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Abstract: In this work, a mathematical model of the transfer process in a layer under the condition
of given experimental data on a part of the layer boundary is presented and investigated. Such
research is important for the mathematical description of the objects and systems for which, based on
physical considerations, it is impossible to correctly impose boundary or initial conditions, even in a
sufficiently general form, but there are experimental data on the desired function or its derivative at
the boundary of the body or at the initial time. The values of the desired function at the boundary
are known at certain moments in time. The boundary condition is constructed by the experimental
data and the initial-boundary value problem, with such a boundary condition, is formulated and
solved. The influence of the statistical characteristics of the sample of experimental data on the
solution to the initial-boundary value problem is analyzed, and a two-sided statistical estimation of
the solution is determined. The confidence intervals for the coefficients of the regression equation
and the corresponding confidence intervals for the sought function are established. The influence of
the statistical characteristics of the sample on the sought function at the lower boundary of the layer
is investigated. Numerical analysis of the solution to the initial-boundary value problem is carried
out depending on the statistical characteristics of the sample. Various cases of samples by size and
variance are considered. Numerical solutions are studied under the conditions of large and small
time intervals of the considered process.

Keywords: diffusion; transfer process; statistical modeling; mathematical model; experimental data;
initial-boundary value problem

1. Introduction

The further development of approaches and methods of mathematical description of
non-equilibrium processes of various physical nature in natural or artificial objects [1,2]
is caused by the need to construct effective methodologies and estimates for modeling a
number of socio-economic problems of the functioning of society, the economy, the defense
capability of the state, forecasting the redistribution of pollution of anthropogenic origin in
objects in natural environment, assessing the quality of drinking water and improving its
purification on an industrial scale, establishing the influence of the diffusion of aggressive
substances when assessing the reliability and durability of the operation of macro-structural
elements and components to prevent the destruction of relevant materials (in particular, in
dual-use technologies), etc.

Such research makes it possible to obtain a reliable forecast of the processes occurring
in environmental objects and other systems, to take the necessary measures in time to
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prevent their negative development. Without pretending to be complete, we will briefly
dwell on the current practical and theoretical results obtained using statistical modeling
methods [3–5] in recent years.

In [6], a mechanistic–statistical approach based on a combined reaction–diffusion
model, which represents the dynamics of an organism in the growth area, is applied. The
initial conditions and model parameters related to diffusion, reproduction, and mortality
are estimated simultaneously in a Bayesian system using the adaptive sampling algorithm.
In [7], an estimation of the parameter for population models based on partial differential
equations is presented using a mechanistic–statistical model that combines a sub-model
describing the studied dynamics and a stochastic sub-model describing the observation
process. The problem of modeling the movement of the fish population is examined in [8].
The model has both deterministic and stochastic components. Modeling is carried out by
calculating spatial statistics.

The authors of the work in [9] investigated statistical models that use partial differential
equations (PDE) to describe dynamically developing natural systems. In [10], a data-driven
methodology for identifying sources of pollutants in the atmosphere is presented. This
approach combines a diffusion model with a quantitative probabilistic assessment of data
uncertainty. The work in [11] is devoted to the use of ecological models based on partial
differential equations, with a special emphasis on reaction–diffusion models. The choice
of parameters is based on the definition of a probabilistic observation model and the
appropriate data representation. A mathematical–statistical analysis of partial differential
equations is carried out in [12] to analyze the impact of organism movements on the spatial
dynamics of the population. Statistical techniques have been developed, that allow for a
more accurate correlation of the conclusions of mathematical ecology and observations of
empirical ecology. Because ecological processes evolve over time, they require statistical
models that can adapt to the dynamics of change as new data are collected. Work [13] was
devoted to the development of a model that combines the equations of ecological diffusion
and logistic growth to characterize the processes of population colonization and to establish
long-term equilibrium using a heterogeneous medium. Hierarchical Bayesian modeling
is used in [14] for statistical inferences and probabilistic forecasts using the mechanical
ecological diffusion model. The statistical model led to important ecological conclusions
and proved to be an accurate forecasting method.

Anisotropic diffusion is the theoretical basis for damage removal in the problems of
sensing and image processing applications. However, diffusion approaches require the
choice of a special function at the boundary of the image region, the definition of which is
usually problematic. On the basis of statistical image data in [15], the values of the image
at the edge of the region were obtained, which made it possible to formulate problems
of anisotropic diffusion in which the parameters of the image at the edge were studied
from the training data. Statistical modeling was used in [16] to study reaction–diffusion
equations for the purpose of image processing. In the article [17], in order to study the
law of diffusion of cementation of cracks, the form of diffusion of cementation and the
relationship between the radius of diffusion and time depending on the width of the crack
were investigated using laboratory experiments and statistical analysis. To investigate the
migration of heavy metals, nonlinear diffusion methods and an empirical method using a
polynomial equation were applied in [18]. Experimental data representing heavy metal
release were used for nonlinear models for calibration purposes. In work [19], the processes
of natural carbonation of concrete samples of Portland cement over a long period were
studied. A complex approach, consisting of the thermodynamic model and the statistical
methodology for modeling long-term carbonation, was developed. Statistical modeling
was used in [20] to investigate the process of chloride ions entering concrete, which is the
main cause of concrete corrosion. The proposed method can be used to model the profile
of chloride ions in concrete using only a few data samples for a given depth. Then, the
stochastic diffusion of chloride ions can be modeled by the diffusion equation.
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The statistical method for constructing cellular automata based on observation data
was used in [21] to apply the diffusion equation and the Burgers equation. The study cited
in [22] discussed the use of structure-of-research methods to identify statistical dependen-
cies in high-dimensional physical processes. Large data sets for many processes in space
and time require statistical models and methods that can adequately take into account
such data. It was shown in [23] that the solution to the stochastic differential equation of
advection and diffusion provides a flexible class of models for spatial–temporal processes,
which is also computationally feasible for large data sets. Unlike the raw samples, the
forecasts after statistical processing are calibrated, quantify the forecast uncertainty, and
have a smaller mean absolute error.

The important practical problems described above led to the emergence and develop-
ment of a number of new theoretical methods and methodologies of statistical modeling in
recent years. In particular, in the monograph [24], a systematic description of various mass
transfer models is carried out based on a statistical description where the input parameters
and solutions are expressed by random processes and fields. A mathematical formulation
of the main physical models of transport, diffusion, and spreading is carried out, and some
analytical tools for statistical modeling are developed—in particular, in randomly layered
media [25]. The algorithm for estimating the coefficients of the parabolic equation based on
statistical observational data is presented. The solution to the diffusion problem is based on
a probabilistic representation in the form of a functional of solution to a system of certain
stochastic differential equations. The paper cited in [26] was devoted to the investigation
of a linear parabolic stochastic partial differential equation of the second order with a
small variance parameter using high-frequency data. Statistical conclusions for diffusion
processes based on modeling results were obtained. In the work [27], a statistical scheme
for observing the diffusion processes was proposed, which involved the convolution of
diffusion processes and some nuclear functions in time. In [28], various procedures for
statistical choice of input data that demonstrated adequate modeling of the evolution equa-
tion with a finite sample were presented. The authors of [29] considered the problem of
uncertainty estimation in linear statistical inverse problems with high-dimensional parame-
ters. In [30], a fractional Laplace operator was used to study anomalous diffusion processes,
which leads to the problems described by fractional equations of nonlinear diffusion. The
approach based on statistical linearization was proposed, which permits one to calculate,
approximately and iteratively, the statistical characteristics of the diffusion process. The
work in [31] was devoted to the consideration of various methods of visualization of data,
which lie in layered structures glued together along the lower dimensional boundaries.
Diffusion processes were used to represent noise in statistical models in spaces, for which
there are no standard parametric probability distributions.

As the above analysis of sources on statistical modeling shows, it is not always possible
to correctly impose boundary conditions on the region boundaries which proceed from
physical considering, even in a sufficiently general way. This is due to the complexity and
insufficiency (or impossibility) of carrying out relevant studies, and therefore, the analysis
and necessary generalizations are lacking.

This work considers the initialboundary value problem of a parabolic type, which
describes the processes of transfer of heat, mass, charge, etc., in a layer when experimental
data on the desired function are available at one of the boundaries.

The purpose of the work is to obtain and investigate the mathematical model of the
transfer process in a layer, under the condition that, on one of the two parts of the boundary
of the layer, only experimental data are known regarding the value of the sought function at
certain moments of time. The initial-boundary value problem is formulated and solved for
a second-order parabolic equation with a boundary condition based on such experimental
data. Moreover, the actual problem investigated in the work is the analysis of the influence
of the statistical characteristics of the sample of experimental data on the solution to the
initial-boundary value problem, the determination of a two-sided statistical estimation of
the solution, and the establishment of confidence intervals. The aim of the investigation is
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also to numerically analyze the solution to the initial-boundary value problem, depending
on the statistical characteristics of the sample.

2. Statement of the Initial-Boundary Value Problem of Transfer Processes under
Experimental Data at the Layer Boundary

We consider the physical process of transfer (of heat, mass, charge, etc.), which is
described by a two-order partial differential equation, on the interval [0, x0], x0 ∈ R+. We
assume that the coefficients of the problem are constant in the body region.

Conditions of the first kind are imposed on the sought function, but the system is
under conditions of uncertainty. At the lower boundary of the layer, only experimental
data on the desired function at certain moments of time are known.

In the case of a one-dimensional spatial coordinate, the transfer process is described
by the following partial differential equation [32]:

ρ
∂ f (t, x)

∂t
= d

∂2 f (t, x)
∂x2 , (1)

where f (t, x) is the desired function, ρ and d are the constant coefficients, t is time, and x is
the spatial coordinate.

