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Abstract: To reduce the impact of the cold chain logistics center layout on economic benefits, operating
efficiency and carbon emissions, a layout optimization method is proposed based on the improved
dung beetle algorithm. Firstly, based on the analysis of the relationship between logistics and
non-logistics, a multi-objective optimization model is established to minimize the total logistics
cost, maximize the adjacency correlation and minimize the carbon emissions; secondly, based on
the standard Dung Beetle Optimization (DBO) algorithm, in order to further improve the global
exploration ability of the algorithm, Chebyshev chaotic mapping and an adaptive Gaussian–Cauchy
hybrid mutation disturbance strategy are introduced to improve the DBO (IDBO) algorithm; finally,
taking an actual cold chain logistics center as an example, the DBO algorithm and the improved DBO
algorithm are applied to optimize its layout, respectively. The results show that the total logistics cost
after optimization of the IDBO algorithm is reduced by 25.54% compared with the original layout, the
adjacency correlation is improved by 29.93%, and the carbon emission is reduced by 6.75%, verifying
the effectiveness of the proposed method and providing a reference for the layout design of cold
chain logistics centers.

Keywords: cold chain logistics center; layout optimization; carbon emission; improved dung beetle
optimization algorithm

1. Introduction

With global trade growth and the increasing demand for food safety and pharmaceuti-
cal logistics, the efficient operation of cold chain logistics centers has become a key link in
supply chain management. Optimizing the layout of cold chain logistics centers improves
operational efficiency and ensures the quality and safety of goods during transportation [1].
Therefore, in the context of strengthening the cold chain logistics service system and the
“dual carbon” goals, how to promote the layout planning of cold chain logistics centers is
crucial for achieving green development in the logistics industry [2].

Layout optimization is a research focus in the field of logistics. Traditional layout
optimization methods include process analysis and systematic layout planning [3,4]. In
recent years, researchers have also employed genetic algorithms (GA), particle swarm
optimization (PSO), simulated annealing (SA), and ant colony optimization (ACO) for
solutions [5,6]. For example, Li et al. [7] utilized ACO to optimize layout, significantly
reducing operational costs; Jiang et al. [8] designed a simulated annealing algorithm
targeting material handling and transportation facility costs, and validated their method
across various scale experiments; Hu et al. [9] aimed to minimize total processing costs and
maximize comprehensive relationships by constructing a nonlinear programming model
and solving it with a genetic algorithm, thereby reducing handling costs for enterprises.

However, current research on layout optimization mainly focuses on general logistics
centers, with relatively few studies addressing the specific field of cold chain logistics
centers. Compared to general logistics centers, cold chain logistics centers have unique
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attributes, such as stringent temperature control requirements, high energy consumption,
short transportation cycles, and complex management systems. Effective temperature con-
trol necessitates that cold chain logistics centers are equipped with specialized refrigeration
equipment and advanced temperature monitoring systems to ensure the quality and safety
of goods during transportation and storage. The high energy consumption results from
the use of refrigeration and freezing equipment, leading to increased energy costs and
environmental requirements. Moreover, most existing studies have failed to simultaneously
address multi-objective layout optimization and environmental sustainability. Therefore,
how to optimize the layout of cold chain logistics centers while effectively reducing carbon
emissions and solving it with efficient optimization algorithms is still an urgent problem to
be solved.

Based on this, this paper proposes a layout optimization method for cold chain logistics
centers that consider carbon emissions. The objectives are to minimize total logistics costs,
maximize adjacency correlation, and minimize carbon emissions. Employing the improved
dung beetle algorithm, the proposed method is applied and validated using a real-world
cold chain logistics center, providing a reference for the development of cold chain logistics
centers.

The paper is structured as follows: Section 2 provides a detailed review of the relevant
literature, including studies on cold chain logistics centers, carbon emissions, and the im-
proved dung beetle algorithm. Sections 3 and 4 describe the proposed optimization model
and solution algorithm. Section 5 discusses the results and implications of the proposed
method using a case study. Finally, Section 6 presents the discussion and conclusion, and
suggests directions for future research.

