:

T(Z+p) _

_ _ L (p=0)
() = T(7) =flx)= {t({+1)...(i‘+741)

, (e N;¢z e C\{0}).

Furthermore, the integral representation of (11) is described as follows:

1 < w1 e (-l
12
75(27,7,0) F(To/ o (12)
where, Z(0) > 0, Z(t) > 0Owhen |z| £ 1, (z # 1), Z(1) > 1, when z = 1. Subsequently,
numerous captivating studies involving the HL-Z function have made contributions to
complex analysis and other allied areas, such as Srivastava et al. [20], Lin and Srivastava [21],
Ferreira and Lopez [22], Murugusundaramoorthy [23], Hadi and Darus [24], Garg et al. [25],
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Jankov et al. [26], Srivastava et al. [27], Choi and R.K. Parmar [28], Ghanim et al. [29],
Ghanim and Al-Janaby [30], Al-Janaby and Ghanim [31], Nisar [32], Nadeem et al. [33],
Reynolds and Stauffer [34], and Mehrez and Agarwal [35].

In GFT, a major class is indicated by % that comprises holomorphic functions 6 occur-
ringinf = {z € C:|z|< 1}. For y € N, and p € C, state #([p, u] = {0 € #y : 0(z) = p+
puzt + ... pw_lz?”’l +...} and assuming % = %#y[0,1] and %! = %#y[1,1]. Closely
related to . is the class of holomorphic functions of the formula:

0(z) =1+ i Pzl (13)
n=1

in U with £(6(z)) > 0, indicated by #, namely, Caratheodory functions (functions of
positive real part). Further, represented by <, a holomorphic class of normalized functions
6 described as follows: for z € {1

[e9)

0(z) =z+ ) p,2". (14)
u=2

In this regard, designated by &, the significant majority of investigated class 0 of
normalized holomorphic functions in o/ are univalent. Moreover, the functions in the
starlike class §*(#) and convex class €7 (#) of order Z € [0,1), which are subclasses

of o consecutively, have the following merits: %(f;g) > ¢ exemplify the starlike

ng/(g) + 1) > ¢ exemplify the convex functions. Accordingly, §*(0) =

functions and &% (

& and €7 (0) = €7, along with the class § comprises starlike functions and convex
functions, achieve chain state as €7 C §* C &, [2]. The convolution operation (Hadamard
product), denoted by *, is an eminent mathematical operation attributed to Hadamard. This
term presents an interesting new approach to creating convolution operators and special

functions. It is formulated as follows: for 61, 6, € o stated by 61(z) =z+ Y, [p%lz” and
u=2

o
02(z) = z+ L pu22", the convolution product of 6; and 6, written as 61 x 0, yields a
u=2
new holomorphic function stated as [1]

(91 * 92)(2) =z+ Z Pu18u,2 k. (15)
u=2

In this regard, the subordinate formula based on holomorphic functions is an exten-
sion principle acting on C (complex domain) of the inequality formula on R (real line),
which was created by Goodman [1] in 1909. It is stated as follows: 61, 8, € &, then 6, is
subordinate to 6,, representation ¢, < 6, if there is a function v, holomorphic in {, with
w(0) = 0 and |«(z)| < 1 such that 6;(z) = 62(w(z)). Precisely, if 6, is univalent, then
61 < 6y, if and only if 61 (0) = 6,(0) and 6; (L) C 6,(4). Later, Miller and Mocanu [36,37]
contributed to developing subordinate discipline. This principle plays a significant role in
GFT. In other words, this principle acts as a gist tool of the holomorphic class of functions
in which characterizations of functions are inferred from a differential stipulation. Recently,
advanced studies have been extensively conducted by famed mathematicians based on
subordinate techniques, for instance, Zayed and Bulboaca [38], Attiy et al. [39], Lupas and
Oros [40], Reem and Kassim [41], Abdulnabi et al. [42], Oros and Oros [43], Oros [44], and
others. On the other hand, the study of interesting geometric attributes associated with
some families of special functions has attracted a lot of investigators and experts, such as
Merkes and Scott [45] in 1961, who examined starlike hypergeometric functions. After that,
in 1986, Ruscheweyh [46] discussed the order of the starlikeness attribute of hypergeometric
functions. Later, Ponnusamy and Vuorinen [47], in 1998, researched the univalence and
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convexity attributes of confluent hypergeometric functions. In the same year, Ponnusamy
and Ronning [48] analyzed starlikeness attributes for convolutions, including hyperge-
ometric series, and Ponnusamy [49] discussed close-to-convexity attributes of Gaussian
hypergeometric functions. Recently, in 2023, Layth et al. [50] examined convexity attributes
of integro-differential operators indicated by Hurwitz—Lerch zeta-type functions.

