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Abstract: Our paper proposes a system of nonlinear mixed variational inequality problems (SNMVIPs)
on Banach spaces. Under suitable assumptions, using the K-Fan fixed point theorem and Minty
techniques, we demonstrate that the solution set to the SNMVIP is nonempty, weakly compact,
and unique. Additionally, we suggest a stability result for the SNMVIPs by perturbing the duality
mappings. Furthermore, we present an optimal control problem that is governed by the SNMVIPs
and show that it can be solved.
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1. Introduction

Lin [1] introduced the system of generalized quasi-variational inclusion problems.
This system includes the set of problems suggested on a product set. It includes several well-
known problems such as variational inequalities, equilibrium problems, vector equilibrium
problems, and variational inclusions/disclusion problems. The system of variational
inequalities has concealed symmetries in both variational inequalities and fixed point
theory. However, the appearance of scale symmetry in this system creates a void of
symmetric hiddenness and has a correlation effect.

Undoubtedly, in the realm of engineering, sciences, technology, chemical processes,
and economics, several challenging and complex problems frequently result in inequalities
instead of straightforward equations. In this scenario, variational inequalities have become
a formidable mathematical resource. Variational inequalities (VIs) essentially arise from ap-
plied models with an underlying convex foundation and have been the subject of extensive
research since the 1960s, encompassing mathematical theories, numerical techniques, and
practical applications (among other significant sources, see [2–7]).

It should be noted that the results mentioned earlier cannot be applied to coupled
systems that consist of two elliptical mixed variational inequalities. System of VIs are a
mathematical tool used to analyze mixed boundary value problems, control problems, and
similar problems. More details can be found in [8–12].

In this paper, we suggest SNMVIPs and using the K-Fan fixed point theorem, the
Minty techniques, and inverse relaxed monotonicity to establish the existence, convergence,
uniqueness, stability, and optimal control of the problems.

Before we proceed, let us define the problem that will be discussed in this article.
Consider two reflexive Banach spaces, (X, ∥ · ∥X) and (Y, ∥ · ∥Y), with their dual spaces
(X∗, ∥ · ∥X∗) and (Y∗, ∥ · ∥Y∗), respectively. We denote the duality pairing between X∗ and X
by ⟨·, ·⟩X and between Y∗ and Y by ⟨·, ·⟩Y. We use w−−→ and −→ to denote the weak and the
strong convergence in X, and Xw denotes X with weak topology. The limits, lower limits,
and upper limits are considered as n approaches infinity, even if not explicitly stated.
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We can formulate SNMVIPs on Banach spaces:

Problem 1. Determine (u, v) ∈ Ω×℧ such that

⟨A (v, u), y− u⟩X + φ(u, y)− φ(u, u) ≥ ⟨γ, y− u⟩X , ∀y ∈ Ω, γ ∈ X∗ (1)

and
⟨B(u, v), z− v⟩Y + ϕ(v, z)− ϕ(v, v) ≥ ⟨ζ, z− v⟩Y, ∀z ∈ ℧, ζ ∈ Y∗. (2)

We note that if φ(u, u) = φ(u) and ϕ(u, u) = ϕ(u), then Problem 1 reduces to the
problem of [13] for finding (u, v) ∈ Ω×℧ such that{

⟨A (v, u), y− u⟩X + φ(y)− φ(u) ≥ ⟨γ, y− u⟩X , ∀y ∈ Ω
⟨B(u, v), z− v⟩Y + ϕ(z)− ϕ(v) ≥ ⟨ζ, z− v⟩Y, ∀z ∈ ℧.

(3)

Definition 1. Let Ω ̸= ∅ be a subset of a Banach space X. Let φ : Ω→ R be a proper convex and
lower semicontinuous function, and Q : Ω→ X∗. Then Q is called

(i) Monotone, if
⟨Qu−Qv, u− v⟩X ≥ 0, ∀u, v ∈ Ω;

(ii) Strictly monotone, if

⟨Qu−Qv, u− v⟩X > 0, ∀u, v ∈ Ω and u ̸= v;

(iii) Inverse relaxed monotone with constant αQ > 0, if

⟨Qu−Qv, u− v⟩X ≥ −αQ∥Qu−Qv∥2
X , ∀u, v ∈ Ω;

(iv) Lipschitz continuous with constant βQ > 0, if

∥Qu−Qv∥X ≤ βQ∥u− v∥2
X , ∀u, v ∈ Ω;

(v) φ-pseudomonotone, if

⟨Qu, v− u⟩X + φ(v)− φ(u) ≥ 0, ∀u, v ∈ Ω

then it implies that
⟨Qv, v− u⟩X + φ(v)− φ(u) ≥ 0;

(vi) φ-stable-pseudomonotone with respect to the set W ⊂ X∗, if Q and u ↣ Qu − w are
φ-pseudomonotone for each w ∈ W .

Let Z and Y be topological spaces and ∅ ̸= V ⊂ Z. We use the notation 2V to represent
the set of all possible subsets of the set V. Let B : Z → 2Y be a set-valued map. Gr(B)
represents the graph of B and is defined as

Gr(B) = {(u, v) ∈ Z×Y|v ∈ B(u)} ⊂ Z×Y.

The graph of B is sequentially closed in Z× Y if any sequence {(un, vn)} ⊂ Gr(B)
converging to (u, v) ∈ Z×Y as n→ ∞. Then,

(u, v) ∈ Gr(B) (i.e., v ∈ B(u)).

Theorem 1. [14] Let D ̸= ∅ be a bounded, closed, and convex set of a subset of the reflexive
Banach space Y. Let Λ : D → 2D be a nonempty, closed, and convex set-values map whose graph is
sequentially closed in the topology Yw ×Yw. Then, Λ has a fixed point.
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2. Main Results

In this section, we focus on the uniqueness of solutions and their existence to Problem 1.
We use the Minty methodology, Theorem 1, and the K-Fan fixed point theorem to establish
the existence theorem for the solutions to Problem 1 under given modest assumptions.
Additionally, we deploy the inverse relaxed monotonicity and Lipschitz continuity to prove
two uniqueness results for Problem 1.

