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Abstract: Let C denote a convex subset within the vector space ℓp(·), and let T represent a mapping

from C onto itself. Assume α = (α1, · · · , αn) is a multi-index in [0, 1]n such that
n
∑

i=1
αi = 1, where

α1 > 0 and αn > 0. We define Tα : C → C as Tα =
n
∑

i=1
αiTi, known as the mean average of the

mapping T. While every fixed point of T remains fixed for Tα, the reverse is not always true. This
paper examines necessary and sufficient conditions for the existence of fixed points for T, relating
them to the existence of fixed points for Tα and the behavior of T-orbits of points in T’s domain. The
primary approach involves a detailed analysis of recurrent sequences in R. Our focus then shifts
to variable exponent modular vector spaces ℓp(·), where we explore the essential conditions that
guarantee the existence of fixed points for these mappings. This investigation marks the first instance
of such results in this framework.

Keywords: electrorheological fluids; fixed point; modular mean–nonexpansive mapping; modular
vector spaces; variable exponent spaces

MSC: 47H09; 46B20; 47H10; 47E10

1. Introduction

The Banach Contraction Principle is a cornerstone in metric fixed-point theory, mark-
ing its inception with profound implications. This theorem asserts that any contraction
mapping on a complete metric space must have a unique fixed point. Its significance lies
in its elegant simplicity but also in its vast applicability across mathematics and other
disciplines, serving as the foundational bedrock from which metric fixed-point theory
blossoms. It offers essential tools for analyzing the stability and convergence of iterative
processes, facilitating solutions to equations and systems in various scientific fields.

The fixed-point problem for nonexpansive mappings represents a natural and sig-
nificant extension of the class of mappings beyond contraction mappings. Nonexpansive
mappings, which do not contract distances between points, offer a broader and more
complex challenge in identifying fixed points within a space. This extension is crucial
because it encompasses a wider array of applications and theoretical scenarios, allowing
for the exploration of fixed points in contexts where the strict contraction condition is
relaxed. Studying nonexpansive mappings enriches our understanding of convergence,
stability, and the structure of various mathematical and applied problems, highlighting the
depth and diversity of metric fixed-point theory. Mean nonexpansive or α-nonexpansive
mappings serve as a further extension in the hierarchy of nonexpansive mappings, offering
a sophisticated approach to metric fixed-point theory.
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We define α = (α1, · · · , αp) for p ≥ 2, within [0, 1]p, fulfilling
p
∑

i=1
αi = 1 and ensuring

α1αp ̸= 0, as a multi-index.

Definition 1 ([1]). Let (M, d) be a metric space and α = (α1, · · · , αp) be a multi-index. A function
T : M → M is said to be an α-nonexpansive (or mean nonexpansive) mapping provided that

p

∑
i=1

αi d
(

Ti(x), Ti(y)
)
≤ d(x, y), f or all x, y ∈ M.

An element x ∈ M is said to be a fixed point of T provided that T(x) = x. The set of the fixed points
of T will be denoted by Fix(T).

This class of mappings was introduced by the authors in [1]. The most surprising
fixed-point result of these new class of mappings is the following:

Theorem 1 ([1]). Let C be a convex subset of a Banach space. If C enjoys the fixed-point property for
nonexpansive mappings, then any mean nonexpansive mapping T : C → C, where the multi-index
α = (α1, · · · , αp) satisfies α1

p−1
√

2 ≥ 1, has a fixed point.

Recall that a metric set is said to have the fixed-point property for nonexpansive
mappings if every nonexpansive self-mapping within it has a fixed point. Given this elegant
result, the equivalency between the fixed-point properties for nonexpansive mappings and
mean nonexpansive mappings remains an unresolved question, particularly within the
context of closed convex bounded subsets of a Banach space.