2. Literature Review

Cold chain logistics centers play a crucial role in high-demand sectors, such as food
and pharmaceuticals. However, although some studies have focused on cold chain lo-
gistics centers, they primarily carried out from relatively macro levels, such as system
construction [10], sustainability [11], route optimization [12], network optimization [13],
location selection [14], and evaluation [15]. These studies have significantly contributed
to the development of cold chain logistics, but there is a lack of research on the layout
optimization of cold chain logistics centers, especially in the comprehensive consideration
of carbon emissions and other environmental factors.

Carbon emission is one of the pressing global environmental concerns today. In
logistics systems, carbon emissions primarily stem from transportation processes and
storage activities [16]. Although existing studies aim to reduce carbon emissions in logistics
systems, most focus on transportation optimization, overlooking the impact of logistics
center layout on carbon emissions [17]. For example, Wei et al. [18] proposed a method to
reduce carbon emissions by optimizing transportation routes, but did not consider reducing
carbon emissions by optimizing the layout of cold chain logistics centers. Therefore, this
paper incorporates carbon emission factors into the layout optimization model to further
reduce carbon emissions while optimizing the layout, thereby promoting the sustainable
development of cold chain logistics centers.

In addressing the optimization of layout models, it is proved that layout optimization
is an NP-hard problem [19], rendering traditional optimization algorithms insufficient
for solving it. Therefore, in recent years, scholars have often employed intelligent opti-
mization algorithms, as mentioned in the introduction. However, as model complexity
increases and search space expands in layout problems, these algorithms tend to get stuck
in local optima, exhibit slower convergence, and face exponentially increasing difficulty in
finding solutions.

The Dung Beetle Optimization (DBO) algorithm [20], proposed by Xue et al. in 2023,
possesses stronger optimization capabilities compared to other algorithms and has found
widespread application across various domains. Zhu et al. [21] introduced an improved
DBO algorithm that integrates quantum computing and multiple strategies, applying it
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to solve multiple practical engineering problems; Li et al. [22] employed an enhanced
DBO algorithm to solve nonlinear optimization problems with multiple constraints in
the manufacturing industry, and demonstrated the robustness of the improved algorithm.
However, the Dung Beetle Optimization (DBO) algorithm also faces challenges, such as
increased computational complexity and slow convergence rates when applied to complex
optimization problems [23]. Some researchers have proposed improved versions of DBO
to enhance its convergence speed and optimization performance. For example, Shen
et al. [24] improved the efficiency and accuracy of DBO in solving complex problems by
introducing new search mechanisms and parameters; Li et al. [25] used the improved DBO
algorithm to optimize the parameters of bidirectional long short-term memory network
models, improving the accuracy and stability of wind speed prediction models. However,
these studies mainly focus on general optimization problems, and the applied research on
optimizing the layout of cold chain logistics centers is still limited.

In addition, other optimization algorithms also perform well in solving complex
optimization problems. Uniyal et al. [26] conducted an exhaustive study on the perfor-
mance of nature-inspired metaheuristic algorithms in multi-objective optimization and
its applications, proving the effectiveness and flexibility of these algorithms in solving
complex optimization problems. However, the specific application of these algorithms
to the layout of cold chain logistics centers still needs to be further explored. The en-
hanced Wild-Horse optimizer proposed by Kumar et al. [27] has also shown excellent
performance in handling the reliability optimization problems of constrained systems.
However, this research primarily focuses on system reliability optimization, and there have
been insufficient studies regarding the application of layout optimization in cold chain
logistics centers. Therefore, in this paper, to better solve the cold chain logistics center
layout optimization problem considering the carbon emission factor, Chebyshev chaotic
mapping and an adaptive Gaussian–Cauchy hybrid mutation disturbance strategy are
introduced into the dung beetle algorithm, to help the algorithm to escape local optima
and improve solution efficiency.

3. Layout Optimization Modeling
3.1. Problem Description

The layout of the cold chain logistics center can be simplified by arranging the posi-
tional relationship between each functional zone in a plane to achieve the established goals
and ensure the connectivity and efficiency of the operational processes. Considering the
simulation solution of the model, the modeling is based on the following assumptions: 1⃝
The uniformity of the safety distance between various functional zones is maintained; 2⃝
The overall zone and each functional zone are simplified as rectangles, with the bound-
aries parallel to the X and Y axes; 3⃝ Functional zone positions are denoted by the central
coordinates of the rectangles.

According to the assumptions, the schematic diagram of the central plane coordinates
is shown in Figure 1.

