Positive Radial Symmetric Solutions of Nonlinear Biharmonic Equations in an Annulus
Abstract
:1. Introduction and Main Results
- (H1)
- there exist constants with and , such that
- (H2)
- there exist constants with and , such that
- (H3)
- There exist constants with and , such that
- (H4)
- There exist constants with and , such that
- (F1)
- , ;
- (F2)
- , ,
2. Preliminaries
3. Proofs of the Main Results
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McKenna, P.J.; Walter, W. Traveling waves in a suspension bridge. SIAM J. Appl. Math. 1990, 50, 703–715. [Google Scholar] [CrossRef]
- Chen, Y.; McKenna, P.J. Traveling waves in a nonlinear suspension beam: Theoretical results and numerical observations. J. Differ. Equ. 1997, 135, 325–355. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.; Sweers, G. Polyharmonic Boundary Value Problems; Lectures Notes in Mathematics; Springer: Berlin, Germany, 2010; Volume 1991. [Google Scholar]
- Gupta, C.P.; Kwong, Y.C. Biharmonic eigenvalue problems and Lp estimates. Int. J. Math. Sci. 1990, 13, 469–480. [Google Scholar] [CrossRef]
- Dalmasso, R. Uniqueness theorems for some fourth order elliptic equations. Proc. Am. Math. Soc. 1995, 123, 1177–1183. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.C.; Squassina, M. Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc. Var. 2003, 18, 117–143. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z. Biharmonic equations with asymptotically linear nonlinearities. Acta Math. Sci. B 2007, 27, 549–560. [Google Scholar] [CrossRef]
- Abid, I.; Baraket, S. Construction of singular solutions for elliptic problem of fourth order derivative with a subcritical nonlinearity. Differ. Integr. Equ. 2008, 21, 653–664. [Google Scholar]
- Guo, Z.; Lai, B.; Ye, D. Revisiting the biharmonic equation modelling Electrostatic actuation in low Dimensions. Proc. Am. Math. Soc. 2014, 142, 2027–2034. [Google Scholar] [CrossRef]
- Alves, C.O.; Nobrega, A.B. Nodal ground state solution to a biharmonic equation via dual method. J. Differ. Equ. 2016, 260, 5174–5201. [Google Scholar] [CrossRef]
- Feng, M. Positive solutions for biharmonic equations: Existence, uniqueness and multiplicity. Mediterr. J. Math. 2023, 20, 309. [Google Scholar] [CrossRef]
- Feng, M.; Chen, H. Positive solutions for a class of biharmonic equations: Existence and uniqueness. Appl. Math. Lett. 2023, 143, 108687. [Google Scholar] [CrossRef]
- An, Y.; Liu, R. Existence of nontrivial solutions of an asymptotically linear fourth-order elliptic equation. Nonlinear Anal. 2008, 68, 3325–3331. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y. On sign-changing solution for a fourth-order asymptotically linear elliptic problem. Nonlinear Anal. 2010, 72, 2271–2276. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Z. Multiple solutions for a class of biharmonic equations with a nonlinearity concave at the origin. J. Math. Anal. Appl. 2011, 383, 291–306. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L. Existence of nontrivial solutions for fourth-order asymptotically linear elliptic equations. Nonlinear Anal. 2014, 94, 120–132. [Google Scholar] [CrossRef]
- Omrane, H.B.; Ghedamsi, M.; Khenissy, S. Biharmonic equations under dirichlet boundary conditions with supercritical growth. Adv. Nonlinear Stud. 2016, 16, 175–184. [Google Scholar] [CrossRef]
- Pao, C.V. On fourth-order elliptic boundary value problems. Proc. Am. Math. Soc. 2000, 128, 1023–1030. [Google Scholar] [CrossRef]
- Pao, C.V.; Wang, Y.M. Nonlinear fourth-order elliptic equations with nonlocal boundary conditions. J. Math. Anal. Appl. 2010, 372, 351–365. [Google Scholar] [CrossRef]
- Wang, Y. On fourth-order elliptic boundary value problems with nonmonotone nonlinear function. J. Math. Anal. Appl. 2005, 307, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y. The existence and uniqueness of radial solutions for biharmonic elliptic equations in an annulus. Axioms 2024, 13, 383. [Google Scholar] [CrossRef]
- Lin, S.S. On the existence of positive radial solutions for nonlinear elliptic equations in annular domains. J. Differ. Equ. 1989, 81, 221–233. [Google Scholar] [CrossRef]
- Arcoya, D. Positive solutions for semilinear Dirichlet problems in an annulus. J. Differ. Equ. 1991, 94, 217–227. [Google Scholar] [CrossRef]
- Dang, H.; Schmitt, K. Existence of positive solutions for semilinear elliptic equations in annular domains. Differ. Integral Equ. 1994, 7, 747–758. [Google Scholar] [CrossRef]
- Wang, H. On the existence of positive solutions for semilinear elliptic equations in the annulus. J. Differ. Equ. 1994, 109, 1–7. [Google Scholar] [CrossRef]
- Hai, D.D. Positive solutions for semilinear elliptic equations in annular domains. Nonlinear Anal. 1999, 37, 1051–1058. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H. Existence of positive radial solutions for the elliptic equations on an exterior domain. Ann. Polon. Math. 2016, 116, 67–78. [Google Scholar] [CrossRef]
- Li, Y. Positive radial solutions for elliptic equations with nonlinear gradient terms in an annulus. Complex Var. Elliptic Equ. 2018, 63, 171–187. [Google Scholar] [CrossRef]
- Li, Y. Positive radial solutions for elliptic equations with nonlinear gradient terms on the unit ball. Mediterr. J. Math. 2020, 17, 176. [Google Scholar] [CrossRef]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, S. Positive Radial Symmetric Solutions of Nonlinear Biharmonic Equations in an Annulus. Symmetry 2024, 16, 793. https://doi.org/10.3390/sym16070793
Li Y, Yang S. Positive Radial Symmetric Solutions of Nonlinear Biharmonic Equations in an Annulus. Symmetry. 2024; 16(7):793. https://doi.org/10.3390/sym16070793
Chicago/Turabian StyleLi, Yongxiang, and Shengbin Yang. 2024. "Positive Radial Symmetric Solutions of Nonlinear Biharmonic Equations in an Annulus" Symmetry 16, no. 7: 793. https://doi.org/10.3390/sym16070793
APA StyleLi, Y., & Yang, S. (2024). Positive Radial Symmetric Solutions of Nonlinear Biharmonic Equations in an Annulus. Symmetry, 16(7), 793. https://doi.org/10.3390/sym16070793