Exploring the fixed-point property for mean nonexpansive mappings significantly
involves an auxiliary mapping Tα. Specifically, consider C as a convex subset of a Banach
space and T : C → C a mean nonexpansive mapping, where α = (α1, · · · , αp). Define
Tα : C → C by

Tα(x) =
p

∑
i=1

αi Ti(x), f or any x ∈ C.

It is evident that Fix(T) ⊆ Fix(Tα). The core focus of the authors in [2] revolves around
exploring the inverse scenario, specifically the implications when Tα possesses a fixed point.
Some interesting and simple examples dealing with this question are found in the original
work [1].

In this investigation, we explore the concept of α-nonexpansive mappings within
modular vector spaces ℓp(·) and assess the relevance of the main findings in [1] within this
framework. Originating from Orlicz’s seminal work in 1931 [3], these variable exponent
spaces play a pivotal role in modeling non-Newtonian fluids, such as electrorheological
fluids, where viscosity undergoes significant variations under electric or magnetic influ-
ences [4,5]. Understanding the variable integrability within these spaces is crucial for their
potential applications. Nakano’s seminal introduction of modular vector spaces in 1950 [6]
greatly propelled the study of ℓp(·) spaces [7].

The investigation of fixed-point theory within the vector spaces ℓp(·) holds consid-
erable interest among mathematicians due to the importance of these variable exponent
spaces. The existence of fixed points often proves instrumental in tackling practical prob-
lems and elucidating their solutions. Maneuvering through the norms within these spaces
can be intricate, whereas working with the modular is inherently more intuitive.

For the study of metric and modular fixed-point theory, we recommend the books [8,9].
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2. Notes on Recurrent Sequences

Throughout, we have α = (α1, α2, · · · , αp) ∈ [0, 1]p, with p ≥ 2, such that
p
∑

i=1
αi = 1,

and α1αp ̸= 0. Consider the vector space Sα of recurrent sequences {xn} such that

xn − α1 xn+1 − α2 xn+2 − · · · − αp xn+p = 0, (1)

for all n ∈ N. Note that Sα is the set of the solutions to the higher-order linear difference
equation whose characteristic polynomial is

P(x) = 1 − α1 x − α2 x2 − · · · − αp xp.

It is well known [10,11] that if r1, r2, · · · , rk are the roots of P(x) with the respective mul-
tiplicities m1, m2, · · · , mk, then for any sequence {xn} in Sα, there exists unique p scalars
{ai,j}, with j ∈ [1, k] and i ∈ [0, mj − 1], such that

xn =
k

∑
j=1

mj−1

∑
i=0

ai,j ni rn
j , (2)

for all n ∈ N. The next technical result discusses the roots of P(x).

Lemma 1. Consider the polynomial function

P(x) = 1 − α1 x − α2 x2 − · · · − αp xp.

(1) r1 = 1 is a root of P(x) with multiplicity m1 = 1;
(2) if r is a root of P(x) such that |r| = 1, then we must have r = 1;
(3) if r is a root of P(x) such that r ̸= 1, then we must have |r| > 1.

Proof. It is clear that P(1) = 1 −
p
∑

i=1
αi = 1 − 1 = 0. Moreover, we have:

P′(1) = −α1 − 2α2 − · · · − pαp ≤ −α1 < 0.

So, r = 1 is a simple root of P(x). This proves (1). As for (2), let r be a root of P(x) such
that r ̸= 1 and |r| = 1. Let us write r = eiθ . We have

P(r) = 1 − α1 eiθ − α2 e2iθ − · · · − αp epiθ

=
(

1 −
p

∑
j=1

αj cos(jθ)
)
− i

p

∑
j=1

αj sin(jθ) = 0.

This will imply

1 −
p

∑
j=1

αj cos(jθ) = 0 and
p

∑
j=1

αj sin(jθ) = 0.