We assume that the initial condition is zero:

f (t, x)|t=0 = 0. (2)

For t > 0 at the upper boundary of the layer, the constant source f∗ acts:

f (t, x)|x=0 = f∗ ≡ const. (3)

At the lower boundary of the layer, the experimental data are known at N moments of
time, as presented in Table 1.

Table 1. Template for experimental data.

t t1 t2 . . . ti . . . tN

f (t)|x0
fx0 (t1) fx0 (t2) . . . fx0 (ti) . . . fx0 (tN)

Based on these experimental data, we construct a linear regression model [33,34]:

F(t) = at + b, (4)

where the coefficients a and b are found by the method of least squares [35]

a =

N
N
∑

i=1
ti fx0i −

(
N
∑

i=1
ti

)(
N
∑

i=1
fx0i

)
N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2 , (5)

b =

(
N
∑

i=1
t2
i

)(
N
∑

i=1
fx0i

)
−
(

N
∑

i=1
ti

)(
N
∑

i=1
ti fx0i

)
N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2 , (6)

where fx0i = fx0(ti), and the boundary condition at x = x0 takes the form

f (t, x)|x=x0
= F(t). (7)
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3. Finding the Solution to the Transfer Initial-Boundary Value Problem under Linear
Regression at the Boundary

We reduce the initial-boundary value problems (1)–(3) and (7) to the problem with
zero boundary conditions by substitution:

w(t, x) = f (t, x)− f∗

(
1 − x

x0

)
− F(t)

x
x0

, (8)

where w(t, x) is a new desired function.
Then, we obtain the following problem:

∂w(t, x)
∂t

+
∂F(t)

∂t
x
x0

= D
∂2w(t, x)

∂x2 (9)

with the initial condition

w(t, x)|t=0 = − f∗

(
1 − x

x0

)
− F(t)|t=0

x
x0

(10)

and zero boundary conditions

w(t, x)|x=0 = w(t, x)|x=x0
= 0, (11)

wherein D = d/ρ.
Let us apply the finite integral Fourier sin-transform [36] (x → yn =nπ/x0, w(t, x)→ w̃(t, yn))

to the initial-boundary value problem (9)–(11). Then, in the images, we obtain:

dw̃(t, yn)

dt
+ Dy2

nw̃(t, yn) =
dF(t)

dt
(−1)n

yn
, (12)

w̃(t, x)|t=0 =
−1
yn

(
f∗ + (−1)n+1F(t)

)
. (13)

The solution to the problem in (12) and (13) is the following expression

w̃(t, yn) = − (−1)n

yn
F(t)− e−Dy2

nt
[

f∗
yn

− 2
(−1)n

yn
F(t)|t=0+

+(−1)nDyn

∫
F(t)eDy2

ntdt
∣∣∣∣
t=0

− (−1)n

yn
Dy2

n

∫
F(t)eDy2

ntdt
]

. (14)

After applying the inverse Fourier transform, using (8), to relation (14), we obtain [37].

f (t, x) = f∗

(
1 − x

x0

)
+ F(t)

x
x0

− 2
x0

∞

∑
n=1

[
(−1)n

yn
F(t)+

+e−Dy2
nt
[

f∗
yn

− 2
(−1)n

yn
F(t)|t=0 + (−1)nDyn

∫
F(t)eDy2

ntdt
∣∣∣∣
t=0

−

− (−1)n

yn
Dy2

n

∫
F(t)eDy2

ntdt
]

sin(ynx). (15)

If we take into account that F(t) is a linear regression, i.e., Formula (4) holds, then (15)
can be specified as follows:

(−1)nyne−Dy2
nt
∫

F(t) eDy2
nt dt =

(−1)n

Dyn

[
at + b − a

Dy2
n

]
;
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(−1)nyne−Dy2
nt
∫

F(t) eDy2
nt dt

∣∣∣∣
t=0

=
(−1)n

Dyn

[
b − a

Dy2
n

]
;

f (t, x) = f∗

(
1 − x

x0

)
+ (at + b)

x
x0

− 2
x0

∞

∑
n=1

[
(−1)n

yn
(at + b)+

+e−Dy2
nt
[

f∗
yn

− (−1)n

yn
(2b + at)

]
sin(ynx). (16)

The resulting Formula (16) is valid for t ∈ [0, tN ], since this is the time interval in
which the sample of experimental data for the desired function is given.

Let us notice that the coefficients of linear regression a and b can acquire positive and
negative values, and can be equal to zero.

4. Analysis of Statistical Characteristics of a Sample in the Case of Linear Regression

Let us analyze the effect of the statistical characteristics of the sample of experimental
data set at the lower boundary of the layer on the coefficients of the linear regression (4),
constructed using these data by the least squares method.

In the expressions (5) and (6), for the regression coefficients a and b, we consider the
case where the sample size N → ∞ . Then, we obtain the following asymptotic relations:

lim
N→∞

a =

∞
∑

i=1
ti fx0i

∞
∑

i=1
t2
i

; lim
N→∞

b = 0. (17)

We note that, if the number of experimental measurements changes over the same time
interval, then the values of the linear regression coefficients are a and b. That is, comparing
(5), (6), and (17), we can conclude that the larger the sample size N, the closer the angle
of inclination of the regression line a becomes to the expression (17) and the smaller the
absolute values of the free term b grow. Accordingly, for the samples, which the size is
large enough, it is necessary to construct a linear regression by means of the method of least
squares for the deviations of experimental values from their first value fx0(ti)∓ fx0(t1),
depending on sgn fx0(t1).

We also note that the coefficient a can be presented in the following form [37]:

a =
cov(t, Fe(t))

σ2
t

, (18)

where cov(t, Fe(t)) is the covariance between t and Fe(t) [38] and σ2
t is the variance of

variable t.
It follows from Formula (18) that the coefficient a is directly proportional to the

covariance of the variables t and Fe(t), and it is inversely proportional to the variance of
the variable t. And the smaller the variance σ2

t , the higher the value of the parameter a.

Since b = 1
N

(
N
∑

i=1
Fei − a

N
∑

i=1
ti

)
, this coefficient can be presented in terms of covariance

and variance as follows:

b =
1

N
∑

i=1
ti

(
N

∑
i=1

Fei − N
cov(t, Fe(t))

σ2
t

)
. (19)

It follows from Formula (19) that a decrease in variance under the same number of
experiments can lead to both an increase and a decrease in the value of b, depending on the
sign of the covariance and the magnitude of the values of Fei. It should be noted that an
increase in positive covariance reduces the value of the free term of the regression equation
b, while a negative covariance increases it.
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Also, linear regression coefficients can be presented using the correlation coefficient R:

a = R
σF
σt

, b =
1
N

(
N

∑
i=1

Fei − R
σF
σt

N

∑
i=1

ti

)
, (20)

where R =
N

N
∑

i=1
ti Fei−

(
N
∑

i=1
ti

)(
N
∑

i=1
Fei

)
√√√√(N

N
∑

i=1
t2
i −
(

N
∑

i=1
ti

)2)(
N

N
∑

i=1
F2

ei−
(

N
∑

i=1
Fei

)2) , σt = 1
N

√
N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2

, and

σF = 1
N

√
N
(

N
∑

i=1
F2

ei

)
−
(

N
∑

i=1
Fei

)2

are the mean square deviations of values t and Fe(t),

correspondingly.
It follows from (20) that the coefficient of linear regression a is directly proportional

to the correlation coefficient R, and its sign determines the sign of the parameter a (since
the mean square deviation is always a non-negative quantity). At the same time, absolute
values of a increase with increasing σF and decreasing σt. As for the coefficient b, when R
and t are of the same sign, an increase in the correlation coefficient leads to a decrease in
this parameter. In the case of different signs of the quantities R and t, an increase in the
correlation coefficient leads to an increase in the coefficient b.

If the coefficients a and b in the form of (18) and (19) are substituted into the expression
for linear regression, then we obtain the following:

Fe(t) =
1

N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2

{[
N

N

∑
i=1

tiFei −
(

N

∑
i=1

ti

)(
N

∑
i=1

Fei

)]
t+

+

(
N

∑
i=1

t2
i

)(
N

∑
i=1

Fei

)
−
(

N

∑
i=1

ti

)(
N

∑
i=1

tiFei

)}
. (21)

The asymptote (at N → ∞ ) of the obtained expression (21) for the time interval
t ∈ [0; tN ] has the form:

lim
N→∞

Fe(t) =
t

∞
∑

i=1
tiFei

∞
∑

i=1
t2
i

, (22)

which is proportional to the running value of the time variable t, and, if the experimental
values for Fei are of the same sign, then it determines the sign of the asymptote.

We also note that there is no steady-state regime for the function Fe(t), since the
inequality 0 ≤ t ≤ tN needs to be satisfied.

5. Two-Sided Statistical Estimation for Solution of the Initial-Boundary Value Problem

Let us determine a two-sided estimate of the solution to the problems in (1)–(3) and (7),
which is given using linear regression on the layer boundary x = x0 in (16).

We enter the notation:

g(t, x) = f (t, x)− f∗

(
1 − x

x0

)
− 2(at + b)

x
x0

. (23)

Then, we obtain the following from Formula (14):

g(t, x) = − 2
x0

∞

∑
n=1

e−Dy2
nt
(

f∗
yn

− (−1)n

yn
(2b + at)

)
sin(ynx). (24)
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We use the estimate for the exponent e−Dy2
nt

0 ≤ e−Dy2
nt ≤ 1 for t ≥ 0 (25)

and take into account that the function g(t, x), according to Formula (24), is negative. Then,
we obtain the following estimate:

2
x0

∞

∑
n=1

(
(−1)n

yn
(b + at)− f∗

yn

)
sin(ynx) ≤ g(t, x) ≤ 0.