Furthermore, we propose that S : ℧→ 2Ω and T : Ω→ 2℧ be the set-valued maps
described by

S (v) = {u ∈ Ω| u solves (1) which corresponds to v}, ∀v ∈ ℧,

and
T (u) = {v ∈ ℧| v solves (2) which corresponds to u}, ∀u ∈ Ω,

respectively.
The following assumptions must be made to solve Problem 1:

(A): ∅ ̸= Ω ⊂ X and ∅ ̸= ℧ ⊂ Y are closed and convex.
(B): γ ∈ X∗ and ζ ∈ Y∗.
(C): φ : X× X → R is such that

(i) φ(τ, ·) : X → R is a proper, convex and lower semicontinuous function;
(ii) There exists ϱφ ≥ 0 such that

φ(τ1, v2)− φ(τ1, v1) + φ(τ2, v1)− φ(τ2, v2) ≤ ϱφ∥τ1 − τ2∥X∥v1 − v2∥X , ∀τ1, τ2, v1, v2 ∈ X;

(iii) For each τ ∈ X, there exists ϱφ(τ) > 0 such that [15]

φ(τ, v1)− φ(τ, v2) ≤ ϱφ(τ)∥v1 − v2∥X , ∀v1, v2 ∈ X

(D): A : Y× X → X∗ is such that

(i) u ↣ A (v, u) is φ-stable-pseudomonotone with {γ} and fulfills

lim
λ→0

sup⟨A (v, λy + (1− λ)u), y− u⟩X ≤ ⟨A (v, u), y− u⟩X , ∀v ∈ Y and u, y ∈ X.

(ii) It possesses

lim
n→∞

sup⟨A (vn, y), y− un⟩X ≤ ⟨A (v, y), y− u⟩X ,

when y ∈ X, (u, v) ∈ X×Y, {vn} ⊂ Y and {un} ⊂ X are such that

vn
w−−→ v ∈ Y and un

w−−→ u ∈ X as n→ ∞;

(iii) ♭ : R+ ×R+ → R is a function such that

⟨A (v, u), u⟩X ≥ ♭(∥u∥X , ∥v∥Y)∥u∥X , ∀u ∈ X, v ∈ Y,

and
♠ every bounded set ∅ ̸= D ⊂ R+, we have

♭(t, s)→ +∞ as t→ +∞, ∀s ∈ D,

♠ for any ϱ1, ϱ2 ≥ 0, it holds that ♭(t, ϱ1t + ϱ2)→ +∞ as t→ +∞.
(iv) There exists ϱA > 0 such that

∥A (v, u)∥X∗ ≤ ϱA (1 + ∥u∥X + ∥v∥Y), ∀(u, v) ∈ X×Y.

(E): ϕ : Y×Y → R is such that
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(i) ϕ(τ, ·) : Y → R is a proper, convex and lower semicontinuous function;
(ii) There exists ϱϕ ≥ 0 such that

ϕ(τ1, v2)− ϕ(τ1, v1) + ϕ(τ2, v1)− ϕ(τ2, v2) ≤ ϱϕ∥τ1 − τ2∥Y∥v1 − v2∥Y, ∀τ1, τ2, v1, v2 ∈ Y;

(iii) For each τ ∈ X, there exists ϱϕ(τ) > 0 such that [15]

ϕ(τ, v1)− ϕ(τ, v2) ≤ ϱϕ(τ)∥v1 − v2∥X , ∀v1, v2 ∈ X.

(F): B : X×Y → Y∗ is such that

(i) v ↣ B(u, v) is ϕ-stable-pseudomonotone with {ζ} and fulfills

lim
λ→0

sup⟨B(u, λz + (1− λ)v), z− v⟩Y ≤ ⟨B(u, v), z− v⟩Y, ∀z, v ∈ Y, u ∈ X.

(ii) It possesses

lim
n→∞

sup⟨B(un, z), z− vn⟩Y ≤ ⟨B(u, z), z− v⟩Y,

when z ∈ Y, (u, v) ∈ X×Y, {vn} ⊂ Y and {un} ⊂ X are such that

vn
w−−→ v ∈ Y and un

w−−→ u ∈ X as n→ ∞;

(iii) ℓ : R+ ×R+ → R is a function such that

⟨B(u, v), v⟩Y ≥ ℓ(∥v∥Y, ∥u∥X)∥v∥Y, ∀u ∈ X and v ∈ Y,

and
♠ every bounded set ∅ ̸= D ⊂ R+, we have

ℓ(t, s)→ +∞ as t→ +∞, for all s ∈ D,

♠ any ϱ1, ϱ2 ≥ 0, it holds ℓ(t, ϱ1t + ϱ2)→ +∞ as t→ +∞.
(iv) ∃ a constant ϱB > 0 such that

∥B(u, v)∥Y∗ ≤ ϱB(1 + ∥u∥X + ∥v∥Y), ∀(u, v) ∈ X×Y.

Remark 1. When ♭ appears in (D)(iii) (or ℓ appears in (F)(iii)) but has no effect on the second
variable, the condition (D)(iii) (or (F)(iii)) becomes a subsequent uniformly coercive condition:
(D)(iii)′: ∃ ♭ : R+ → R with ♭(s)→ +∞ as s→ +∞ such that

⟨A (v, u), u⟩X ≥ ♭(∥u∥X)∥u∥X , ∀u ∈ X and v ∈ Y

(respectively, (F)(iii)′: ∃ ℓ : R+ → R with ℓ(s)→ +∞ as s→ +∞ such that

⟨B(u, v), v⟩Y ≥ ℓ(∥v∥Y)∥v∥Y, ∀u ∈ X, and v ∈ Y).

The accessibility of solutions for Problem 1 is the main theorem of this article.

Theorem 2. Suppose that (A), (B), (C), (D), (E), and (F) are held. Then, the solution set denoted
by Γ(γ, ζ) of Problem 1 corresponding to (γ, ζ) ∈ X∗ × Y∗ is nonempty and weakly compact in
X×Y.

We require the following lemmas to prove this theorem:

Lemma 1. Assume that (A), (B), (C), and (D) are satisfied. Then, the following statements hold:
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(i) For fixed v ∈ Y, u ∈ Ω solves the (1), if and only if u solves the Minty inequality for
determining u ∈ Ω such that

⟨A (v, y), y− u⟩X + φ(u, y)− φ(u, u) ≥ ⟨γ, y− u⟩X , ∀y ∈ Ω; (4)

(ii) For fixed v ∈ Y, the solution set S (v) of (1) is nonempty, bounded, closed and convex;
(iii) The graph of S : ℧→ 2Ω is sequentially closed in Yw × Xw, implying that S is sequentially

closed from a waek topology Y into the subsets of a weak topology X;
(iv) If the map u ↣ A (v, u) is strictly monotone for a fixed v ∈ Y, then S is a weakly continuous

point-to-point mapping.