In Figure 1, the X-axis and Y-axis denote the length and width directions of the cold
chain logistics center, respectively; L and H denote the total length and total width of
the cold chain logistics center, respectively; (xi, yi) denotes the central coordinates of the
functional zone i; li and hi denote the length and width of functional zone i, respectively;
uij denotes the distance to be maintained between functional zones i and j along the X-axis;
vjk denotes the distance to be maintained between functional zones j and k along the Y-axis;
ai and bi denote the safety distances from the functional zone i to the boundaries of the
cold chain logistics center along the X-axis and Y-axis, respectively.
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Figure 1. Functional zone plane coordinate diagram. 
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3.2. Objective Function

The optimization of cold chain logistics center layouts necessitates the consideration
of both logistics flow and non-logistics relationships among diverse functional zones.
Moreover, minimizing carbon emissions during operations is essential for realizing high
efficiency and low-carbon objectives [28]. The carbon emission calculation in this paper
mainly encompasses two factors: fixed-source carbon emissions and mobile-source carbon
emissions.

1⃝ Fixed-source carbon emissions refer to the emissions of carbon dioxide generated
by storage processes in zones of refrigeration functions in the cold chain logistics center.
Therefore, the calculation of fixed-source carbon emissions is related not only to the space
occupied by the functional zone but also to the amount of stored goods. The solution
formula for fixed-source carbon emissions as flow is as follows:

T1 =
N

∑
i=1

ViGt
i Ec (1)

In Equation (1), T1 denotes the fixed-source carbon dioxide emissions; Vi denotes the
space occupied by functional zone i (m3); Gt

i denotes the electricity consumption per cubic
meter of space (kWh/m3) when the inventory in the functional zone i is t; Ec denotes the
carbon emission factor of electricity (kg/kWh).

2⃝ Mobile-source carbon emissions stem from the consumption of fuel or electricity
during transportation, loading, and unloading activities between different functional
zones. Energy consumption in these processes is influenced by a multitude of factors,
such as diverse equipment, variations in operator behavior, and environmental conditions.
Therefore, considering the actual operational conditions, this paper takes the influence
of travel distance and vehicle load on energy consumption. The solution formula for
mobile-source carbon emissions as follows:

T2 =
N−1

∑
i=1

N

∑
j=i+1

qijDijUEc (2)

qij =

{
0, there is no f low o f goods between i and j.
1, otherwise

(3)

In Equation (2), T2 denotes the carbon dioxide emissions from mobile sources, qij is
a binary variable (0–1), indicating whether there is a flow of goods between functional
zones i and j, as shown in Equation (3); Dij is the distance between functional zones i and j,
calculated using the Manhattan distance formula, Dij =

∣∣xi − xj
∣∣+ ∣∣yi − yj

∣∣; U = U∗ + U0

denotes the energy consumption of vehicles (kWh/km), where U∗ and U0 denote the
energy consumption when the forklift is fully loaded and unloaded, respectively. Each
round-trip movement is regarded as one full load and one empty load.
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Establish a multi-objective function that minimizes the total logistics cost, maximizes
adjacency correlation, and minimizes carbon emissions, as follows:

min Z1 =
N−1

∑
i=1

N

∑
j=i+1

PijFijDijCij (4)

max Z2 =
N−1

∑
i=1

N

∑
j=i+1

Rijkij (5)

min Z3 =T1 + T2 (6)

In Equation (4), Pij denotes the amount of logistics between functional zones i and j; Fij
denotes the handling frequency between functional zones i and j; Cij denotes the handling
cost between functional zones i and j. In Equation (5), Rij denotes the comprehensive
interrelationship between functional zones i and j, determined through the System Layout
Planning (SLP) method; kij denotes the adjacency correlation factor between functional
zones i and j, which is related to Dij, defined specifically as shown in Table 1.

Table 1. Adjacency correlation factor and distance table.