If we sum the two series included in the last inequality [39], then we obtain:

−(2b + at)
x
x0

− f∗(1 −
x
x0

) ≤ g(t, x) ≤ 0. (26)

Returning to the function f (t, x), according to relation (23), based on inequalities (25)
and (26), we obtain the two-sided estimate for the desired function f (t, x):

(at + 2b)
x
x0

≤ f (t, x) ≤ f∗

(
1 − x

x0

)
+ 2(at + b)

x
x0

. (27)

Substituting the linear regression coefficients in the form of (18) and (19) into the
obtained Inequality (27), we have:

N
N
∑

i=1
tiFei −

(
N
∑

i=1
ti

)(
N
∑

i=1
Fei

)
N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2 t + 2

(
N
∑

i=1
t2
i

)(
N
∑

i=1
Fei

)
−
(

N
∑

i=1
ti

)(
N
∑

i=1
tiFei

)
N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2

 x
x0

≤

≤ f (t, x) ≤ f∗

(
1 − x

x0

)
+

+2


N

N
∑

i=1
tiFei −

(
N
∑

i=1
ti

)(
N
∑

i=1
Fei

)
N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2 t +

(
N
∑

i=1
t2
i

)(
N
∑

i=1
Fei

)
−
(

N
∑

i=1
ti

)(
N
∑

i=1
tiFei

)
N
(

N
∑

i=1
t2
i

)
−
(

N
∑

i=1
ti

)2

 x
x0

. (28)

Considering the case N → ∞ , by using (22), we obtain an asymptotic relation:

t
∞
∑

i=1
tiFei

∞
∑

i=1
t2
i

x
x0

≤ lim
N→∞

f (t, x) ≤ f∗

(
1 − x

x0

)
+ 2

t
∞
∑

i=1
tiFei

∞
∑

i=1
t2
i

x
x0

. (29)

The asymptotic inequality (29) shows that changes in the sample size affect the limits
of two-sided estimates for the function f (t, x), restricting inequality (28).

If the experimental values Fei are of the same sign, then as the sample size increases.
Both limits of the functional interval for f (t, x) (29) increase for ∀t ∈ [0, tN ] and ∀x ∈ [0, x0];
that is, the two-sided estimate of the solution shifts to the increasing values f (t, x).

If we present the coefficients of the linear regression in terms of the covariance and
variance, (18) and (19), then the two-sided evaluation of the function f (t, x) takes the form:cov(t, Fe(t))

σ2
t

t − 2
N

N
∑

i=1
ti

+ 2

N
∑

i=1
Fei

N
∑

i=1
ti

 x
x0

≤ f (t, x) ≤ .
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≤ f∗

(
1 − x

x0

)
+

2cov(t, Fe(t))
σ2

t

t − N
N
∑

i=1
ti

+

2
N
∑

i=1
Fei

N
∑

i=1
ti

 x
x0

.

Note that the increase in the covariance of the values t and Fe(t) leads to a shift in the
two-sided estimate for f (t, x) to the increase, and the interval itself increases. At the same
time, the increase in the variance of the values t shifts in the direction of the decrease in the
values of f (t, x), and the width of the two-sided estimate narrows.

6. Confidence Intervals for the Predicted Value of the Constructed Linear Regression
Model for the Function F(t)

To establish a two-tailed critical region to obtain a solution to the initial-boundary
value problem in (1)–(3) and (7), we first need to find confidence intervals for the linear
regression F(t) (4) using the methodology presented in [34].

Let a given level of significance be α = 0.05. Based on the experimental data (Table 1),
we compile a matrix of regressors K. For this case, it has the following form:

KT =

(
1 1 . . . 1
t1 t2 . . . tN

)
. (30)

The variance of the predicted value of the linear regression F(t) is determined by the
following formula:

σ2
F = fT

t (K
TK)

−1
ftσ

2
t , (31)

where fT
t =

(
1 t

)
.

Substituting the estimate of the mean square deviation σF (31) into the expression∣∣∣∣⌢F (t)− F(t)
∣∣∣∣/σF, we obtain the sought confidence interval. Therefore, the true value of the

desired function at the lower boundary of the layer F(t) varies with probable 1 − α = 0.95,
within the limits [29]

⌢
F (t)− tασt

√
fT

t (K
TK)

−1ft ≤ F(t) ≤
⌢
F (t) + tασt

√
fT

t (K
TK)

−1ft, (32)

where tα = tγ = t(α; ν) is the tabular value of Student’s distribution at the significance
level α and the number of degrees of freedom ν = N − 1. Calculation of the information
matrix is carried out, using the following methodology:

(KTK) =

(
1 1 . . . 1
t1 t2 . . . tN

)
·


1 t1
1 t2
. .
1 tN

 =

(
1 + 1 + . . . + 1 t1 + t2 + . . . + tN

t1 + t2 + . . . + tN t2
11
+ t2

2 + . . . + t2
N

)
,

Then the information matrix has the form

(KTK) =

 N
N
∑

i=1
ti

N
∑

i=1
ti

N
∑

i=1
t2
i

,

the determinant of which is obtained in the form

det(KTK) = N
N

∑
i=1

t2
i −

(
N

∑
i=1

ti

)2

.
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Then, we obtain the error matrix as follows:

(KTK)
−1

=



N
∑

i=1
t2
i

N
N
∑

i=1
t2
i −

(
N
∑

i=1
ti

)2

−
N
∑

i=1
ti

N
N
∑

i=1
t2
i −

(
N
∑

i=1
ti

)2

−
N
∑

i=1
ti

N
N
∑

i=1
t2
i −

(
N
∑

i=1
ti

)2
N

N
N
∑

i=1
t2
i −

(
N
∑

i=1
ti

)2


.

Since the vectors ft are different at different points of the factor space, the length of the
confidence intervals will also be different; that is, the accuracy of the predicted value of the
linear regression F(t) may differ at different points in time t.

The limits of the two-tailed critical region for the function F(t) are found. Let

F(t) =
⌢
F (t)± F̃(t), (33)

where, in the case of linear regression, which follows from Formula (32), we have

⌢
F (t) = at + b, F̃(t) = A

√
q1 + q2t + q3t2. (34)

Here,

q1 =

N
∑

i=1
t2
i

N
N
∑

i=1
t2
i −

(
N
∑

i=1
ti

)2 , q2 =

−2
N
∑

i=1
ti

N
N
∑

i=1
t2
i −

(
N
∑

i=1
ti

)2 , q3 =
N

N
N
∑

i=1
t2
i −

(
N
∑

i=1
ti

)2 ; (35)

A = tασF, where tα = tα;ν is the solution to Equation [33]:

2
∞∫

tα;ν/2

Γ
(

ν + 1
2

)
√

πν Γ
(ν

2

)(1 +
t′2

ν

)−
ν + 1

2
dt′ = α. (36)

where ν is the number of degrees of freedom, ν = N + 1, and Γ(x) is Gamma-function [32].
Note that “+” in Formula (33) refers to the upper limit of the critical region, and “−” refers
to the lower limit.

Taking into account that N is a natural number, we present the relation (36) in the
following form:

α =



2
∞∫

tα;ν/2

(N − 1)!!

2N/2
√

πN
(

N
2
− 1
)

!

(
1 +

t′2

N

)−
N + 1

2
dt′, if N is even number

2
∞∫

tα;ν/2

(N − 1)!!√
2πN (N − 2)!!

(
1 +

t′2

N

)−
N + 1

2
dt′, if N is odd number

(37)

where (2n)!! = 2nn!, (2n + 1)!! = 2n+1Γ
(
n + 3

2
)

[37].
It follows from Formula (37) that, if the number of measurements N increases, then

the values of the integrand function decrease, and in order for the area under the inte-
grand function to remain constant (namely, α/2), the integration interval must increase;
accordingly, the value tα;ν should decrease.
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In our analysis of the influence of the parameter N on the coefficients qi, i = 1, 2, 3 (35),
if the number of measurements increased, then these coefficients decreased. Moreover,

lim
N→∞

q1(N) = lim
N→∞

q2(N) = 0, lim
N→∞

q3 =
1

N
∑

i=1
t2
i

Then, at a constant value of σt, an increase in the number of experiments N on the
same interval t ∈ [0; tN ] leads to a narrowing of the confidence interval (32), where the
experimental data fall with probability (1 − α). And an increase in the mean square
deviation of the variable t, that is, σt, leads to an increase in the confidence interval for
the linear regression function F(t) for the same number of measurements. We note that
the influence of the variance of the variable t on the confidence interval is similar to the
influence of σt, but the growth by/to the same number slows down the rate of growth of
this interval.