Proof. The assumptions (i) and (ii) are the straightforward consequences of ([16], Theorem
3.3). Now, we present the conclusion (iii).

Let {(vn, un)} ⊂ Gr(S ) be such that

vn
w−−→ v ∈ Y and un

w−−→ u ∈ X as n→ ∞ for (u, v) ∈ X×Y. (5)

Then, for each n ∈ N, we have un ∈ S (vn), i.e.,

⟨A (vn, un), y− un⟩X + φ(un, y)− φ(un, un) ≥ ⟨γ, y− un⟩X , ∀y ∈ Ω.

The (i) asserts that

⟨A (vn, y), y− un⟩X + φ(un, y)− φ(un, un) ≥ ⟨γ, y− un⟩X , ∀y ∈ Ω. (6)

To establish the upper limit as n→ ∞, we use assumption (D)(ii) and the weak lower
semicontinuity of φ (because φ is convex and lower semicontinuous) to determine

⟨A (v, y), y− u⟩X + φ(u, y)− φ(u, u) ≥ lim
n→∞

sup⟨A (vn, y), y− un⟩X

+ lim
n→∞

inf[φ(un, y)]− lim
n→∞

inf[φ(un, un)]

≥ lim
n→∞

sup[⟨A (vn, y), y− un⟩X + φ(un, y)− φ(un, un)]

≥ lim
n→∞

sup⟨γ, y− un⟩X

= ⟨γ, y− u⟩X , ∀y ∈ Ω.

Using the assumption (i), we obtain

u ∈ S (v).

Consequently, (v, u) ∈ Gr(S ), which is the the graph of the mapping S : ℧→ 2Ω, is
sequentially closure in Yw × Xw.

Additionally, assume that u ↣ A (v, u) is strictly monotone. Let us consider u1, u2 ∈ Ω
be two solutions to (1). Then, we have

⟨A (v, u1), y− u1⟩X + φ(u1, y)− φ(u1, u1) ≥ ⟨γ, y− u1⟩X , ∀y ∈ Ω, γ ∈ X∗ (7)

and

⟨A (v, u2), y− u2⟩X + φ(u2, y)− φ(u2, u2) ≥ ⟨γ, y− u2⟩X , ∀y ∈ Ω, ζ ∈ Y∗. (8)

In putting y = u2 into (7) and y = u1 in (8), we have

⟨A (v, u1), u2 − u1⟩X + φ(u1, u2)− φ(u1, u1) ≥ ⟨γ, u2 − u1⟩X , (9)

and
⟨A (v, u2), u1 − u2⟩X + φ(u2, u1)− φ(u2, u2) ≥ ⟨γ, u1 − u2⟩X . (10)
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Adding (9) and (10), we have

⟨A (v, u1)−A (v, u2), u1 − u2⟩X − φ(u1, u2) + φ(u1, u1)− φ(u2, u1) + φ(u2, u2) ≤ 0. (11)

Given the assumption (C) and the strict monotonicity of u ↣ A (v, u), we obtain

u1 = u2.

Therefore, S is a point-to-point mapping. However, assumption (iii) shows that S is
weakly continuous.

Similarly, Problem (2) has the following lemma.

Lemma 2. Assume that (A), (B), (E), and (F) are satisfied. Then, the following statements hold:

(i) For each fixed u ∈ X, v ∈ ℧ solves (2) if and only if v solves the Minty inequality to determine
v ∈ ℧ such that

⟨B(u, z), z− v⟩Y + ϕ(v, z)− ϕ(v, v) ≥ ⟨ζ, z− v⟩Y, ∀z ∈ ℧; (12)

(ii) For fixed u ∈ X, the solution set T (u) namely, of (2) is nonempty, bounded, closed, and
convex;

(iii) The map T : Ω→ 2℧ has a sequentially closed graph in Xw ×Yw;
(iv) If the map v ↣ B(u, v) is strictly monotone for a fixed u ∈ X, then T is a weakly continuous

point-to-point mapping.

Furthermore, we provide an a priori appraisal of the solution to Problem 1.

Lemma 3. Let us assume that (A), (B), (C), (D), (E), and (F) have been fulfilled satisfactorily. If
the solution set Γ(γ, ζ), namely, of Problem 1, is nonempty, then there exists M > 0 such that

∥u∥X ≤M and ∥v∥Y ≤M , ∀(u, v) ∈ Γ(γ, ζ). (13)

Proof. Suppose that Γ(γ, ζ) ̸= ∅. Let (u, v) ∈ Γ(γ, ζ) be arbitrary and (u0, v0) ∈ (D(φ) ∩
Ω)× (D(ϕ) ∩℧). By swapping y = u0 and z = v0 into (1) and (2), respectively, we obtain

⟨A (v, u), u⟩X ≤ ⟨A (v, u), u0⟩X + φ(u, u0)− φ(u, u) + ⟨γ, u0 − u⟩X (14)

and
⟨B(u, v), v⟩Y ≤ ⟨B(u, v), v0⟩Y + ϕ(v, v0)− ϕ(v, v) + ⟨ζ, v0 − v⟩Y. (15)

Taking account of (14), we use hypotheses (C)(i), (iii), and (D)(iii)–(iv) to obtain

♭(∥u∥X , ∥v∥Y)∥u∥X ≤ ⟨A (v, u), u⟩X
≤ ⟨A (v, u), u0⟩X + φ(u, u0)− φ(u, u) + ⟨γ, u0 − u⟩X
≤ ∥A (v, u)∥X∗∥u0∥X + φ(u, u0)− φ(u, u) + ∥γ∥X∗(∥u0∥X + ∥u∥X)

≤ ϱA (1 + ∥u∥X + ∥v∥Y)∥u0∥X + ϱφ(u)(∥u0∥X + ∥u∥X) + ∥γ∥X∗(∥u0∥X + ∥u∥X).