Since

1 −
p

∑
j=1

αj cos(jθ) =
p

∑
j=1

αj −
p

∑
j=1

αj cos(jθ) =
p

∑
j=1

αj (1 − cos(jθ)) = 0,

and the numbers are all positive, we deduce that cos(θ) = 1, which forces sin(θ) = 0,
i.e., r = 1 as claimed. As for (3), let r be a root of P(x) such that r ̸= 1. From (2), we know
that |r| ̸= 1. Assume |r| < 1. Since r is a root of P(x), we obtain

α1 r + α2 r2 − · · ·+ αp rp = 1.
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Hence,

1 = |α1 r + α2 r2 − · · ·+ αp rp| ≤
p

∑
j=1

αj |r|j <
p

∑
j=1

αj = 1.

This contradiction forces |r| > 1, as claimed in (3).

Before we jump into some fundamental properties of the recurrent sequences (RSs),
let us explain some simple facts about the characteristic polynomial P(x). Indeed, we have

−P(x) = −1 +
p

∑
j=1

αj xj = −
p

∑
j=1

αj +
p

∑
j=1

αj xj =
p

∑
j=1

αj (xj − 1).

Using the fact that xn − 1 = (x − 1)(1 + x + x2 + · · ·+ xn−1), we obtain

−P(x) =
p

∑
j=1

αj (x − 1)(1 + x + x2 + · · ·+ xj−1).

which implies

P(x) = −(x − 1)
p

∑
j=1

αj (1 + x + x2 + · · ·+ xj−1).

A straightforward calculation implies

P(x) = −(x − 1)
p−1

∑
j=1

(αj+1 + αj+2 + · · ·+ αp)xj.

Set β j = αj+1 + αj+2 + · · ·+ αp = 1 − α1 − α2 − · · · − αj, for j ∈ [1, p − 1]. We have

0 < αp = βp−1 ≤ βp−2 ≤ · · · ≤ β1 = 1 − α1 < 1.

Hence, we have P(x) = −(x − 1)Q(x), where Q(x) = 1 +
p−1
∑

j=1
β j xj.

Proposition 1. Under the above notations, we conclude that the roots of P(x) not equal to 1 are
the roots of Q(x) and vice versa.

Let us now consider the vector space Sβ of recurrent sequences {xn} such that

xn + β1 xn+1 + · · ·+ βp−1 xn+p−1 = 0, (3)

for all n ∈ N.

Proposition 2. Let {xn} be in Sα. The general form of this sequence is given by (GF). One of the
roots is r = 1, which is simple. In this case, we have

xn = a + yn,

for all n ∈ N, where a is a scalar and {yn} is in Sβ, i.e., Sβ is a linear subspace of Sα with
co-dimension equal to 1.

Theorem 2. Let {xn} be any sequence in Sβ. Assume {xn} is bounded. Then, {xn} is constant
equal to the zero sequence, i.e., xn = 0, for all n ∈ N.
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Proof. Let {xn} be in Sβ. We have xn = −
p−1
∑

j=1
β j xn+j for all n ∈ N. Set

Xn =


xn

xn+1
·
·

xn+p−2

 and B =


−β1 −β2 · · · −βp−2 −βp−1

1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
0 0 · · · 1 0

.

Clearly, we have Xn = B Xn+1 for all n ∈ N. Next, we compute the characteristic polyno-
mial of the matrix B, pB(λ) = det(λI − B), which will give the eigenvalues of B. We have

pB(λ) =

∣∣∣∣∣∣∣∣∣∣

λ + β1 β2 · · · βp−2 βp−1
−1 λ · · · 0 0
0 −1 · · · 0 0
· · · · · · ·
0 0 · · · −1 λ

∣∣∣∣∣∣∣∣∣∣
.

A straightforward calculation gives

pB(λ) = βp−1 + βp−2 λ + βp−3 λ2 + · · ·+ β1 λp−2 + λp−1,

which implies

pB(λ) = λp−1 Q
(

1
λ

)
.