7. Establishing the Two-Tailed Critical Region for Solution to the Initial-Boundary
Value Problem

To establish the two-tailed critical region for the solution to the problem (1)–(3) and (7),
we substitute a representation of the function F(t) (33) into relationship (15). Then,
we have:

f±F (t, x) = c∗

(
1 − x

x0

)
+

⌢
F (t)

x
x0

± F̃(t)
x
x0

− 2
x0

∞

∑
n=1

[
(−1)n

yn

⌢
F (t)± (−1)n

yn
F̃(t)+

+e−Dy2
nt
[

c∗
yn

− 2
(−1)n

yn

(
⌢
F (t)

∣∣∣∣
t=0

± F̃(t)
∣∣∣
t=0

)
+

(−1)nDyn

∫ ⌢
F (t)eDy2

ntdt
∣∣∣∣
t=0

±(−1)nDyn

∫
F̃(t)eDy2

ntdt
∣∣∣∣
t=0

−

− (−1)n

yn
Dy2

n

∫ ⌢
F (t)eDy2

ntdt ∓ (−1)n

yn
Dy2

n

∫
F̃(t)eDy2

ntdt
]

sin(ynx). (38)

Considering Formula (16) in the case of imposing linear regression as a condition on
the lower boundary of the layer, Formula (38) can be represented as:

f±F (t, x) = f (t, x)± F̃(t)
x
x0

∓ 2
x0

∞

∑
n=1

[
(−1)n

yn
F̃(t) + e−Dy2

nt

[
2
(−1)n+1

yn
F̃(t)

∣∣∣
t=0

+

+(−1)nDyn

∫
F̃(t)eDy2

ntdt
∣∣∣∣
t=0

− (−1)n

yn
Dy2

n

∫
F̃(t)eDy2

ntdt
]

sin(ynx). (39)

Here, F̃(t)
∣∣∣
t=0

= A
√

q1.

Note that the undefined integrals
∫

F̃(t)e−Dy2
ntdt

∣∣∣
t=0

and
∫

F̃(t)e−Dy2
ntdt are not taken

in elementary functions, so we find their approximate expressions. Given that the function
F̃(t) is continuously differentiable the required number of times, we expand it into a Taylor
series on the interval of given experimental measurements t ∈ [0, tN ] in the vicinity of some
point τ in this interval:

F̃(t) = A
√

q1 + q2t + q3t2 =

= A
√

q1 + q2τ + q3τ2 + A
t − τ

1!
(q2 + 2q3τ)

2
√

q1 + q2τ + q3τ2
+

+A
(t − τ)2

2!
4q3q1 − q2

2

4(q1 + q2τ + q3τ2)
3
2
+ . . . + Rn(t). (40)
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Let τ = t − ∆. In order for the Taylor series to be convergent, the condition |t− τ| < 1
or |∆| < 1 must be satisfied [40]. We examined the function F̃(t), calculated by Formula (40)
depending on the value ∆, limiting ourselves to the first three terms of the Taylor series. Then,
the total residual term of the series was calculated according to the following formula:

R3(ξ) = A
(t − τ)3

3!
3(q2

2 − 4q3q1)

8
(q2 + 2q3ξ)

(q1 + q2ξ + q3ξ2)
5
2

, ξ ∈ [τ, t] (41)

In Table 2, the exact values of the function and the values of its expansion into the
Taylor series (40) are given, with a limitation of three terms, calculated for ∆ = 0.001, 0.0015,
0.002, 0.0025, 0.003 on the interval t ∈ [0; 3.2], and the corresponding total residual terms
R3, calculated according to Formula (41), where ξ is the middle of the interval [τ, t] shown
in Figure 1. Curves 1–5 correspond to the values ξ(t) = t − 0.001, t − 0.0015, t − 0.002,
t − 0.0025, and t − 0.003.

Table 2. Exact and approximate values of the function F̃(t) for different values of ∆.

t F̃exact(t)
F̃Taylor(t)

∆ = 0.001 ∆ = 0.0015 ∆ = 0.002 ∆ = 0.0025 ∆ = 0.003

0 0.106747163 0.106747305 0.106747483 0.106747731 0.10674805 0.1067484

0.16 0.102730307 0.102730467 0.102730667 0.102730947 0.102731307 0.1027317

0.32 0.106747439 0.106747582 0.106747761 0.106748011 0.106748334 0.1067487

0.48 0.117980745 0.117980851 0.117980983 0.11798117 0.11798141 0.1179817

0.64 0.134635943 0.134636014 0.134636103 0.134636229 0.134636391 0.1346366

0.8 0.154974703 0.15497475 0.154974809 0.154974891 0.154974997 0.1549751

0.96 0.177736943 0.177736974 0.177737013 0.177737067 0.177737138 0.1777372

1.12 0.202105477 0.202105498 0.202105524 0.202105561 0.202105609 0.2021057

1.28 0.227564864 0.227564878 0.227564897 0.227564923 0.227564956 0.227565

1.44 0.253787019 0.25378703 0.253787043 0.253787062 0.253787086 0.2537871

1.6 0.28055815 0.280558158 0.280558168 0.280558182 0.2805582 0.2805582

1.76 0.307735018 0.307735024 0.307735031 0.307735041 0.307735055 0.3077351

1.92 0.335218954 0.335218958 0.335218964 0.335218972 0.335218983 0.335219

2.08 0.362940206 0.36294021 0.362940215 0.362940221 0.362940229 0.3629402

2.24 0.390848283 0.390848286 0.39084829 0.390848295 0.390848301 0.3908483

2.4 0.418905846 0.418905849 0.418905852 0.418905856 0.418905861 0.4189059

2.56 0.447084753 0.447084755 0.447084758 0.447084761 0.447084765 0.4470848

2.72 0.475363425 0.475363426 0.475363428 0.475363431 0.475363435 0.4753634

2.88 0.503725059 0.50372506 0.503725062 0.503725064 0.503725067 0.5037251

3.04 0.532156392 0.532156393 0.532156394 0.532156396 0.532156399 0.5321564

3.2 0.560646819 0.56064682 0.560646821 0.560646823 0.560646825 0.5606468

Note that varying the parameters within wide limits leads to a similar result:
|R3| < 10−10 (Figure 1). Therefore, we accept that taking into account three terms of
the series (40) approximates the function F̃(t) in the form in (34) sufficiently well.
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If
F̃(t) ≈ A3t2 + b̃t + p̃,

where p̃ = A1 − A2a + A3a2, b̃ = (A2 − 2A3a), then we obtain

(−1)nyne−Dy2
nt
∫

F̃(t) eDy2
nt dt =

(−1)n

Dyn

[
A3t2 + b̃t + p̃ − (2A3t + b̃)

Dy2
n

+
2A3

D2y4
n

]
;

(−1)nyn

∫
F̃(t) eDy2

nt dt
∣∣∣∣
t=0

=
(−1)n

Dyn

[
p̃ − b̃

Dy2
n
+

2A3

D2y4
n

]
.

Accordingly, we obtain the following limits of the two-tailed critical region:

f±F (t, x) = f (t, x)± 2A
√

q1 + q2t + q3t2 x
x0

±

± 2
x0

∞

∑
n=1

(−1)n

yn
e−Dy2

nt

(
2A

√
q1 + A3t2 + b̃t − 2

(A3t + b̃)
Dy2

n

)
sin(ynx). (42)

Because
lim
t→∞

f±F (t, x) = lim
t→∞

f (t, x)± 2A
√

q1 + q2t + q3t2 x
x0

,

then the functions f±F (t, x) do not have a steady-state regime (time asymptotics), i.e., for
long times of the transfer process, the longer the time t, the greater the width of the
two-tailed critical region.

The coefficient A has the greatest influence on the width of the two-tailed critical
region. Moreover, the smaller the value |A|, the narrower the two-tailed critical region for
the same reliability coefficient β. And the greater the variance of the predicted value of the
linear regression F(t), the wider the two-tailed critical region.

8. The Influence of Statistical Characteristics of the Sample on Reliable Intervals and
the Two-Tailed Critical Region of the Solution to the Initial-Boundary Value Problem

Let us investigate the influence of the statistical characteristics of the sample of ex-
perimental data on the desired function at the lower boundary of the layer using specific
examples. Experimental data were given for both uniform and non-uniform division of the
time interval of the study [41]. Consider the cases of large and small samples, which are
characterized by large or small variance. Six samples of experimental data and maximum
width of the two-tailed critical region of the solution for each Sample are presented in
Tables 3–14. Graphs of linear regression, solutions to the initial-boundary value problem,
their confidence intervals and two-tailed critical regions for each are shown in Figures 2–13.
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Figures 2, 4, 6, 8, 10 and 12 show the linear regression for the corresponding sam-
ple (Figure a) and the solution to the initial-boundary value problem in (1)–(3) and (7)
(Figure b). In Figure a, the function F(t) is marked with a solid line, its confidence intervals
F±(t) are marked with dashed–dotted lines, and the experimental data presented in the
corresponding table are marked with green dots. For the large time intervals in Figures 2b,
4b, 6b, and 10b, the solutions of the original initial-boundary value problem f (t, x) (solid
lines) at times t = 0.1, 0.5, and 2 (curves 1–3) are shown, and for small time intervals, in
Figures 8b and 12b, the solutions are shown at time points t = 0.1, 0.5, and 1 (curves 1–3).
Curves (dashed lines) with the index “+” are calculated for the upper limits of confidence
intervals f+c (t, x), and those with the index “−” are calculated for the lower ones f−c (t, x).

In Figures 3, 5, 7, 9, 11 and 13, the solutions to the initial-boundary value problem
f (t, x) are shown, normalized to the value of the function at the upper boundary of the
layer x = 0 and the corresponding two-tailed critical regions. For large time intervals [0, tN ]
(Figures 3, 5, 7 and 11), graphs were calculated for small (t = 0.1, 0.5 (curves 1 and 2 in
Figure a)) and large (t = 1, 2 (curves 3 and 4 in Figure b)) moments of time. For small time
intervals [0, tN ] (Figures 9 and 13), graphs were calculated for small (t = 0.1, 0.3 (curves 1
and 2 in Figure a)) and large (t = 0.5, 1 (curves 3 and 4 in Figure b)) moments of time.