This implies that

♭(∥u∥X , ∥v∥Y) ≤
ϱA (1 + ∥u∥X + ∥v∥Y)∥u0∥X

∥u∥X
+

(ϱφ(u) + ∥γ∥X∗)∥u0∥X

∥u∥X
+ ϱφ(u) + ∥γ∥X∗ . (16)

Similarly, taking account of (15), we use hypotheses (E)(i), (iii) and (F)(iii)–(iv) to obtain
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ℓ(∥v∥Y, ∥u∥X)∥v∥Y ≤ ϱB(1 + ∥u∥X + ∥v∥Y)∥v0∥Y + ϱϕ(v)(∥v0∥Y + ∥v∥Y) + ∥ζ∥Y∗(∥v0∥Y + ∥v∥Y)

=⇒

ℓ(∥v∥Y, ∥u∥X) ≤
ϱB(1 + ∥u∥X + ∥v∥Y)∥v0∥Y

∥v∥Y
+

(ϱϕ(v) + ∥ζ∥Y∗)∥v0∥Y

∥v∥Y
+ ϱϕ(v) + ∥ζ∥Y∗ . (17)

Contrarily, suppose Γ(γ, ζ) is unbounded. Then, taking a subsequence, if necessary, it
is possible to suggest a sequence {(un, vn)} ⊂ Ω×℧ so that

∥un∥X ↑ +∞ as n→ ∞, (18)

or
∥vn∥Y ↑ +∞ as n→ ∞. (19)

Let us segregate the subsequent cases:

a Assume (18) is satisfied and the sequence {vn} is bounded in Y;
b Assume (19) is fulfilled and the sequence {un} is bounded in X;
c Assuming that both (18) and (19) are fulfilled.

Assuming a is valid, substitute u = un and v = vn into (16) to obtain

♭(∥un∥X , ∥vn∥Y) ≤
ϱA (1 + ∥un∥X + ∥vn∥Y)∥u0∥X

∥un∥X
+

(ϱφ(u) + ∥γ∥X∗)∥u0∥X

∥un∥X

+ ϱφ(u) + ∥γ∥X∗ . (20)

When we let n approach infinity in the inequality (20) and make use of (18) along with
property (D)(iii), we obtain the following:

+∞ = lim
n→∞

♭(∥un∥X , ∥vn∥Y)

≤ lim
n→∞

[
ϱA (1 + ∥un∥X + ∥vn∥Y)∥u0∥X

∥un∥X
+

(ϱφ(u) + ∥γ∥X∗)∥u0∥X

∥un∥X
+ ϱφ(u) + ∥γ∥X∗

]
= ϱA ∥u0∥X + ϱφ(u) + ∥γ∥X∗ . (21)

Consequently, (21) produces a contradiction. Similarly, for b, we could use (17) to
obtain a contradiction. However, we assume that c holds, and we will proceed to discuss
two additional situations:

(1)
∥vn∥Y
∥un∥X

→ +∞ as n→ ∞;

(2) There exist n0 ∈ N and ϱ̂0 > 0 such that

∥vn∥Y
∥un∥X

≤ ϱ̂0, ∀n ≥ n0.

If item (1) is true, we enter u = un and v = vn into (17) to yield

ℓ(∥vn∥Y , ∥un∥X) ≤
ϱB(1 + ∥un∥X + ∥vn∥Y)∥v0∥Y

∥vn∥Y
+

(ϱϕ(v) + ∥ζ∥Y∗ )∥v0∥Y

∥vn∥Y
+ ϱϕ(v) + ∥ζ∥Y∗ .

Taking the limit as n approaches infinity for the inequality mentioned above yields

+∞ = lim
n→∞

ℓ(∥vn∥Y , ∥un∥X)

≤ lim
n→∞

[
ϱB(1 + ∥un∥X + ∥vn∥Y)∥v0∥Y

∥vn∥Y
+

(ϱϕ(v) + ∥ζ∥Y∗ )∥v0∥Y

∥vn∥Y
+ ϱϕ(v) + ∥ζ∥Y∗

]
= ϱB∥v0∥Y + ϱϕ(v) + ∥ζ∥Y∗ . (22)
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It is obviously impossible; however, for a situation (2), we can deduce from (16) that

+∞← ♭(∥un∥X , ∥vn∥Y) (as n→ ∞)

≤ ϱA (1 + ∥un∥X + ∥vn∥Y)∥u0∥X
∥un∥X

+
(ϱφ(u) + ∥γ∥X∗ )∥u0∥X

∥un∥X
+ ϱφ(u) + ∥γ∥X∗

= ϱA (2 + ϱ̂0)∥u0∥X + ϱφ(u) + ∥γ∥X∗∥u0∥X + ϱφ(u) + ∥γ∥X∗ , for n ≥ n1, (23)

where n1 ≥ n0 is such that
∥un1∥X > 1.

This leads to a contradiction. Thus, Γ(γ, ζ) is bounded in X × Y, allowing us to determine
M > 0 satisfying (13).

Consider the set-valued mapping Λ : Ω×℧→ 2Ω×℧ defined by

Λ(u, v) = (S (v), T (u)), ∀(u, v) ∈ Ω×℧. (24)

By invoking Lemma 1 and Lemma 2, it can be seen that Λ is well defined. In addition,
∃ a bounded, closed, and convex set D in Ω×℧ such that Λ maps D into itself.

Lemma 4. Suppose (A), (B), (C), (D), (E), and (F) are met. Then, ∃ a constant M̂ > 0 satisfy

Λ(B(0, M̂ )) ⊂ B(0, M̂ ),

where B(0, M̂ ) ⊂ X×Y is defined as

B(0, M̂ ) = {(u, v) ∈ Ω×℧ | ∥u∥X ≤ M̂ and ∥v∥Y ≤ M̂ }.

Proof. Our proof will be based on contradiction. Assume that

Γ(B(0, n)) ̸⊂ B(0, n), for n ∈ N.

Then, for each n ∈ N, we may determine (un, vn) ∈ B(0, n) and (wn, zn) ∈ Γ(un, vn)
(i.e., wn ∈ S (vn) and zn ∈ T (un)) so that

∥wn∥X > n or ∥zn∥Y > n. (25)

Thus, assuming ∥wn∥X > n for each n ∈ N (similarly for ∥zn∥Y > n for each n ∈ N).
We employ (16); one has

♭(∥wn∥X , ∥vn∥Y) ≤
ϱA (1 + ∥wn∥X + ∥vn∥Y)∥u0∥X

∥wn∥X
+

(ϱφ(u) + ∥γ∥X∗ )∥u0∥X

∥wn∥X
+ ϱφ(u) + ∥γ∥X∗ .