Dij kij

0 ≤ Dij ≤ Dmax/6 1
Dmax/6 < Dij ≤ Dmax/3 0.8
Dmax/3 < Dij ≤ Dmax/2 0.6

Dmax/2 < Dij ≤ 2Dmax/3 0.4
2Dmax/3 < Dij ≤ 5Dmax/6 0.2

5Dmax/6 < Dij ≤ Dmax 0

To facilitate calculation and solution, the multi-objective function is transformed
into a single-objective function. Due to the different measurement units of the three
objective functions, normalization factors λ1, λ2, λ3 are introduced, along with weighting
coefficients w1, w2, w3. Among them, the selection of weight coefficients can be determined
by the Analytic Hierarchy Process (AHP), Delphi method, entropy weight method, etc.
These three methods are classic approaches for determining weight coefficients. The
AHP method has a systematic attribute, through hierarchical, pairwise comparisons to
determine the relative importance of the factors [29]. It is suitable for complex, multi-level
decision problems, especially when structured analysis and expert judgment are needed.
However, the process is time-consuming and may also introduce subjective bias. The
Delphi method [30] converges to consensus through multiple rounds of questionnaire
surveys and feedback, relying on collective opinions from an expert panel and iterative
feedback. It is suitable for problems requiring broad consensus, particularly in the absence
of objective data. However, this process is lengthy and may lead to increased time and
costs. Both the AHP and Delphi methods rely on expert judgment and belong to subjective
methods. The entropy method [31] is an objective approach that determines weights based
on data variability. It is suitable for decision problems with sufficient data and a desire
to reduce subjective bias. The calculation process is relatively simple and fast. Therefore,
researchers can choose appropriate methods based on the specific circumstances and
research needs to determine weight coefficients, supporting the scientificity and reliability
of the decision-making process.

In this case study, initially, each weight coefficient was assumed to be equal. However,
considering the actual circumstances of the case study, and to facilitate calculation while
still solving the problem effectively, combined with expert opinions, the weight coefficients
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of the three factors were determined to be w1 = 0.35, w2 = 0.3, w3 = 0.35. The transformed
single-objective function is as follows:

min Z = λ1w1

N−1

∑
i=1

N

∑
j=i+1

PijFijDijCij − λ2w2

N−1

∑
i=1

N

∑
j=i+1

Rijkij + λ3w3(T1 + T2) (7)

where λ1 =
Z1−Z1,min

Z1,max−Z1,min
, λ2 =

Z2−Z2,min
Z2,max−Z2,min

, λ3 =
Z3−Z3,min

Z3,max−Z3,min
.

3.3. Constraints

In layout planning, the following constraints are primarily entailed:
1⃝ Boundary constraint—each functional zone can not exceed the boundaries of the

planning zone and should maintain a designated safety distance from the boundaries.{
xi + ai +

li
2 ≤ L

xi − ai − li
2 ≥ 0

(8)

{
yi + bi +

hi
2 ≤ H

yi − bi − hi
2 ≥ 0

(9)

2⃝ Non-overlapping constraints—each functional zone cannot overlap with each other,
and the minimum spacing distance should be maintained between any two functional
zones. { li+lj

2 + uij ≤
∣∣xi − xj

∣∣
hi+hj

2 + vij ≤
∣∣yi − yj

∣∣ (10)

4. Solution Algorithm of the Model
4.1. Standard DBO Algorithm

The DBO algorithm is inspired by the activities of dung beetles and divides the
population into four sub-populations based on the dung beetle’s behaviors of rolling,
dancing, reproduction, foraging, and stealing. It then executes different search methods
and adopts a dynamic boundary search strategy to improve the effectiveness of algorithmic
search.

(1) Rolling Behavior

Rolling behavior is divided into obstacle-free and obstacle-present scenarios. In the
absence of obstacles along the rolling path, dung beetles utilize sunlight as a navigation aid.
Hence, the intensity of the light source affects the beetle’s path. In this case, the position
update formula for rolling dung beetles is as follows:

xi(t + 1) = xi(t) + α × k × xi(t − 1) + b × ∆x (11)

where, t denotes the current iteration number, xi(t) denotes the position information of the
i-th dung beetle at the t-th iteration, k ∈ (0, 0.2] denotes a constant value for the deflection
coefficient, b is a constant value between (0,1), α denotes the natural coefficient, which is
either −1 or 1, Xw denotes the global worst position, and ∆x is used to simulate changes in
light intensity, ∆x = |xi(t)− Xw|, with higher values indicating weaker light.