In Tables 4, 6, 8, 10, 12 and 14, the maximum widths of the two-tailed critical regions of
the solution to the initial-boundary value problem in (1)–(3) and
(7) ∆c(t, x) = 1

f∗ | f+c (t, x)− f−c (t, x)| are given for different moments of time t for
six samples.

I. Large sample, large time interval, large variance

Let the sample of experimental data F(t) with size N = 36 have the form presented in
Table 3.

Table 3. Experimental data with large variance for large time interval.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F(ti) 0 0.121 0.2527 0.4609 0.6212 0.7142 0.9401 0.9771 1.0312 1.0922 1.1052 1.1197

t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

ti 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

F(ti) 1.1254 1.1741 1.2005 1.2129 1.2539 1.4017 1.4387 1.6109 1.7208 1.7562 1.7707 2.1208

t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 t36

ti 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

F(ti) 2.2022 2.4131 2.4799 2.7115 2.7307 2.7471 2.7517 2.7641 2.8615 2.9029 2.9413 2.9716

The sample range is R = [0, 2.9716]; the sample variance is S 2
F = 0.893931523259907.

Let us construct a regression according to the data in Table 3 using the method of
least squares. Based on the type of correlation field, we make an assumption about the
linear nature of the time dependence of the sought function on the lower boundary of
the body f (t)|x0

. According to sample data, the coefficients of linear regression (4) are
a = 0.835387001287001 and b = 0.16861996996997.

Now, we find confidence intervals with reliability values of β = 0.95 for the coefficients
a and b [32]: a ∈ (0.800735; 0.922897) and b ∈ (0.036363; 0.256763).
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mum is formed at the point 625.0max=x  (curve 2, Figure 2b). Further, the behavior of the 

Figure 2. Linear regression F(t) (a) and solutions to the initial-boundary value problem f (t, x) in
different moments (b) and their confidence intervals.

The limits of the two-tailed critical region f±F (t, x), calculated by Formula (42) for this
sample, are specified as follows:

The lower limit is

0.835387001 t + 0.16861997 − 1.81478
√

0.1066066 − 0.0900901 t + 0.0257400 t2 ≤ F(t);

the upper limit is

F(t) ≤ 0.835387001 t + 0.16861997 + 1.81478
√

0.1066066 − 0.0900901 t + 0.0257400 t2;
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Table 4. Maximum width of the two-tailed critical region of the solution for Sample I.

t 0.1 0.8 1.4 1.7 2.2 2.7 3.4

max
x∈[0,x0]

∆F(t, x) 0.0364039 0.29142238 0.22693402 0.2153051 0.23436629 0.29142238 0.40364039

Note that, for short periods of the transfer process, which are described by the initial-
boundary value problem (1)–(3) and (7), the function f (t, x) monotonically decreases (curve
1, Figure 2b). As t increases, the function values increase, and its maximum is formed at
the point xmax = 0.625 (curve 2, Figure 2b). Further, the behavior of the function f (t, x)
does not change, but its values increase significantly in the entire body region (curve 3,
Figure 2b).
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As the duration of the transfer process increases, not only do the values of f (t, x) increase,
but the width of the confidence interval ∆F(t, x) increases as well (Figure 2b). Thus, with
an increase in t from 0.5 to 2, the maximum width of the confidence interval increases

approximately by one and a half times: max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=2

/ max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=0.5

= 1.598.

As opposed to confidence intervals, the two-tailed critical region of the solution to the
problem first decreases (Figure 3), reaching its narrowest values in the middle of the time
interval [0, tN ]. Then, the two-tailed critical region expands symmetrically to the narrowing
in the initial time interval (Table 4).

Thus, for short durations, the width of this region, ∆F(t, x) = 1
f∗

∣∣ f+F (t, x)− f−F (t, x)
∣∣,

decreases to 17%: max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.5

/ max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.1

= 0.833 (Figure 3a). For medium

durations, the difference between max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=1

and max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=2

decreases by

16.6% (Figure 3b).

II. Large sample, large time interval, small variance

Consider a sample of experimental data F(t) with a size N = 36, which is presented
in Table 5.

Table 5. Experimental data with small variance for large time interval.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

F(ti) 0 0.153 0.188 0.207 0.251 0.295 0.306 0.374 0.378 0.42 0.432 0.451

t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24

ti 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

F(ti) 0.464 0.465 0.502 0.508 0.512 0.519 0.561 0.562 0.565 0.568 0.58 0.586

t25 t26 t27 t28 t29 t30 t31 t32 t33 t34 t35 t36

ti 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

F(ti) 0.589 0.609 0.628 0.654 0.656 0.659 0.662 0.668 0.672 0.674 0.677 0.694

The sample range is R = [0. 0.694]; the sample variance is S 2
F = 0.174264028380218.

The confidence intervals with reliability β = 0.95 were calculated for the coefficients
a = 0.155924066924067 and b = 0.218493993993994 in the following confidence limits:a ∈
(0.136688; 0.17516) and b ∈ (0.179346560289016; 0.257641427698971).
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The limits of two-tailed critical region f±F (t, x) for this sample are as follows.

The lower limit is

0.155924 t + 0.218494 − 0.353774783
√

0.1066066 − 0.0900901 t + 0.0257400 t2 ≤ F(t);

the upper limit is

F(t) ≤ 0.155924 t + 0.218494 + 0.353774783
√

0.1066066 − 0.0900901 t + 0.0257400 t2.
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Table 6. Maximum width of the two-tailed critical region of the solution for Sample II.

t 0.1 0.8 1.4 1.7 2.2 2.7 3.4

max
x∈[0,x0]

∆F(t, x) 0.15002469 0.1083156 0.08434663 0.0800244 0.08710905 0.108315603 0.15002469

Note that, as the time of the transfer process increases, the values of the function f (t, x)
increase in the entire region of the body (Figure 4b). For short and medium durations of
time, f (t, x) is a monotonically decreasing function. At the moment of time t = 0.7, the
local maximum of the function begins to form at the point xmax = 0.5. As t increases, this
maximum grows, shifts to the lower boundary of the layer ( xmax|t=2 = 0.6), and becomes
global (Figure 4b).

As time progresses, the width of the confidence interval ∆c(t, x) increases (Figure 4b).

For example, max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=2

/ max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=0.5

= 1.598.

For this sample, the two-tailed critical region of the problem solution also narrows
at first (Figure 5), and then, in the second half of the time interval [0, tN ], it expands
(Table 6). Thus, the width of this region ∆F(t, x) for short durations decreases to 17%,

namely, max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.5

/ max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.1

= 0.833 (Figure 5a). For long durations,

the difference between max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=1

and max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=2

decreases by 16.6%

(Figure 5b). There is also symmetry with respect to the widths ∆F(t, x) at the time in-
tervals [0, tN/2] and [tN/2, tN ].

For Samples I and II, there is growth of the confidence interval ∆c(t, x) and a decrease
in the two-tailed critical region ∆F(t, x). The corresponding growth is the same.

III. Small sample, large time interval, large variance

Now, the sample of experimental data F(t) with the size N = 12 takes the form given
in Table 7.
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Table 7. Experimental data with large variance for large time interval.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ti 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3

F(ti) 0 0.1697 0.4738 1.0209 1.4735 1.9513 2.4972 2.7988 2.9986 3.3457 3.8914 4.4371

The sample range is R = [0, 4.4371]; the sample variance is S 2
F = 1.47815809975753.

The confidence intervals with reliability β = 0.95 are calculated for the coefficients
a = 1.361503496503 and b = −0.158314102564102 in the following confidence limits: a ∈
(1.27876771583259; 1.4442392771744) and b ∈ (−0.319489689069116; 0.00286148394091157).
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The limits of two-tailed critical region f±F (t, x) for this sample are as follows.

The lower limit is

1.3615035 t − 0.1583141 − 3.253404
√

0.2948718 − 0.2564103 t + 0.0777001 t2 ≤ F(t);

the upper limit is

F(t) ≤ 1.3615035 t − 0.1583141 + 3.253404
√

0.2948718 − 0.2564103 t + 0.0777001 t2.

Table 8. Maximum width of the two-tailed critical region of the solution for Sample III.

t 0.1 0.8 1.4 1.7 2.2 2.5 3.2

max
x∈[0,x0]

∆F(t, x) 0.61692272 0.44338969 0.35257482 0.34312913 0.38806521 0.44338969 0.61692272

For the experimental data on the values of the desired function at the lower bound-
ary of the layer, which are presented in Table 7, the function f (t, x) also monotonically
decreased with short durations of the transfer process (curve 1, Figure 6b). As t increases,
the value of the function grows. A maximum was formed at the point xmax = 0.6 (curve
2, Figure 6b), which grew over time and shifted to the lower boundary of the layer. In
particular, for t = 2, the maximum value of the function reached xmax = 0.7. For long
durations, the values of the function f (t, x) increased significantly in the entire region of
the body (curve 3, Figure 6b).
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Figure 7. Solutions to the initial-boundary value problem f (t, x) and corresponding two-tailed critical
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As time increases, the width of the confidence interval ∆c(t, x) increases (Figure 6b).

For example, max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=2

/ max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=0.5

= 1.619.

For this sample, the two-tailed critical region of the problem solution also decreases
over time (Figure 7), and then expands (Table 8). Thus, the width of this region ∆F(t, x), for

small short durations, decreases to 17%: max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.5

/ max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.1

= 0.83

(Figure 7a). For long durations, the difference between max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=1

and max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=2

decreases by 10.6% (Figure 7b).
Symmetry with respect to the widths of ∆F(t, x) at time intervals [0, tN/2] and [tN/2, tN]

is also present.

IV. Small sample, small time interval, large variance

Now, consider the sample of experimental data F(t) with the size N = 12 and a small
time interval, as presented in Table 9.