Motivated by the aforementioned remarkable contributions, this paper arrives at a
new special function, namely, the logarithm-Hurwitz-Lerch zeta function (LHL-Z function),
in terms of the convolution construct. Moreover, the univalence and convexity conditions
of the LHL-Z function are discussed based on the differential subordination technique. The
following terminology and lemmas in the basis of differential subordination theory are
required to attain new interesting outcomes:

Definition 1 ([5]). Let 7 : C3 x { — C and suppose that the function % (z) is univalent in 1. If
the function # (z) is analytic in U and satisfies the following second-order differential subordination:

97(17(2), 2P (2), 2wl (2); ) < £(2), (16)

then # (z) is called a solution of the differential subordination (16). Furthermore, a given univalent
function 4 (z) is called a dominant of the solutions of the differential subordination (16) or, simply, a

dominant if #(z) < %(z) for all #(z) achieving (16). A dominant Zl(z) that archives :l(z) < 4(z)
for all dominants 4(z) of (16) is said to be the best dominant.

Lemma 1 ([5]). Let 4 be a univalent function in U and let O and 9 be holomorphic in a domain
D including 9(4), with Q(w) # 0, when w € 4(L). Setting 4(z) = z4¥ (2)Q[4(z))], %(z) =
019(z)] + 9(z). Consider that either

L. /% is convex or

ii. 4 is starlike.

9(z) [6L(z ]
#(0) = 4(0), () C D, and [#(z)] +z#'(2)Q [
Then, #Z < 9 and % is the best dominant.

Furthermore, R (Zh,(z)) =R (D [OZ( ) +Z )> > 0. If # is holomorphic in 4, with

z)] < 0[4(2)] + 24 (2)Q[4(2)] = %(2).

2. Proposed Logarithm-Hurwitz-Lerch Zeta Function T3 CAARD

This section investigates a new logarithm-Hurwitz-Lerch zeta function (LHL-Z func-
tion) based on the convolution structure. The HL-Z function %, (z, T, 0) is considered in

(11) as follows:
zH

(e}
H(z,7,7T,0) e
y;) D (uto)™
(yeCoeC—-Z,,tcC when|z| <1, Z(T —7) > 1, when |z| =1)
In addition, for o = 1, the function #,(z, 7, T, o) coincides with

© (7) Z+
He(z,7,71,1) = A —
7 ;;) ut ()"

(17)

Next, utilizing respect geometric series for the modified Koebe function €(z) and log
function & (z), respectively, are coined as:

3
S

and #(z) = “log1-2) _ ) ;li- (18)
0
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Then, from the convolution tool, Equations (17) and (18), it leads to the following new
function Ty (z, 7, T, )

T (z,7,1,0) =

R e

£ —times
_ ad ('Y)/u zH s ]/lf i _ ad yf (7);( u
N Lgo Z (V*l)T‘| ¥ Lgo (n+1)" | ;420 ! (HJFl)HfZ '
Therefore, LHL-Z function is
© w1,

zH. (19)

Twl(z,7,1,0) =
& G e+

(yeC,ceC—-%Z,, 1€C, ¢ c N when|z| <1)

Remark 1. The following specific cases of LHL-Z function Tez (2,7, T, ¢)

[ee] 1 (e}
L Tw(z,1,00)0= ¥ Drar= ¥ oav= 1,
u=0 u=0
(e ) 2 (o) (o)
2. FTx(z,2,0,00= )% (),"z?‘: Y uzt 4+ zH = z—i—llfz.
p=o §=0 §=0 1-2)
® @), © (u42)
3. I#(z,3,0,¢) = Lozt =y —ET5 g,

3. Geometric Features of T#(2, 7.7, ¥)

This section investigates certain univalence conditions and convexity conditions of
the LHL-Z function T (z, 7, T, £) by utilizing the differential subordination procedure.

Theorem 1. Let 4 be convex in 4 with 4(0) = 1, if Ty (2,7, T, ¢) stated in (19) achieves the
following subordination condition for 0 < a <1,

(1—a)Tw(z,71,6) +azT%(z,7,17,¢) < (1—a)d(z) +az¥(2), (20)

then
(I%(Zl YT, f) = %(Z),

and % is the best dominant.
Proof. Define the function #(z) by
P(z) =Fw(z,7,7,7). 1)
Noting that #(z) is holomorphic in {l and #(0) = 1. Differentiating (21), we yield
P (z) =To(z,7,7,¢), (z€W). (22)
In light of (21) and (22), differential subordination (20) leads to

1—a)?(z)+az? (z) < (1—a)d(z)+az¥ (2). (23)
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Assuming the functions 0 and £ as follows:
O(w) = (1 —a )wandQ(w) = a. (24)