Since
∥vn∥Y ≤ n < ∥wn∥X .

Therefore, passing to the limit as n→ ∞ for the inequality above, we have

+∞ = lim
n→∞

♭(∥wn∥X , ∥vn∥Y)

≤ lim
n→∞

[
ϱA (1 + ∥wn∥X + ∥vn∥Y)∥u0∥X

∥wn∥X
+

(ϱφ(u) + ∥γ∥X∗ )∥u0∥X

∥wn∥X
+ ϱφ(u) + ∥γ∥X∗

]
≤ 2ϱA ∥u0∥X + ϱφ(u) + ∥γ∥X∗ .

This leads to a contradiction. Thus, ∃ a constant M̂ > 0 satisfying

Λ(B(0, M̂ )) ⊂ B(0, M̂ ).
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Proof. (Proof of Theorem 2) Let us see that if Λ has a fixed point (u∗, v∗), then

u∗ ∈ S (v∗) and v∗ ∈ T (u∗).

By employing the concepts of S and T , it offers

⟨A (v∗, u∗), y− u∗⟩X + φ(u∗, y)− φ(u∗, u∗) ≥ ⟨γ, y− u∗⟩X , ∀y ∈ Ω,

and
⟨B(u∗, v∗), z− v∗⟩Y + ϕ(v∗, z)− ϕ(v∗, v∗) ≥ ⟨ζ, z− v∗⟩Y, ∀z ∈ ℧.

Thus, it is clear that (u∗, v∗) solves Problem 1. We will apply Theorem 1, the K-Fan
fixed point theorem, to determine the existence of a fixed point for Λ.

Moreover, Lemmas 1, 2, and 4, in fact, infer that Λ : B(0, M̂ )→ 2B(0,M̂ ) has nonempty,
closed, and convex values; the graph of Λ is sequentially closed in (X×Y)w × (X×Y)w.
The conditions stated in Theorem 1 have been verified. From this theorem, It can be shown
that Problem 1 has a solution (u∗, v∗) ∈ Ω×℧, such that

(u∗, v∗) ∈ Λ(u∗, v∗).

Hence,
Γ(γ, ζ) ̸= ∅.

Lemma 3 clearly shows that Γ(γ, ζ) is bounded in X×Y. Therefore, we will demon-
strate that Γ(γ, ζ) is weakly closed. Consider {(un, vn)} ⊂ Γ(γ, ζ) such that

(un, vn)
w−−→ (u, v) ∈ X×Y as n→ ∞, for some (u, v) ∈ Ω×℧. (26)

It is clear that for each natural number n, the pair (un, vn) ∈ Λ(un, vn). Since Λ is
sequentially closed from (X × Y)w to (X × Y)w (see Lemma 1 and Lemma 2), we can
conclude that

(u, v) ∈ Λ(u, v).

This signifies that
(u, v) ∈ Γ(γ, ζ).

Thus, due to the boundedness of Γ(γ, ζ), we can conclude that Γ(γ, ζ) is weakly
compact.

Theorem 2 shows that the solution set of Problem 1 is both nonempty and weakly
compact. However, it raises the question of whether it is possible to prove the uniqueness
of the solution under certain assumptions. Fortunately, the theorems below provide a
positive solution to this problem.

Theorem 3. Assume that (A), (B), (C), (D), (E), and (F) are fulfilled. In addition, if the inequality
below holds,

⟨A (v1, u1)−A (v2, u2), u1 − u2⟩X + ⟨B(u1, v1)−B(u2, v2), v1 − v2⟩Y + ϱφ∥u1 − u2∥2
X

+ ϱϕ∥v1 − v2∥2
Y > 0, ∀(u1, v1), (u2, v2) ∈ X×Y with (u1, v1) ̸= (u2, v2). (27)

Then Problem 1 has a unique solution.

Proof. Theorem 2 assures that
Γ(γ, ζ) ̸= ∅.
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We now demonstrate that Problem 1 has unique solution. Assume (u1, v1), (u2, v2) ∈
Γ(γ, ζ) are the two different solutions. Then,

⟨A (vi, ui), y− ui⟩X + φ(ui, y)− φ(ui, ui) ≥ ⟨γ, y− ui⟩X , ∀y ∈ Ω, (28)

and
⟨B(ui, vi), z− vi⟩Y + ϕ(vi, z)− ϕ(vi, vi) ≥ ⟨ζ, z− vi⟩Y, ∀z ∈ ℧. (29)

After setting i = 1 to correspond to y = u2 and i = 2 to correspond to y = u1 in
Equation (28), we add the two equations to obtain

⟨A (v1, u1)−A (v2, u2), u1 − u2⟩X − φ(u1, u2) + φ(u1, u1)− φ(u2, u1) + φ(u2, u2) ≤ 0. (30)

Similarly, assigning i = 1 to correspond to z = v2 and i = 2 to correspond to z = v1 in
Equation (29), we add the two equations to obtain

⟨B(u1, v1)−B(u2, v2), v1 − v2⟩Y − ϕ(v1, v2) + ϕ(v1, v1)− ϕ(v2, v1) + ϕ(v2, v2) ≤ 0. (31)

By using (30), (31), and assertions (C) and (E), we have

⟨A (v1, u1)−A (v2, u2), u1 − u2⟩X + ⟨B(u1, v1)−B(u2, v2), v1 − v2⟩Y + ϱφ∥u1 − u2∥2
X + ϱϕ∥v1 − v2∥2

Y ≤ 0.

This, combined with the condition (27), implies that u1 = u2 and v1 = v2. Thus,
Problem 1 has a unique solution.

By adding an additional condition to (27), the resulting theorem establishes a unique
solution for Problem 1.

Theorem 4. Assume that (A), (B), (C), (D), (E), and (F) are fulfilled. If the following assumptions
are met:
1⃝ The function u ↣ A (v, u) is inversely relaxed monotone and Lipschitz continuous for v ∈ Y,

with constants αA > 0 and βA > 0. Moreover, for each u ∈ X the function v ↣ A (v, u) is
Lipschitz continuous with LA > 0;

2⃝ The function v ↣ B(u, v) is inversely relaxed monotone and Lipschitz continuous for u ∈ X,
with αB > 0 and βB > 0. Moreover, for every v ∈ Y the function u ↣ B(u, v) is Lipschitz
continuous with LB > 0;

3⃝ LA LB

(αA βA + ϱφ)(αBβB + ϱϕ)
< 1.