Table 9. Experimental data with large variance for large time interval.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

F(ti) 0 0.0162 0.5809 1.1439 2.2175 3.2737 3.6345 4.1847 4.8021 5.1542 5.5129 5.9291

The sample range is R = [0, 5.9291]; the sample variance is S 2
F = 2.18380650788105.

The confidence intervals with reliability β = 0.95 are calculated for the coefficients
a = 5.9880034965035 and b =−0.255926923076922 in such confidence limits a ∈ (5.34665817078342;
6.62934882222358) and b ∈ (−0.672390063074964; 0.16053621692112).

The limits of two-tailed critical region f±F (t, x) for this sample are as follows:

The lower limit is

5.988003 t −−0.25593 − 3.253404
√

0.2948718 − 0.2564103 t + 0.0777001 t2 ≤ F(t);

the upper limit is

F(t) ≤ 5.988003 t − 0.25593 + 3.253404
√

0.2948718 − 0.2564103 t + 0.0777001 t2.
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Table 10. Maximum width of the two-tailed critical region of the solution for Sample IV.

t 0.1 0.3 0.5 0.6 0.7 0.8 1

max
x∈[0,x0]

∆F(t, x) 3.04895999 2.29132303 1.87514347 1.87514347 2.023403671 2.29132303 3.04895999

For the experimental data on the values of the desired function at the lower bound-
ary of the layer, which are presented in Table 9, formation of the local maximum of the
function f (t, x) begins for low durations. The max

x∈[0,x0]
f (t, x) forms in the middle of the

body increase with time and shift to the lower boundary of the layer. An example is
xmax|t=0.1 = 0.575 and max

x∈[0,x0]
f (t, x) = 0.635718339 (curve 1, Figure 8b), xmax|t=0.5 = 0.7

and max
x∈[0,x0]

f (t, x) = 4.4428612 (curve 2, Figure 8b), in addition to xmax|t=1 = 0.725 and

max
x∈[0,x0]

f (t, x) = 9.007544363 (curve 3, Figure 8b).

The width of the confidence interval ∆c(t, x) increases as the duration of the process

increases (Figure 8b). For example, max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=1

/ max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=0.5

= 1.44.

For this sample, the two-tailed critical region of the solution to the problem also nar-
rows over time (Figure 9), and then increases symmetrically at the intervals [0, tN/2] and
[tN/2, tN ] (Table 10). Thus, the width of this region ∆F(t, x) for short durations decreases

to 25%: max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.3

/ max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.1

= 0.751 (Figure 9a). For medium dura-
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tions, the difference between max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0,5

and max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=1

increases by 62.6%

(Figure 9b).

V. Small sample, large time interval, small variance

The sample of experimental data F(t) with the size N = 12 was obtained at large time
interval, as shown in Table 11.

Table 11. Experimental data with small variance for large time interval.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ti 0 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.5

F(ti) 0 0.351 0.474 0.532 0.565 0.612 0.662 0.682 0.709 0.756 0.768 0.794

The sample range is R = [0. 0.794]; the sample variance is S 2
F = 0.223456914022016.

The confidence intervals with reliability β = 0.95 were calculated for the coeffi-
cients a = 0.180180811808118 and b = 0.26010024600246, with confidence limits a ∈
(0.116880945418082; 0.243480678198154) and b ∈ (0.130502883575815; 0.389697608429105).
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Figure 10. Linear regression F(t) (a) and solutions to the initial-boundary value problem f (t, x) at
different moments, along with their confidence intervals (b).

The limits of the two-tailed critical region f±F (t, x) for this sample were as follows:

The lower limit is

0.18018081 t + 0.26010025 − 0.49182535
√

0.3093481 − 0.2583026 t + 0.0738007 t2 ≤ F(t);

the upper limit is

F(t) ≤ 0.18018081 t + 0.26010025 + 0.49182535
√

0.3093481 − 0.2583026 t + 0.0738007 t2.

Table 12. Maximum width of the two-tailed critical region of the solution for Sample IV.

t 0.2 0.8 1.1 1.7 2.3 2.7 3.3

max
x∈[0,x0]

∆F(t, x) 0.97894091 0.74249383 0.64888217 0.55414815 0.6232863 0.74249383 0.97894091
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For the experimental data on the values of the desired function at the lower boundary
of the layer, which are presented in Table 11, the function f (t, x) monotonically decreased
for short durations of the transfer process (curve 1, Figure 10b). The local maximum
formed at the point xmax = 0.525 (curve 2, Figure 10b), and, as in previous cases, grew over
time and shifted to the lower boundary of the layer (curve 3, Figure 10b) — for example,
xmax|t=1 = 0.625 and max

x∈[0,x0]
f (t, x) = 1.267372491 (curve 3, Figure 10b).

As the time increased, the width of the confidence interval ∆c(t, x) increased

(Figure 10b). For example, max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=2

/ max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=0.5

= 1.59.

For this sample, the two-tailed critical region of the problem solution also narrowed
over time (Figure 11), and then increased symmetrically at the intervals [0, tN/2] and
[tN/2, tN ] (Table 12). Thus, the width of this region ∆F(t, x) for short durations decreased

to 17%: max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.5

/ max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.1

= 0.836 (Figure 11a). For medium dura-

tions, the difference between max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=1

and max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=2

increased by 16.07%

(Figure 11b).

VI. Small sample, small time interval, small variance

The sample of experimental data F(t) with the size N = 12 was obtained at the large
time interval given in Table 13.

Table 13. Experimental data with small variance for small time interval.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

ti 0 0.105 0.2 0.331 0.427 0.55 0.632 0.8 0.868 0.951 1.01 1.1

F(ti) 0 0.0186 0.0206 0.0241 0.0315 0.0333 0.0351 0.0373 0.0408 0.0429 0.0443 0.0461

The sample range is R = [0, 0.0461]; the sample variance is S 2
F = 0.11354814757706.

The confidence intervals with reliability β = 0.95 were calculated for the coefficients
a = 0.034084888694602 and b = 0.0114076655203205, with confidence limits a ∈ (0.0258221071878995;
0.0423476702013045) and b ∈ (0.00577685424483104; 0.0170384767958099).
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Figure 12. Linear regression F(t) (a) and solutions to the initial-boundary value problem f (t, x) at
different moments and their confidence intervals (b).

The limits of the two-tailed critical region f±F (t, x) for this sample are as follows:

The lower limit is

0.034084888694602 t + 0.0114076655203205 − 0.0620065727181975×

×
√

0.306259616566363 − 0.769325309060361 t + 0.663735977332974 t2 ≤ F(t);

the upper limit is

F(t) ≤ 0.034084888694602 t + 0.0114076655203205 + 0.0620065727181975×

×
√

0.306259616566363 − 0.769325309060361 t + 0.663735977332974 t2.
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Figure 13. Solutions to the initial-boundary value problem f (t, x) and corresponding two-tailed
critical regions for small (a) and large moments of time (b).

Table 14. Maximum width of the two-tailed critical region of the solution for Sample IV.

t 0.1 0.3 0.5 0.6 0.7 0.8 1

max
x∈[0,x0]

∆F(t, x) 0.12050392 0.09112286 0.07332212 0.07173896 0.07575928 0.08458784 0.11159884

Regarding the experimental data on the values of the desired function at the lower
boundary of the layer, presented in Table 13, the function f (t, x) monotonically decreased
over the entire time interval [0, tN ] (Figure 12b). Moreover, time t = 1 was already in a
steady state: t = tst. As the time approached tst, the rate of growth of the function f (t, x)
slowed down significantly (Figure 12b).
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The width of the confidence interval ∆c(t, x) for this sample was significantly smaller than for
the previously considered ones. As the duration of the process increased, the width of the confidence

interval increased slightly (Figure 12b). For example, max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=1

/ max
x∈[0,x0]

∆c(t, x)
∣∣∣∣
t=0.5

= 1.43.

For this sample, the two-tailed critical region of the problem solution was significantly
narrower than in the case of other samples. But, also for sample VI, the width of the
two-tailed critical region also narrowed over time (Figure 13) and then increased symmetri-
cally at intervals [0, tN/2] and [tN/2, tN ] (Table 14). Thus, the width of this region ∆F(t, x)

decreased to 24% for short durations, namely, max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.3

/ max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0.1

= 0.756

(Figure 13a). For medium durations, the difference between max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=0,5

and

max
x∈[0,x0]

∆F(t, x)
∣∣∣∣
t=1

decreased by 34.3% (Figure 13b).

Note that, for the samples considered for all moments of time t ∈ [0, tN ], the confidence
interval and the two-tailed critical region for the function f (t, x) were symmetric, i.e.,
| f (t, x)− f−c (t, x)| = | f+c (t, x)− f (t, x)| and

∣∣ f (t, x)− f−F (t, x)
∣∣ = ∣∣ f+F (t, x)− f (t, x)

∣∣ for
∀t ∈ [0, tN ], ∀x ∈ [0, x0].

We also note that, for all six samples, the point x = xc
max at which the width of the

confidence interval for the function f (t, x) was the largest was the same, but it may have
differed at different moments in time. Thus, xc

max = 0.8 for t = 0.1, xc
max = 0.725 for t = 0.5,

and t = 2 (Figures 2b, 4b, 6b, 8b, 10b and 13b). At the same time, the largest width of the
two-tailed critical region was observed at the lower boundary of the layer, i.e., xt

max = 1,
and remained unchanged throughout the entire duration t ∈ [0, tN ] of the process under
investigation (Figures 3, 5, 7, 9, 11 and 13). The point x = xmin at which the widths of the
confidence interval and the two-tailed critical region were equal to zero ∆ = 0 was at the
upper boundary of the layer, since the value of the sought function at this boundary was
known and constant over time.