When encountering obstacles along the rolling path, dung beetles need to reorient
their direction through dancing to establish a new path. In this case, the position update
formula for rolling dung beetles is as follows:

xi(t + 1) = xi(t) + tan(θ)|xi(t)− xi(t − 1)| (12)

where θ is the deflection angle belonging to [0, π], and when θ = 0, π
2 , π, the position

remains unchanged.
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(2) Reproduction Behavior

A boundary selection strategy (as shown in Figure 2) is used to simulate the spawning
zone of dung beetles:

Lb∗ = max(X∗ × (1 − R), Lb)
Ub∗ = min(X∗ × (1 + R), Ub)

(13)

where X∗ denotes the current local optimal position, Lb∗ and Ub∗, respectively, denote
the lower and upper bounds of the spawning zone, R = 1 − t/Tmax, Tmax denotes the
maximum number of iterations, and Lb and Ub denote the lower and upper bounds of the
optimization problem, respectively.

Symmetry 2024, 16, x FOR PEER REVIEW 7 of 17 
 

 

reproduction, foraging, and stealing. It then executes different search methods and adopts 
a dynamic boundary search strategy to improve the effectiveness of algorithmic search. 
(1) Rolling Behavior 

Rolling behavior is divided into obstacle-free and obstacle-present scenarios. In the 
absence of obstacles along the rolling path, dung beetles utilize sunlight as a navigation 
aid. Hence, the intensity of the light source affects the beetle’s path. In this case, the posi-
tion update formula for rolling dung beetles is as follows: 

     1 1i i ix t x t k x t b x         (11)

where, t  denotes the current iteration number,  ix t  denotes the position information 
of the i -th dung beetle at the t -th iteration,  0,0.2k  denotes a constant value for the 
deflection coefficient, b  is a constant value between (0,1),   denotes the natural coeffi-
cient, which is either −1 or 1, wX  denotes the global worst position, and x  is used to 
simulate changes in light intensity,   w

ix x t X    , with higher values indicating 
weaker light. 

When encountering obstacles along the rolling path, dung beetles need to reorient 
their direction through dancing to establish a new path. In this case, the position update 
formula for rolling dung beetles is as follows: 

         1 tan 1i i i ix t x t x t x t      (12)

where   is the deflection angle belonging to  0, , and when 0, ,
2


  , the position 

remains unchanged. 
(2) Reproduction Behavior 

A boundary selection strategy (as shown in Figure 2) is used to simulate the spawn-
ing zone of dung beetles: 

 
 

* *

* *

max (1 )

min (1 )

Lb X R Lb

Ub X R Ub

  

  

，

，  
(13)

where *X  denotes the current local optimal position, *Lb  and *Ub , respectively, de-
note the lower and upper bounds of the spawning zone, max1 /R t T  , maxT  denotes the 
maximum number of iterations, and Lb  and Ub  denote the lower and upper bounds 
of the optimization problem, respectively. 

Lb* Ub*

Lb Ub
X*

 
Figure 2. Boundary selection strategy. 

The boundary range of the spawning zone is dynamically changing, mainly deter-
mined by the value of R . Therefore, the position of the spawning ball is also dynamic 
during the iteration process for: 

Figure 2. Boundary selection strategy.

The boundary range of the spawning zone is dynamically changing, mainly deter-
mined by the value of R. Therefore, the position of the spawning ball is also dynamic
during the iteration process for:

Bi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)− Ub∗) (14)

where Bi(t) denotes the position of the i-th brood ball at the t-th iteration, and b1 and b2
are two independent random vectors of size 1 × D, where D denotes the dimension of the
optimization problem.

(3) Foraging Behavior

After successful hatching, the little dung beetle needs to forage independently, with
the optimal foraging zone being:

Lbb = max
(

Xb × (1 − R), Lb
)

Ubb = min
(

Xb × (1 + R), Ub
) (15)

where Xb denotes the global best position, and Lbb and Ubb, respectively, denote the lower
and upper bounds of the optimal foraging zone, and other parameters are defined in (2).

The position update for the dung beetle is as follows:

xi(t + 1) = xi(t) + C1 ×
(

xi(t)− Lbb
)
+ C2 ×

(
xi(t)− Ubb

)
(16)

where xi(t) denotes the position information of the i-th little dung beetle at the t-th itera-
tion, C1 is a random number following a normal distribution, and C2 is a random vector
belonging to (0,1).