Note that λ = 0 is not a root of pB(λ). Using the properties of the roots of Q(x), we
conclude that all eigenvalues of B are strictly less than 1. Therefore, the sequences of
matrices {Bn} will converge to the zero-matrix. But we have X0 = BnXn for all n ∈ N.
Since {Xn} is an abounded sequence, we conclude that X0 = 0, which forces the sequence
{xn} to be equal to 0.

Remark 1. Theorem 2 suggests that the conclusion applies solely to sequences of scalars. However,
it is possible to modify the proof elegantly for application in normed vector spaces. Indeed, let
(X, ∥.∥) be a normed vector. Consider the normed vector space (Xp−1, ∥.∥p−1) where the norm is
defined by ∥∥∥∥∥∥∥∥∥∥


x1
x2
·
·

xp−1


∥∥∥∥∥∥∥∥∥∥

p−1

=
p−1

∑
i=1

∥xi∥.

Let {xn} be a sequence of vectors in X such that xn = −
p
∑

i=1
βixn+i for all n ∈ N, where (βi)

satisfies the general assumptions assumed above. Then, the following holds:

Xn = B Xn+1,

where

Xn =


xn

xn+1
·
·

xn+p−2

 and B =


−β1 −β2 · · · −βp−2 −βp−1

1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
0 0 · · · 1 0

,
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which implies X0 = Bn Xn for all n ∈ N. If {xn} is bounded in X, and using the properties of
matrix B (as described above), we conclude that X0 = 0. Hence, xn = 0 for all n ∈ N.

As a direct consequence of Theorem 2, we have the following result:

Theorem 3. Let {xn} be any sequence in Sα. Assume {xn} is bounded. Then, {xn} is a
constant sequence.

Using the approach described in Remark 1, we obtain a vector version of Corollary 3
as well.

Remark 2. Note that if {xn} is in Sα, then {xn − xn+1} is in Sβ. Hence, if we assume that
{xn − xn+1} is bounded, then we will know that {xn − xn+1} is the zero sequence, i.e., {xn} is a
constant sequence.

In the next section, we use the obtained results to investigate the fixed-point problem
for α-modular nonexpansive mappings defined within the ℓp(·) spaces.

3. Variable Exponent Sequence Spaces ℓp(·)
In this work, we will investigate the theory of mean nonexpansive mappings or α-

nonexpansive mappings defined within the ℓp(·) spaces. This attempt has never been
carried out before. We will mainly deal with the main conclusions of [2] from the setting of
linear normed vector spaces to the case of the modular structure of ℓp(·).

Our work requires tools from the field of modular fixed-point theory, for which the
reader is referred to the book [9].

We initiate this section by outlining basic facts regarding ℓp(·) linear spaces.

Definition 2 ([3,12]). Consider p : N → [1, ∞) and define the linear spaces known as ℓp(·) as

ℓp(·) =
{
{xn} ⊂ RN;

∞

∑
n=0

1
p(n)

∣∣∣∣ xn

β

∣∣∣∣p(n)
< +∞, for some β > 0

}
.

Orlicz, in [3], originally introduced these spaces with slightly different terminology
and notation. Nakano drew inspiration from these spaces and went on to develop a more
comprehensive theory, which is now recognized as modular vector spaces [13,14].

Proposition 3 ([13–16]). For ℓp(·), we define the functional ϱ : ℓp(·) → [0, ∞] as

ϱ(x) = ϱ
(
{xn}

)
=

∞

∑
n=0

1
p(n)

|xn|p(n).

The function ϱ possesses the following properties:

(1) ϱ(x) = 0 if and only if x = 0;
(2) ϱ(±x) = ϱ(x);
(3) ϱ(α x + β y) ≤ α ϱ(x) + β ϱ(y) for all α, β ∈ [0, 1] such that α + β = 1

for any x, y ∈ ℓp(·).

Moreover, ϱ exhibits left-continuity, meaning that for any x ∈ ℓp(·), lim
α→1−

ϱ(αx) = ϱ(x).

Subsequently, we extend several concepts from the metric setting to the modular case.