9. Numerical Analysis of the Solution Depending on Statistical Characteristics of the
Sample

We visualized and analyzed the solution to the initial-boundary value problem in
(1)–(3) and (7) depending on the coefficients of the problem and the statistical parameters.
Calculations for the function f (t, x) were carried out using Formula (17), with basic values
of the problem parameters: t = 1, f∗ = 1, D = 1, and N = 36. Also, Sample 2, with a large
size, small variance, and a long interval, was chosen as the basis sample.

In Figure 14, graphs of the function f (t, x)/ f∗ are shown at different time points for
D = 0.05 (Figure a) and D = 1 (Figure b). Here, curves 1–5 correspond to time points
t = 0.1, 0.5, 1, 2, and 3.

The influence of the coefficient D on the solution to the initial-boundary value problem
(1)–(3) and (7) is shown in Figure 15, where curves 1–5 correspond to the values D = 0.02,
0.05, 0.1, 0.5, and 1. Here and in the future, the curves in Figure a are calculated at the
moment t = 0.1, while the curves in Figure b are calculated at the moment t = 1. Figure 16
illustrates the behavior of the problem solution depending on the value of the desired
function at the boundary of the layer x = 0. The values f∗ = 0.2, 0.5, 1, 2, 3 correspond to
curves 1–5.

Figure 17 demonstrate graphs of the function f (t, x)/ f∗ for different values of the
coefficient of linear regression a, a > 0. In Figure a (t = 0.1), the values a = 0, 0.16, 1, 2, and
3, and the values a = 0, 0.1, 0.16, 0.2, 0,5 in Figure b (t = 1) correspond to curves 1–5, where
b = 0.22. Figure 18 illustrates the behavior of the problem solution in (1)–(3) and (7) for
negative values of the coefficient a. Here, the values a = −4, −3, −2, −1, −0.5 correspond
to curves 1–5, b = 0.22. In Figures 19 and 20, the dependence of the solution on positive
(Figure 19) and negative (Figure 20) values of the linear regression coefficient b is shown.
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Curves 1–5 correspond to the values b = 0, 0.22, 0.5, 1, and 1.5 in Figure 19 and b = −3, −2,
−1, −0.5, and −0.1 in Figure 20; a = 0.16.
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Note that, as the duration of the process described by the initial-boundary value problem
(1)–(3) and (7) increased, the function f (t, x) increased in the entire area of the body (Figure 14).
Moreover, for small values of the coefficient D and small t, there were local maximum and

minimum functions f (t, x). For example, min
x∈[0,x0]

f (t, x)
∣∣∣∣ t = 0.1

D = 0.05

=−0.130214511 at the point
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xmin = 0.45 and max
x∈[0,x0]

f (t, x)
∣∣∣∣ t = 0.1

D = 0.05

= 0.10893835 at the point xmax = 0.825 (curve 1,

Figure 14a). Over time, these local minimums and maximums leveled off (curves 2 and 3,
Figure 14a), and the function monotonically decreased (curves 4 and 5, Figure 14a). For
the coefficient D ≥ 1, the behavior of the function f (t, x) differed. For short durations, it
monotonically decreased (curve 1, Figure 14b), and a local maximum began to form in the
lower half of the layer (curve 2, Figure 14b) which further increased, shifted to the lower
boundary of the body and became global (curves 3–5, Figure 14b).
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The influence of the coefficient D on the behavior and values of the solution of the
initial-boundary value problem can be significant (Figure 15). However, for small time
intervals, a change in small values of D, and for large time intervals, a change in large
values of D, have almost no effect on the function f (t, x) in short intervals (curves 1 and 2
in Figure 15a and curves 4 and 5 in Figure 15b). We note that, the larger the value of the
coefficient D, the greater the growth observed in the values of f (t, x) becomes (Figure 15).

Small values of f∗ are characterized by the presence of the local maximum at point
xmax = 0.775 for small values of t (curve 1, Figure 16a) and at point xmax = 0.7 for
large values of t (curve 1 in Figure 16b). Here, the value of the maximum increases

approximately twice: max
x∈[0,x0]

f (t, x)
∣∣∣∣ t = 1

f∗ = 0.2

/ max
x∈[0,x0]

f (t, x)
∣∣∣∣ t = 0.1

f∗ = 0.2

= 2.13. With the

increasing values of f∗, for small times, the function f (t, x) becomes concave (curves 3–5 in
Figure 16a), and for large times, it becomes convex (curves 3–5 in Figure 16b).

The value of the linear regression coefficient a, in the region of its positive values
(Figure 17) and its negative values (Figure 18), has almost no effect on the function f (t, x)
in the vicinity of the layer boundary x = 0. Here, the size of such an interval is [0, 0.2]
for short durations (Figures 17a and 18a), which decreases with time, and for t = 1, it is
[0, 0.06] (Figures 17b and 18b). In the rest of the layer, the influence of the coefficient a on
the solution to the initial-boundary value problem is significant. Moreover, the higher the
values of this coefficient, the higher the values of the function f (t, x) (Figures 17 and 18).
An increase in the coefficient a on the positive semi-axis of the real numbers changes the
behavior from a monotonically decreasing function for small a to the formation of a local
maximum in the second half of the layer for large a (curves 4 and 5 in Figure 17a and
curves 2–5 in Figure 17b). And for long durations, this maximum of f (t, x) becomes global
(curve 5, Figure 17b). For negative small values of the coefficient a, there is a minimum
of the function f (t, x) in the lower part of the body. For example, for short durations, the
minimum point is xmin = 0.8 (curve 1 in Figure 18a), and for long durations, xmin = 0.75
(curve 1, Figure 18b). An increase in the negative values of the coefficient a leads to an
increase in f (t, x) at the entire interval and a change in the behavior of the function to a
monotonically decreasing one (curves 3–5 in Figure 18a and curve 5 in Figure 18b).

The value of the free term of the linear regression b, in the region of its positive values
(Figure 19) and its negative values (Figure 20), has a weak effect on the function f (t, x)
in the vicinity of the layer boundary x = 0. The size of such an interval is [0, 0.225] for
short durations (Figures 17a and 18a), which decreases with time, and for t = 1, it is
[0, 0.1] (Figures 19b and 20b). In the rest of the body region, the coefficient b significantly
affects the behavior and values of the solution to the initial-boundary value problem (1)–(3)
and (7). As for the parameter a, the higher the coefficient b becomes, the higher values
the function f (t, x) reaches (Figures 19 and 20). The increase in the coefficient b on the



Symmetry 2024, 16, 802 28 of 31

positive semi-axis of the real numbers changes the behavior of f (t, x) from a monotonically
decreasing function for small b (curves 1 and 2 in Figure 19a and curve 1 in Figure 19b)
to the formation of a local maximum in the second half of the layer for large b (curves
3–5 in Figure 19a and curves 2–5 in Figure 19b). Moreover, for long durations times, this
maximum of f (t, x) becomes global (curves 3–5, Figure 19b). Similarly to changes in the
coefficient a, the effect of the parameter b is observed, if b < 0, on the function f (t, x). Thus,
for negative small values of the coefficient b, there is a minimum of the function f (t, x)
in the lower part of the body. For example, for short durations, the minimum point is
xmin = 0.8 (curve 1 in Figure 20a), and for long durations, xmin = 0.75 (curve 1, Figure 20b).
An increase in the negative values of the coefficient b leads to an increase in f (t, x) over the
entire interval and a change in the behavior of the function to a monotonically decreasing
one (curve 5 in Figure 20a and curves 3–5 in Figure 20b).

Taking into consideration the results obtained in Section 3, we can say that the larger
the sampling size N is in the same time interval [0, tN ], the closer the function f (t, x)
approaches to monotonically decreasing. The higher the covariance cov(t, Fe(t)) becomes,
the larger the function f (t, x) becomes. For a larger dispersion of σ2

t a decrease in the
values of the solution to the problem occurs in the entire body region, and an increase in
the values of f (t, x) for ∀x ∈ [0, x0] for larger values of dispersion σ2

F can also be observed.
An increase in the correlation coefficient R also leads to an increase in the function f (t, x)
and the formation of a local or global maximum in the lower part of the layer.

For all the considered samples, the solution to the origin initial-boundary value
problem increases with time from the monotonically decreasing behavior of the function at
small time intervals, and a local maximum forms in the lower part of the layer (Figure 21).
For small time intervals of the process described by the problem in (1)–(3) and (7), and for
large samples, the value of the sample variance does not significantly affect the value of
f (t, x) (curves 1 and 2 in Figure 21). Thus, the maximum difference between the values
of f (t, x)| sampleI

t = 0.1

and f (t, x)| sampleI I
t = 0.1

is up to 8%. For samples with small sizes

(Samples III, V, and VI), both a large interval [0, tN ] and a small sample variance can lead
to a significant increase in the values of the function f (t, x) (curve 5, Figure 21a). From
the comparison of Figures 21a and 21b, it follows that the growth rate of the values of the
function f (t, x) for samples over large time intervals and with large variance (curves 1 and
3 in Figure 21b) is much higher than the growth rates of other samples (curves 2, 5 and
6 in Figure 21b). The significantly larger values of curves 4 (Sample IV) in Figure 21a,b
compared to the other curves can be explained by the much larger experimental values of
fx0i for ∀i = 1, . . . , N, than those presented in the other samples.
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Therefore, all the statistical characteristics considered in the paper sufficiently affect
the behavior of the solution of the original initial-boundary value problem, as well as
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the two-sided statistical estimation of the desired function, its reliable intervals, and its
two-sided critical regions. Before studying the solution to the transfer initial-boundary
value problem in the presence of experimental data on the boundary, it is necessary to
investigate the statistical characteristics of the sample in detail.