Obviously, the functions 6 and 9 are holomorphic in { and Q(w) = a # 0. From (24)
and w = 4(z), (23) is rewritten as

0P (2)] + 22 (2)Q[#(2)] < 0[%(2)] + 24 (z)Q[4(2)].
Further, let 4, / : 31 — C be the functions emergent as follows:
a4(z) = z4 (2)Q[%(z)] = a 29 (z), (25)

and
%(z) = 0[3(z)] +9[d(z)] = (1 — a )B(z) + a 29 (2). (26)

Differentiating (25) and performing some calculations, it yields

2@ (z)  azZ?¥(z)+z9(z)a 29" (z)
a(z) o z% (z) =1t a4 (z) @7)

As 9 is convex, it deduces & (ZZ ((ZZ)) ) > 0. Thus, it leads to 4 being starlike. Moreover,

from (25) and (26) and performing some computations, it yields

z28'(z)  (1—wa)zd(2)+az’d (z)+azd(z) (1—ua) N 29" (z) 4
a(z) a 29 (z) o 4 (z) '

2%/ (z) 1—a 29" (z) )
R =R (1 >0
(o)~ () (55
Then, by Lemmal, #(z) < 4(z). Thus, the proof is complete.

The following corollary is acquired by setting 4(z) = % in Theorem 1. [

Therefore,

Corollary 1. Let 4(z) = = be a function in 4, and Ty (z,7,T,¢) be stated in (19), which
achieves the following subordination, for 0 < a <1,

(1—a)(1—2%)2az

(1—a)Tx(z,7,7,¢) +a 2T (2,7,7,) < 127 , (28)
-z
then 1+
z
Tw(z,7,71,0) < T
and % is the best dominant. Therefore, Tg (2,7, T,¢) is a Caratheodory function.

Proof. Noting that 4(z) = 12 is a convex function and 4(0) = 1. By Theorem 1, it leads to

1+z

T LY, T, .
w(27,706) < 17—

Therefore, (T (z,7,T,¢)) > 0. Thus, the proof is complete.

The following corollary is acquired by setting %(z) = % in Theorem 1. [J

Corollary 2. Let 9(z) = L pe a function in 4, and T (2,7, T, €) be stated in (19), which

1-z
achieves the following subordination, for 0 < a <1
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(1 - )T (z,7,7,¢) +a 235 (2,7,7,¢) < (I—a)— (-2 )Z, (29)

(1-2)*

then

1
(3: ///f 7
(2T ) < T

and ﬁ is the best dominant. Therefore, To¢ (2,7, T, ¢) is a Caratheodory function.

Proof. Observing that 4(z) = 1_12
leads to

(0) = 1. Using Theorem 1,

1
Tw(z,7,1,0) < =5 = =%#(z,1,0,0).

Therefore, (T (z,7,T,¢)) > 0. Thus, the proof is complete. [J

2T+f

Corollary 3. Let 4(z) = 122 be a function in 4. If 7
following subordination, for 0 < x <1,

S%(z v, 7T,¢), which achieves the

2T+ T+ "o(l—a)2+2az
1—a <z’ z,%r,f>+az($” z,%f,f) < . (30)
( ) (7)1 ( ) (M ! ) (1+2)?
then
2T+ 1
Tz ) < 1

(Y1 1-2’

and therefore, Tg(z,y, T, ¢) is a univalent function in iL.
Proof. Define the function by

2T+f

#1(2) = 0y T2 7,70).

Noticing that #; (z) is a holomorphic function and #(0) = 1. Since 4(z) = £ isa
convex function. Theorem 1 produces #1(z) < % Therefore,

2T+f
9‘2( o I};(z,’y,r,f)) > 0.

Thus, T#(z, 7,7, ¢) is a univalent function. [

Corollary 4. Let 9(z) = Y2 be a function in 4. If 1 + % achieves the following
subordination, for 0 < o <1

T (z,7,71,%) < (2,71, zf’)) (1—a)z?+ 20z
l—a) |1+ 22 | +az( 1+ < , (@31
( )< Tfy(%%ﬁﬂ) To(z,7,7,7) (1+42z2)2 Gh

then ,
‘I%;(Z,')/,T,f) 1+Z
T (z,7,71,7) 1—-z2'

and therefore, To (2,7, T, ¢) is a convex function in 4.
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Proof. Define the function by

T (z,7,7,7)

ﬂ’z(z) :1+7‘I;7(Z v, T I/ﬂ)

Clearly, #5(z) is a holomorphic function and #(0) = 1. Since %(z) = 3£ is a convex

1z
1+
1-z°

T” ' 7 /f
Z1+ M > 0.
T (z,7,1,0)

function, Theorem 1 attains #,(z) < Therefore,

Thus, T (z,7,T,¢) is a convex function.