Definition 3 ([9]).

(1) A sequence {xn} ⊂ ℓp(·) converges with respect to ϱ to x ∈ ℓp(·) if and only if ϱ(xn − x) → 0.
It is evident that if a ϱ-limit exists, it is necessarily unique.
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(2) A sequence {xn} ⊂ ℓp(·) is said to be ϱ-Cauchy if ϱ(xn − xm) → 0 as n and m tend to infinity.
(3) A subset C ⊂ ℓp(·) is ϱ-closed if, for any sequence {xn} ⊂ C that ϱ-converges to x, it follows

that x ∈ C.
(4) A subset C ⊂ ℓp(·) is said to be ϱ-bounded if the supremum of ϱ(x − y) for all pairs x, y ∈ C,

denoted by δϱ(C), is finite, i.e., δϱ(C) < ∞.

Additionally, ϱ exhibits the Fatou property; in other words, if a sequence {xn} ⊆ ℓp(·)
ϱ-converges to x, then for any y ∈ ℓp(·), the following holds:

ϱ(x − y) ≤ lim inf
n→∞

ϱ(xn − y).

The Luxemburg norm induced by the modular ϱ on ℓp(·) is expressed as

∥x∥ϱ = inf
{

λ > 0; ϱ

(
1
λ

x
)
≤ 1

}
.

Set
p− = inf

n∈N
p(n) and p+ = sup

n∈N
p(n).

Equipped with the Luxemburg norm, (ℓp(·), ∥.∥ϱ) forms a Banach space. Many of the
geometric characteristics typical of Banach spaces remain valid as long as both p− and
p+ are not equal to 1 or +∞. Specifically, (ℓp(·), ∥.∥ϱ) is uniform convexity if and only if
1 < p− ≤ p+ < +∞ [16].

Subsequently, we introduce the category of mappings for which we will explore the
existence of fixed points.

Definition 4. Suppose C is a nonempty subset of ℓp(·). A mapping T : C → ℓp(·) is

(1) Ref. [9] ϱ-nonexpansive if
ϱ(T(x)− T(x)) ≤ ϱ(x − y)

(2) Ref. [9] α-ϱ-nonexpansive, where α = (α1, α2, · · · , αp) ∈ [0, 1]p, with p ≥ 2, such that
p
∑

i=1
αi = 1, and α1αp ̸= 0, provided the following holds:

p

∑
i=1

αi ϱ
(

Ti(x)− Ti(y)
)
≤ ϱ(x − y)

for all x, y ∈ C. A x ∈ C point is a fixed point of T if T(x) = x. In the sequel, Fix(T) will denote
the set of all fixed points of T. The sequence {Tn(x)} is known as the orbit of T at x.

Clearly, ϱ-nonexpansive mappings are obviously α-ϱ-nonexpansive with respect to
any index α. But the converse is not true [2]. Therefore, the class of α-ϱ-nonexpansive is
larger, which explains the interest of mathematicians working in metric fixed-point theory
investigating these mappings.

4. Main Results

This section discusses the modular version of the main result of [2], which has not
been investigated yet. The setting for our investigation is ℓp(·) modular vector spaces. The
first result is a simple fact in any abstract vector space.
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Proposition 4. Let C be a nonempty convex subset of ℓp(·), T : C → C be a map and

α = (α1, α2, · · · , αp) ∈ [0, 1]p, with p ≥ 2, such that
p
∑

i=1
αi = 1, and α1αp ̸= 0. Define

Tα : C → C by

Tα(x) =
p

∑
i=1

αi Ti(x).

Let x ∈ Fix(T); then, we have Tn(x) = x ∈ Fix(Tα) for all n ∈ N, i.e., the orbit {Tn(x)} is
in Fix(Tα).