10. Conclusions

Herein, we have proposed a mathematical model of the transfer processes in the
layer described by second-order partial differential equations, when a constant value of
the desired function is given at the upper boundary of the layer and only experimental
data on the desired function at certain moments of time are known at the lower boundary.
The linear regression, which is considered as a boundary condition, is constructed using
the experimental data with the least squares method. The solution to the formulated
initial-boundary value problem is obtained by means of finite integral Fourier transform.

The influences of statistical characteristics of the sample of experimental data such as
sample size, covariance, variance in the time variable, and variance in the results of the
measurements, as well as the correlation coefficient, on the coefficients of linear regression
constructed on these data are analyzed.

The two-sided statistical estimation of the solution to the initial-boundary value
problem is determined in terms of the coefficients of linear regression, which are analyzed
in relation to the influence of the sample size and the covariance.

Confidence intervals for the coefficients of the regression equation with a given level of
reliability are established. The corresponding confidence intervals for the desired function
are determined based on the obtained solution of the initial-boundary value problem, and
their limits are determined according to the confidence intervals for the linear regression
coefficients. It is shown that, the larger the absolute values of the sought function are, the
greater the width of the confidence interval is. For short durations, the influence of the
confidence interval for the angle of inclination of the regression equation is practically im-
perceptible, while the influence of the confidence interval for the free term of the regression
is many times greater, especially in the vicinity of the lower boundary of the layer. It was
also noted that the smaller the variance of the sample of experimental data, the smaller
the width of the confidence interval for solution to the formulated initial-boundary value
problem. The formula for determining the two-tailed critical region based on Fisher’s test
was obtained and analyzed.
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Education and Science of Ukraine (project number 0123U101691).

Author Contributions: Conceptualization, O.C. and H.B.; methodology, O.C. and P.P.; software,
Y.B.; validation, O.C., H.B., Y.B., and M.V.; formal analysis, H.B.; investigation, O.C., H.B., and Y.B.;
resources, M.V.; writing—original draft preparation, O.C. and H.B.; writing—review and editing,
P.P and M.V.; visualization, Y.B.; supervision, O.C. and P.P.; project administration, P.P.; funding
acquisition, M.V. and P.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in
the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Kovács, R.; Rogolino, P.; Oliveri, F. Mathematical aspects in non-equilibrium thermodynamics. Symmetry 2023, 15, 929. [CrossRef]
2. Rogers, D.; Beck, T.; Rempe, S. An information theory approach to nonlinear, nonequilibrium thermodynamics. J. Stat. Phys. 2011,

145, 385–409. [CrossRef] [PubMed]
3. Fahrmeir, L.; Kneib, T.; Lang, S.; Marx, B. Regression: Models, Methods and Applications; Springer: New York, NY, USA, 2021; 746p.
4. Waldmann, E. Quantile regression: A short story on how and why. Stat. Model. 2018, 18, 203–218. [CrossRef]
5. Gallardo, D.; Bourguignon, M.; Galarza, C.; Gómez, H. A Parametric Quantile Regression Model for Asymmetric Response

Variables on the Real Line. Symmetry 2020, 12, 1938. [CrossRef]

https://doi.org/10.3390/sym15040929
https://doi.org/10.1007/s10955-011-0358-9
https://www.ncbi.nlm.nih.gov/pubmed/22966210
https://doi.org/10.1177/1471082X18759142
https://doi.org/10.3390/sym12121938


Symmetry 2024, 16, 802 30 of 31

6. Abboud, C.; Bonnefon, O.; Parent, E.; Soubeyrand, S. Dating and localizing an invasion from post-introduction data and a coupled
reaction–diffusion–absorption model. J. Math. Biol. 2019, 79, 765–789. [CrossRef] [PubMed]

7. Soubeyrand, S.; Roques, L. Parameter estimation for reaction - diffusion models of biological invasions. Popul. Ecol. 2014, 56,
427–434. [CrossRef]

8. Faugeras, B.; Maury, O. Modeling fish population movements: From an individual-based representation to an advection-diffusion
equation. J. Theor. Biol. 2007, 247, 837–848. [CrossRef] [PubMed]

9. Hooten, M.B.; Garlick, M.J.; Powell, J.A. Computationally Efficient Statistical Differential Equation Modeling Using Homogeniza-
tion. J. Agric. Biol. Environ. Stat. 2013, 18, 405–428. [CrossRef]

10. Albni, R.A.S.; Albani, V.V.L.; Gomes, L.E.S.; Migon, H.S.; Silva Neto, A.J. Bayesian inference and wind field statistical modeling
applied to multiple source estimation. Environ. Pollut. 2023, 321, 121061. [CrossRef]

11. Papaïx, J.; Soubeyrand, S.; Bonnefon, O.; Walker, E.; Louvrier, J.; Klein, E.; Roques, L. Inferring mechanistic models in spatial
ecology using a mechanistic-statistical approach. In Statistical Approaches for Hidden Variables in Ecology; Wiley: Hoboken, NJ, USA,
2022; pp. 69–95. [CrossRef]

12. Potts, J.R.; Schlägel, U.E. Parametrizing diffusion-taxis equations from animal movement trajectories using step selection analysis.
Methods Ecol. Evol. 2020, 11, 1092–1105. [CrossRef]

13. Lu, X.; Williams, P.J.; Hooten, M.B.; Powell, J.A.; Womble, J.N.; Bower, M.R. Nonlinear reaction–diffusion process models improve
inference for population dynamics. Environmetrics 2020, 31, e2604. [CrossRef]

14. Hefley, T.J.; Hooten, M.B.; Russell, R.E.; Walsh, D.P.; Powell, J.A. When mechanism matters: Bayesian forecasting using models of
ecological diffusion. Ecol. Lett. 2017, 20, 640–650. [CrossRef] [PubMed]

15. Scharr, H.; Black, M.; Haussecker, H.W. Image statistics and anisotropic diffusion. In Proceedings of the Ninth IEEE International
Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 840–847. [CrossRef]

16. Zhu, S.C.; Mumford, D. Prior learning and Gibbs reaction-diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 1236–1250.
[CrossRef]

17. Zhang, B.; Zhou, Y.; Zhang, X.; Wang, Z.; Yang, W.; Ban, Y. Experimental Study on Grouting Diffusion Law of the Different Crack
Widths in Tunnel Lining. KSCEJ. Civ. Eng. 2023, 27, 1789–1799. [CrossRef]

18. Aminul, M.; Hoque, M.A. Assessment onnon-linear models for demonstrating heavy metals release behavior from solid waste
block. J. Solid Waste Technol. Manag. 2016, 42, 157–168. [CrossRef]

19. Kari, O.P.; Puttonen, J.; Skantz, E. Reactive transport modelling of long-term carbonation. Cem. Concr. Compos. 2014, 52, 42–53.
[CrossRef]

20. Tarighat, A. Stochastic modeling and calibration of chloride content profile in concrete based on limited available data. Int. J. Civ.
Eng. 2012, 10, 309–316.

21. Kawaharada, A.; Iima, M. An application of data-based construction method of cellular automata to physical phenomena. J. Cell.
Autom. 2018, 13, 441–459.

22. Golmohammadi, J.; Ebert-Uphoff, I.; He, S.; Deng, Y.; Banerjee, A. High-dimensional dependency structure learning for physical
processes. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21
November 2017; pp. 883–888. [CrossRef]

23. Sigrist, F.; Künsch, H.R.; Stahel, W.A. Stochastic partial differential equation based modelling of large space-time datasets. J. R.
Stat. Society. Ser. B Stat. Methodol. 2015, 77, 3–33. [CrossRef]

24. Klyatskin, V.I. Dynamics of Stochastic Systems; Elsevier Science: Amsterdam, The Netherlands, 2005; 205p. [CrossRef]
25. Gusev, S.A. Estimation of the coefficients in the parabolic equation by the statistical simulation of diffusion trajectories. Russ. J.

Numer. Anal. Math. Model. 2003, 18, 297–305. [CrossRef]
26. Tonaki, Y.; Kaino, Y.; Uchida, M. Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small

noise. Stat. Inference Stoch. Process 2024, 27, 123–179. [CrossRef]
27. Nakakita, S.H.; Uchida, M. Inference for convolutionally observed diffusion processes. Entropy 2020, 22, 1031. [CrossRef]

[PubMed]
28. Wei, S.; Panaretos, V.M. Empirical evolution equations. Electron. J. Stat. 2018, 12, 249–276. [CrossRef]
29. Flath, H.P.; Wilcox, L.C.; AkçElik, V.; Hill, J.; Van Bloemen Waanders, B.; Ghattas, O. Fast algorithms for bayesian uncertainty

quantification in large-scale linear inverse problems based on low-rank partial hessian approximations. SIAM J. Sci. Comput. 2011,
33, 407–432. [CrossRef]

30. Malara, G.; Spanos, P.D.; Jiao, Y. Efficient calculation of the response statistics of two-dimensional fractional diffusivesy stems.
Probabilistic Eng. Mech. 2020, 59, 103036. [CrossRef]

31. Nye, T.M.W.; White, M.C. Diffusion on some simple stratified spaces. J. Math. Imaging Vis. 2014, 50, 115–125. [CrossRef]
32. Bakhrushin, V.E. Methods of Data Analysis; KPU: Zaporizhzhia, Ukraine, 2011; 268p. (In Ukrainian)
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