Then Problem 1 has a unique solution.

Proof. Let (u1, v1) and (u2, v2) be two solutions to Problem 1. Then, it has

⟨A (v1, u1)−A (v2, u2), u1 − u2⟩X − ϱφ∥u1 − u2∥2
X ≤ 0, (32)

and
⟨B(u1, v1)−A (u2, v2), v1 − v2⟩Y − ϱϕ∥v1 − v2∥2

Y ≤ 0. (33)

Again, from the inverse relaxed monotonicity and Lipschitz continuity of A , we have

−αA βA ∥u1 − u2∥2
X ≤ ⟨A (v1, u1 −A (v1, u2), u1 − u2⟩X
≤ LA ∥v1 − v2∥Y∥u1 − u2∥X . (34)

Thus, from (32) and (34), we have

(−αA βA − ϱφ)∥u1 − u2∥2
X ≤ LA ∥v1 − v2∥Y∥u1 − u2∥X . (35)
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Similarly, we obtain

−αBβB∥v1 − v2∥2
Y ≤ ⟨B(u1, v1)−B(u1, v2), v1 − v2⟩Y
≤ LB∥v1 − v2∥Y∥u1 − u2∥X . (36)

Again, from (33) and (36), we have

(−αBβB − ϱϕ)∥v1 − v2∥2
Y ≤ LB∥v1 − v2∥Y∥u1 − u2∥X . (37)

Combining equations (35) and (37) yields

∥u1 − u2∥X ≤
LA LB

(αA βA + ϱφ)(αBβB + ϱϕ)
∥u1 − u2∥X . (38)

However, the inequality LA LB
(αA βA +ϱφ)(αBβB+ϱϕ)

< 1 implies that u1 = u2 and v1 = v2.
Therefore, Problem 1 has a unique solution.

3. Stability Results

In this section, we delve into examining the stability of the system of nonlinear
mixed variational inequality problems. Firstly, we present a set of regularized problems
perturbed by duality mappings that correspond to Problem 1. Secondly, we arrive at
a stability conclusion that demonstrates that every solution sequence to a regularized
problem contains at least one subsequence that solves Problem 1.

Let X and Y be two reflexive Banach spaces, and let X∗ and Y∗ be their dual spaces.
We assume that X and Y are strictly convex without losing the generality. Let JX : X → X∗

and JY : Y → Y∗ be the duality mappings, so that

JX(u) = {u∗ ∈ X∗|⟨u∗, u⟩X = ∥u∥2
X = ∥u∗∥2

X∗},

JY(v) = {v∗ ∈ Y∗|⟨v∗, v⟩Y = ∥v∥2
Y = ∥v∗∥2

Y∗}.

Let {δn} and {εn} be real sequences such that

εn > 0, δn > 0, εn → 0 and δn → 0. (39)

Consider the following perturbated problem for every n ∈ N, which corresponds to
Problem 1.

Problem 2. Determine (un, vn) ∈ Ω×℧ so that

⟨A (vn, un) + εn JX(un), y− un⟩X + φ(un, y)− φ(un, un) ≥ ⟨γ, y− un⟩X , ∀y ∈ Ω, γ ∈ X∗, (40)

and

⟨B(un, vn) + δn JY(vn), z− vn⟩Y + ϕ(vn, z)− ϕ(vn, vn) ≥ ⟨ζ, z− vn⟩Y, ∀z ∈ ℧, ζ ∈ Y∗. (41)

We assume the following.

(G): u ↣ A (v, u) and v ↣ B(u, v) are monotone, and meet

lim sup
λ→0

⟨A (v, λy + (1− λ)u), y− u⟩X ≤ ⟨A (v, u), y− u⟩X ,

lim sup
λ→0

⟨B(u, λz + (1− λ)v), z− v⟩Y ≤ ⟨B(u, v), z− v⟩Y, ∀z, v ∈ Y, ∀y, u ∈ X.
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(H): u ↣ A (v, u) is inverse relaxed monotone with αA > 0 and Lipschitz continuous
with βA > 0; similarly, v ↣ B(u, v) is inverse relaxed monotone with αB > 0 and
Lipschitz continuous with βB > 0, and fulfil

lim sup
λ→0

⟨A (v, λy + (1− λ)u), y− u⟩X ≤ ⟨A (v, u), y− u⟩X ,

lim sup
λ→0

⟨B(u, λz + (1− λ)v), z− v⟩Y ≤ ⟨B(u, v), z− v⟩Y, ∀z, v ∈ Y, ∀y, u ∈ X.

The theory described below ensures that solutions to Problem 2 exist and converge.

Theorem 5. Assume that (A), (B), (C), (D)(ii)–(iv), (E), and (F)(ii)–(iv) are satisfied. Then the
following assertions hold:

(i) If, in addition to assumption (G), Problem 2 has at least one solution (un, vn) ∈ Ω×℧ for
every n ∈ N;

(ii) Furthermore, if (G) holds, there is a subsequence {(un, vn)} for every solution of the sequence
{(un, vn)} to Problem 2, such that

(un, vn)
w−−→ (u, v) ∈ X×Y as n→ ∞, (42)

where (u, v) ∈ Ω×℧ solves the Problem 2;
(iii) Under the conditions of (H), any sequence of solutions {(un, vn)} of Problem 2 has a subse-

quence {(un, vn)} such that

(un, vn)→ (u, v) ∈ X×Y as n→ ∞, (43)

where (x, y) ∈ Ω×℧ solves Problem 1.

Proof. (i) Assign
An(v, u) = A (v, u) + εn JX(u)

and
Bn(u, v) = B(u, v) + δn JY(v), ∀ (u, v) ∈ X×Y.

We shall confirm that An and Bn satisfy, respectively, (D) and (F). Observe that JX is
demicontinuous and

0 ≤ (∥u∥X − ∥y∥X)
2 ≤ ⟨JX(u)− JX(y), u− y⟩X , ∀u, y ∈ X. (44)

Using hypotheses (G), we determine that (D)(i) is satisfied for each v ∈ Y, u ↣
An(v, u). Utilizing the information that ∥JX(u)∥X = ∥u∥X and

⟨JX(u), u⟩X = ∥u∥2
X , ∀u ∈ X.