Remark 3. In general, it is not clear that an orbit of T is in Fix(Tα), provided this fixed-point set
is nonempty. But if T is affine, then we have

T(Tα(x)) = T
( p

∑
i=1

αi Ti(x)
)
=

p

∑
i=1

αi T(Ti(x)) =
p

∑
i=1

αi Ti+1(x) = Tα(T(x)),

for any x ∈ C. Hence if x ∈ Fix(Tα), then the orbit {Tn(x)} is in Fix(Tα). This is the main
motivation for the authors to consider affine mappings in [2].

The primary focus of researchers studying these kinds of mappings has been to
determine whether the nonemptiness of Fix(Tα) will force the existence of a fixed point for
T. Proposition 4 makes it evident that to demonstrate Fix(T) is nonempty, one can assume
that an orbit of T within Fix(Tα) is not at an extreme assumption.

Theorem 4. Let C be a nonempty convex ϱ-bounded subset of ℓp(·), T : C → C be a map and

α = (α1, α2, · · · , αp) ∈ [0, 1]p, with p ≥ 2, such that
p
∑

i=1
αi = 1, and α1αp ̸= 0. Define

Tα : C → C by

Tα(x) =
p

∑
i=1

αi Ti(x).

Assume that there exists z ∈ C such that its orbit {Tn(z)}n∈N is in Fix(Tα). Then, z is a fixed
point of T, i.e., z ∈ Fix(T).

Proof. Let z ∈ Fix(Tα) such that its orbit {Tn(z)}n∈N is in Fix(Tα). Since C is ϱ-bounded,
then {Tn(z)}n∈N is ϱ-bounded. The fact that the orbit is in Fix(Tα) will imply

Tα(Tn(z)) = Tn(z), n = 0, 1, · · ·

In other words, we have

α1 Tn+1(z) + α2 Tn+2(z) + · · ·+ αp Tn+p(z) = Tn(z), n = 0, 1, · · · (4)

Fix k ∈ N. Define the functional e∗k : ℓp(·) → R by

e∗k (x) = e∗k
(
{xn}

)
= xk.

The functional e∗k is linear and satisfies

|e∗k (x)| ≤
(

p(k) ϱ(x)
)1/p(k)

,
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for any x ∈ ℓp(·). Since {Tn(z)}n∈N is ϱ-bounded, we deduce that
{

e∗k
(

Tn(z)
)}

n∈N
is a

bounded sequence in R. The equation (RS) implies

α1 e∗k
(

Tn+1(z)
)
+ α2 e∗k

(
Tn+2(z)

)
+ · · ·+ αp e∗k

(
Tn+p(z)

)
= e∗k

(
Tn(z)

)
, n = 0, 1, · · ·

i.e., the sequence
{

e∗k
(

Tn(z)
)}

n∈N
is in Sα. All the assumptions of Theorem 3 are satisfied

to conclude that
{

e∗k
(

Tn(z)
)}

n∈N
is a constant sequence. Hence, we have

e∗k
(

T(z)
)
= e∗k

(
T0(z)

)
= e∗k (z).

Since k was taken arbitrarily in N, we conclude that T(z) = z, i.e., z ∈ Fix(T).

5. Conclusions

The assumption of boundedness in Theorem 4 can be made less strict by considering
the set {∗k (x); x ∈ C} to be a bounded subset of R for every k ∈ N. It should be noted
that the authors did not define the boundedness condition in [2] for Theorem 2 due to the
underlying space being a topological vector space.

The existence of a fixed point for Tα can be derived from a comprehensive range of
studies [9]. Specifically, when p− > 1 and C is both a ϱ-closed convex and ϱ-bounded
nonempty subset of ℓp(·) and T : C → C is α-ϱ-nonexpansive, it follows that Tα possesses a
fixed point [17]. However, it is unclear if possessing any modular geometric property is
sufficient to ensure that an orbit of T belongs to Fix(Tα), given that Tα has a fixed point.
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5. Ružička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics 1748; Springer:

Berlin/Heidelberg, Germany, 2000.
6. Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen Co.: Tokyo, Japan, 1950.
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