Theorem 2. Let 4 be convex in $h with 4(0) = 1. If T4 (z,7, T,¢) stated by (19) achieves the
following subordination condition, for 0 < a <1

T (z,7,7,6) + 235 (2,7,7,0) < ad(z) + 29 (z), (32)

then
(I%(zl YT, f) = %(Z),

and 9 is the best dominant.

Proof. From the functions #(z) and #'(z) stated in (21) and (22), respectively, (32) is
rewritten as
abp(z) +z#'(z) < a9(z) + 2% (z). (33)

Suppose the functions 0 and Q to be as follows:
O(w) = aw and Q(w) = 1. (34)

Evidently, the functions 6 and Q are holomorphic in {(. From (34) and w = 4(z), (33)
is rewritten as

0[P (2)] + 22 (2)Q[#(2)] < 0[%(2)] + 24 (z)Q[4(2)].
Further, let 9, % : &t — C be the functions given as follows:
9(z) = 29/ (2)Q[4(z)] = 2% (z), (35)

and
%(z) = 0[8(2)] +9[%(z)] = ad(z) + 29 (2). (36)

Differentiating (35) and performing some calculations, it yields

z9'(z) _ 224" (z) + 29 (2) _14+ z9" (z)

9(z) 2% (z) 4'(z)

(37)

Since 9 is convex, it deduces % (ZZ((ZZ)) ) > 0. Thus, it leads to 2 being starlike.

Moreover, from (35) and (36) and performing some computations, it yields

28 (z)  az @ (z) + 224" (z) + 29 (2)
a(z) 29 (z)

29" (2)
@ ()

gz(z’%/(z) ) — % («) +%<1+ ZZ,H((ZZ)) ) > 0.

:06+

+1.

Therefore,




Symmetry 2024, 16, 784

10 of 12

Then, by Lemma 1, #(z) < 4(z). Thus, the proof is complete.

T+
(i);’f T (z,7,7,¢)and 4(z) =

The following outcome is acquired by setting #(z) =

% in Theorem 2. O

Corollary 5. Let 4(z) = 1= be a function in 8L If
subordination, for 0 < o <1

2T+f 2T+f ! 1—2z 2z
ol ——F(z,7,1,¢) | +z| ——F (2,7, 7,¢) | < zx( )— 38
((Wf i )> ((7)1#"” #E )> i7z) Tz

(3;" S, (2,7,7,¢) achieves the following
1

then o
27 14z
71/ 7 [ /f < 7
(7)1 7/(2 v, T ) 1—2

and therefore, Tg (z, 7y, T, ¢) is a univalent function in Ll

Proof. Consider that #(z) = 2(;*)1'/” T4 (2,7, 7,¢). Noting that #(z) is a holomorphic function
14z

and #(0) = 1. Since 9(z) = 1*= is a convex function, Theorem 2 produces #(z) < 1*=.

Therefore,
2T+f

%(w)lfgg(z, v, T,f)) > 0.

Thus, T#(z, 7,7, ¢) is a univalent function. [

<0 (27,1.0)

Corollary 6. Let 9(z) = £ be a function in 4. If 1+ T enrd)
H 7 lrtr

subordination, for 0 < a <1

R ACKAAD) (27 10)Y 1-z 22
14 2227 7 2 14 22 \= 1 2% ) _ 39
a( +$§g(z,%'r,f) +Z< +‘If%(z,'y,f,f) R 1+z 1+ 22 (39)

achieves the following

then ,
T (2,7, 7,0) 1+z

1 ’
+ T (z,7,71,0) = 1—z

and therefore, Tg(z,y, T, ¢) is a convex function in 4.

T (z7,1¢)
T (27,7.0)
#(0) = 1. Since 9(z) = 1= is a convex function, Theorem 2 attains #(z) < 1*Z. Therefore,

— 1—z
T/, 7 7 If
a1 GO
T (z,7,1,0)

Proof. Assume that #(z) =1+ . Clearly, #(z) is a holomorphic function and

Thus, T#(z,7,7,¢) is a convex function. [

4. Conclusions

In this research, through the usage of a convolutional structure, a new generation
formula for a generalized special function, namely, the logarithm-Hurwitz—Lerch zeta
function (LHL-Z function), is formulated in a specific complex domain and discussed along
with its geometric features. This function originated in terms of typical geometric series,
logarithms, and Hurwitz-Lerch zeta functions. The differential subordination process leads
to the conclusion that the LHL-Z function meets the necessary univalence and convexity
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conditions. In future work, more useful analytical studies can be found by using different
holomorphic classes, such as harmonic classes, meromorphic classes, and multivalent
classes, based on the suggested generalized LHL-Z function.
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