It is easy to show that An satisfies (D)(ii)–(iv). Similarly, Bn satisfies (F). Consequently,
by using Theorem 2, we can argue that Problem 2 has a solution.

(ii) Let {(un, vn)} be any arbitrary sequence that solves Problem 2. Next, a meticulous
calculation yields
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♭(∥un∥X , ∥vn∥Y) ≤ ♭(∥un∥X , ∥vn∥Y) +
εn⟨JX(un), un⟩X
∥un∥X

≤ ϱA (1 + ∥un∥X + ∥vn∥Y)∥u0∥X
∥un∥X

+
(εn∥JX(un)∥X∗ + ∥γ∥X∗)∥u0∥X + ϱφ(u)

∥un∥X

+ ϱφ(u) + ∥γ∥X∗

=
ϱA (1 + ∥un∥X + ∥vn∥Y)∥u0∥X

∥un∥X
+

(εn∥un∥X + ∥γ∥X∗)∥u0∥X + ϱφ(u)
∥un∥X

+ ϱφ(u) + ∥γ∥X∗ , (45)

and

ℓ(∥vn∥Y, ∥un∥X) ≤
ϱB(1 + ∥un∥X + ∥vn∥Y)∥v0∥Y

∥vn∥Y
+

(δn∥vn∥Y + ∥ζ∥Y∗)∥v0∥Y + ϱϕ(v)
∥vn∥Y

+ ϱϕ(v) + ∥ζ∥Y∗ . (46)

The same argument that was employed in Lemma 3’s proof that {(un, vn)} is bounded
in X×Y.
If necessitated we can go to a relabeled subsequence and assume that

(un, vn)
w−−→ (u, v) ∈ X×Y as n→ ∞, for some (u, v) ∈ Ω×℧. (47)

By using the monotonicity of u ↣ A (v, u) and v ↣ B(u, v), we can make the
following deduction:

⟨A (vn, y) + εn JX(un), y− un⟩X + φ(un, y)− φ(un, un) ≥ ⟨γ, y− un⟩X , ∀y ∈ Ω, (48)

and

⟨B(un, z) + δn JY(vn), z− vn⟩Y + ϕ(vn, z)− ϕ(vn, vn) ≥ ⟨ζ, z− vn⟩Y, ∀z ∈ ℧. (49)

By taking the upper limit as n → ∞ and applying conditions (D)(ii) and (F)(ii), we
infer that

⟨A (v, y), y− u⟩X + φ(u, y)− φ(u, u) ≥ ⟨γ, y− u⟩X , ∀y ∈ Ω,

and
⟨B(u, z), z− v⟩Y + ϕ(v, z)− ϕ(v, v) ≥ ⟨ζ, z− v⟩Y, ∀z ∈ ℧,

Here, we utilized the boundedness of {(un, vn)} ∈ X×Y. Using the Minty approach,
we find (u, v) ∈ Ω×℧ to solve Problem 1, i.e.,

(u, v) ∈ Γ(γ, ζ).

(iii) It can be deduced from (ii) that if we have a sequence of solutions denoted by
{(un, vn)} for Problem 2, there will always exist a subsequence of {(un, vn)} that
satisfies (42). We assert that the sequence {(un, vn)} has a strong convergence to (u, v).
It is simple to demonstrate that

−αA βA ∥un − u∥2
X ≤ ⟨A (vn, un)−A (vn, u), un − u⟩X
≤ ⟨A (v, u)−A (vn, u), un − u⟩X + εn⟨JX(un), u− un⟩X

=⇒
αA βA ∥un − u∥2

X ≤ ⟨A (v, u)−A (vn, u), u− un⟩X + εn⟨JX(un), un − u⟩X . (50)
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By using hypothesis (D)(ii) and taking the upper limit as n approaches infinity on the
above inequality, we obtain

0 ≤ lim
n→∞

inf αA βA ∥un − u∥2
X

≤ lim
n→∞

sup ∥un − u∥2
X

≤ ⟨A (v, u)−A (vn, u), u− un⟩X + lim
n→∞

sup εn∥un∥X∥un − u∥X

≤ 0.

This implies that
un → u ∈ X as n→ ∞.

On the other hand, it has

vn → v ∈ Y as n→ ∞.

4. Optimal Control

In this section, we explore optimal control for the SNMVIPs. Additionally, we examine
and demonstrate the solveability of an optimal control problem that is influenced by the
nonlinear mixed variational inequality system.

Consider two Banach spaces Z1 and Z2 with continuous embeddings from X to Z1
and from Y to Z2. Let u0 ∈ Z1 and v0 ∈ Z2 be two target profiles. We define subspaces
U ⊂ X∗ and V ⊂ Y∗ such that the embeddings from U to X∗ and V to Y∗ are compact. We
now examine the ensuing optimal control problem:

Problem 3. Find (γ∗, ζ∗) ∈ U ×V such that

ℸ(γ∗, ζ∗) = inf
(γ,ζ)∈U×V

ℸ(γ, ζ), (51)

in which ℸ : U ×V → R is defined as

ℸ(γ, ζ) = inf
(u,v)∈Γ(γ,ζ)

(
ρ

2
∥u− u0∥2

Z1
+

θ

2
∥v− v0∥2

Z2

)
+ Υ(γ, ζ). (52)

Here, Γ(γ, ζ) denotes the set of solution to Problem 1 for (γ, ζ) ∈ X∗ × Y∗, where the
regularized parameters are ρ > 0 and θ > 0.

We assume that the function Υ satisfies the following conditions:
(K): Υ : U ×V → R is such that

(i) Υ is bounded from beneath;
(ii) Υ is coercive on U ×V, that is, it maintains

lim
(γ,ζ)∈U×V

∥γ∥U+∥ζ∥V→∞

Υ(γ, ζ)→ +∞;

(iii) Υ is weakly lower semicontinuous on U ×V, i.e.,

lim
n→∞

inf Υ(γn, ζn) ≥ Υ(γ, ζ),

whenever {(γn, ζn)} ⊂ U ×V and (γ, ζ) ∈ U ×V are such that

(γn, ζn)
w−−→ (γ, ζ) ∈ U ×V as n→ ∞.
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In this context, we are exploring the existence result for Problem 3.

Theorem 6. Assume that (A), (B), (C), (D)(ii)–(iv), (E), and (F)(ii)–(iv) hold. If (K) and (G) are
also satisfied, then Problem 3 has an optimal control pair.

Proof. For each fix (γ, ζ) ∈ U ×V, the closedness of Γ(γ, ζ) ensures that (û, v̂) ∈ Γ(γ, ζ)
such that

ρ

2
∥û− u0∥2

Z1
+

θ

2
∥v̂− v0∥2

Z2
= inf

(u,v)∈Γ(γ,ζ)

(
ρ

2
∥u− u0∥2

Z1
+

θ

2
∥v− v0∥2

Z2

)
, (53)

is attainable.
According to ℸ and (K)(i), there exists a minimizing sequence {(γn, ζn)} ⊂ U × V

such that
lim

n→∞
ℸ(γn, ζn) = inf

(γ,ζ)∈U×V
ℸ(γ, ζ). (54)

We assume that the sequence {(γn, ζn)} is bounded in U ×V. To arrive at a contradic-
tion, we suppose that

∥γn∥U + ∥ζn∥V → +∞ as n→ ∞.

Using the latter with (K)(ii), we can conclude that

inf
(γ,ζ)∈U×V

ℸ(γ, ζ) = lim
n→∞

ℸ(γn, ζn)

≥ lim
n→∞

Υ(γn, ζn)

= +∞. (55)

The result is a contradiction, which means that {(γn, ζn)} is bounded in U → V.
Passing to a relabeled subsequence if necessary, we may assume that

(γn, ζn)
w−−→ (γ∗, ζ∗) ∈ U ×V as n→ ∞, for some (γ∗, ζ∗) ∈ U ×V. (56)

Let {(un, vn)} ⊂ Ω×℧ satisfy (53) by letting û = un, v̂ = vn, and (γ, ζ) = (γn, ζn).
We will now prove that {(un, vn)} ⊂ Ω× ℧ is uniformly bounded in X × Y. A simple
computation reveals that

♭(∥un∥X , ∥vn∥Y) ≤
ϱA (1 + ∥un∥X + ∥vn∥Y)∥u0∥X

∥un∥X
+

(ϱφ(u) + ∥γn∥X∗)∥u0∥X

∥un∥X

+ ϱφ(u) + ∥γn∥X∗ , (57)

and

ℓ(∥vn∥Y, ∥un∥X) ≤
ϱB(1 + ∥un∥X + ∥vn∥Y)∥v0∥Y

∥vn∥Y
+

(ϱϕ(v) + ∥ζn∥Y∗∥v0∥Y

∥vn∥Y

+ ϱϕ(v) + ∥ζn∥Y∗ . (58)

Since there is continuity in the embeddings from U to X∗ and from V to Y∗, we use the
same approach as in the proof of Lemma 3 to show that the sequence {(un, vn)} ⊂ Ω×℧
is uniformly bounded in X×Y. Without loss of generality, we can assume that

(un, vn)
w−−→ (u∗, v∗) ∈ X×Y, and Z1 × Z2 as n→ ∞, for some (u∗, v∗) ∈ Ω×℧. (59)

Using the Minty approach yields

⟨A (vn, y), y− un⟩X + φ(un, y)− φ(un, un) ≥ ⟨γn, y− un⟩X , ∀y ∈ Ω, (60)
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and
⟨B(un, z), z− vn⟩Y + ϕ(vn, z)− ϕ(vn, vn) ≥ ⟨ζn, z− vn⟩Y, ∀z ∈ ℧. (61)

The embedding from (U, V) into (X∗, Y∗)is compact, and (56) implies that

(γn, ζn)→ (γ∗, ζ∗) ∈ X∗ ×Y∗ as n→ ∞.

Taking the upper limit as n→ ∞ for (60) and (61), we obtain

⟨A (v∗, y), y− u∗⟩X + φ(u∗, y)− φ(u∗, u∗) ≥ ⟨γ∗, y− u∗⟩X , ∀y ∈ Ω,

and
⟨B(u∗, z), z− v∗⟩Y + ϕ(v∗, z)− ϕ(v∗, v∗) ≥ ⟨ζ∗, z− v∗⟩Y, ∀z ∈ ℧,

where we used (F)(ii) and (D)(ii). Using the Minty trick once more, we accomplish

(u∗, v∗) ∈ Γ(γ∗, ζ∗).

The weaker lower semicontinuity of ∥ · ∥Z1 and ∥ · ∥Z2 , however, suggests that

ρ

2
∥u∗ − u0∥2

Z1
+

θ

2
∥v∗ − v0∥2

Z2
≤ lim inf

n→∞

[
ρ

2
∥un − u0∥2

Z1
+

θ

2
∥vn − v0∥2

Z2

]
. (62)

Note that Υ is weakly lower semicontinuous on U ×V; it implies

Υ(γ∗, ζ∗) ≤ lim inf
n→∞

Υ(γn, ζn). (63)

Referring to Equations (62) and (63), we have

lim inf
n→∞

ℸ(γn, ζn) ≥ lim inf
n→∞

inf
(u,v)∈Γ(γn ,ζn)

(
ρ

2
∥u− u0∥2

Z1
+

θ

2
∥v− v0∥2

Z2

)
+ lim inf

n→∞
Υ(γn, ζn)

= lim inf
n→∞

(
ρ

2
∥un − u0∥2

X +
θ

2
∥vn − v0∥2

Y

)
+ lim inf

n→∞
Υ(γn, ζn)

≥ ρ

2
∥u∗ − u0∥2

Z1
+

θ

2
∥v∗ − v0∥2

Z2
+ Υ(γ∗, ζ∗), (where (u∗, v∗) ∈ Γ(γ∗, ζ∗))

≥ inf
(u,v)∈Γ(γ∗ ,ζ∗)

(
ρ

2
∥u− u0∥2

Z1
+

θ

2
∥v− v0∥2

Z2

)
+ Υ(γ∗, ζ∗)

= ℸ(γ∗, ζ∗). (64)

We can use Equation (64) along with (54) to arrive at the following conclusion:

ℸ(γ∗, ζ∗) ≤ inf
(γ,ζ)∈U×V

ℸ(γ, ζ),

namely, (γ∗, ζ∗) is an optimal control pair of Problem 3.
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