(4) Theft Behavior
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Thief dung beetles steal dung balls from other dung beetles. The position update
formula for the thief dung beetle is as follows:

xi(t + 1) = Xb + S × g ×
(
|xi(t)− X∗|+

∣∣∣xi(t)− Xb
∣∣∣) (17)

where xi(t) denotes the position information of the i-th thief dung beetle at the t-th iteration,
g is a random vector of size 1× D following a normal distribution, and S denotes a constant
value.

4.2. Improved DBO Algorithm

In the standard DBO algorithm, although the initial population is generated randomly,
it fails to ensure a high level of chaos, and in the later iterations the dung beetle population
tends to cluster near the currently obtained optimal position, and the algorithm then
expands the search, which easily leads to local optimal solutions. Therefore, improvements
will be made to overcome the above shortcomings.

(1) Chebyshev Chaos Initialization Population

In the initial stages of the algorithm, the quality of the initial population has an impor-
tant impact on the convergence speed of the algorithm. Enhancing the quality of the initial
population commonly involves employing chaotic mapping functions for initialization.
Among these, Chebyshev mapping stands out as a prominent representative due to its
good chaotic characteristics, promoting a more uniform distribution of the population
within the search space. Reference [32] tested and compared several common chaotic
mapping functions, demonstrating the superiority of Chebyshev chaotic mapping over
other mapping functions. Additionally, references [33,34] applied Chebyshev mapping to
improve other intelligent optimization algorithms, also achieving better results. Therefore,
this paper utilizes Chebyshev chaotic mapping to optimize the initial population of the
DBO algorithm, with its iteration process as follows:

xn+1 = cos(k arccosxn), xn ∈ [−1, 1] (18)

where k denotes the order, with a value of 4 chosen in this study to achieve better performance.

(2) Adaptive Gaussian–Cauchy Hybrid Mutation Disturbance Strategy

To enhance the diversity of the population and facilitate the algorithm escape local op-
tima, mutation disturbance operations are commonly applied to explore the solution space
more effectively. In intelligent optimization algorithms, Gaussian mutation and Cauchy
mutation are frequently utilized mutation operators, each possessing distinct characteristics.
Gaussian mutation exhibits good search capability within a small range [35] and offers a
relatively controllable mutation degree. Conversely, the Cauchy distribution, characterized
by a heavy-tailed distribution, yields larger mutations compared to the Gaussian distri-
bution, resulting in overly dispersed searches. Drawing insights from the literature [36],
this study adopts an adaptive Gaussian–Cauchy hybrid mutation disturbance strategy
that integrates the advantages of Cauchy mutation and Gaussian mutation to mutate the
optimal individuals. Fitness values before and after the disturbance are compared to select
the better solutions for the next iteration.

The specific formula is as follows:

Mb(t) = Xb(t) ∗ (1 + δ1 ∗ Gauss(σ) + δ2 ∗ Cauchy(σ)) (19)

where Xb(t) denotes the optimal position of the individual X at the t-th iteration, Mb(t)
denotes the position of Xb(t) disturbed by Gaussian–Cauchy hybrid mutation at the t-th
iteration, δ1 = t/Tmax, δ2 = 1 − t/Tmax, Gauss(σ) denotes the Gaussian mutation operator,
and Cauchy(σ) denotes the Cauchy mutation operator. The coefficients of the mutation
operators δ1 and δ2 are gradually adjusted in a one-dimensional linear manner to ensure
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smooth and balanced disturbance in each iteration. After many tests, a value of 1 is chosen
for the parameter σ to achieve better results in this study.

Following the application of this strategy to mutate the solutions, it is necessary to
reevaluate the fitness of the mutated solutions compared to the current optimal solution.
Therefore, a greedy rule is introduced to determine whether the optimal solution should be
updated.

Xb =

Mb(t), f
[

Mb(t)
]
< f

[
Xb(t)

]
Xb(t), f

[
Mb(t)

]
≥ f

[
Xb(t)

] (20)

The improved algorithm flowchart is shown in Figure 3, with the shaded zone denoting
the strategies added to the improved DBO algorithm.
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5. Case Applications
5.1. Case Overview

A certain cold chain logistics center primarily serves as a regional hub for transship-
ment and warehousing, undertaking the distribution task of cold chain products within the
region while also providing initial processing services for these products. Due to the rapid
growth in demand for cold chain products in recent years and the upgrading of consumer
structures, the center has faced challenges in promptly responding to changes in order
demands, resulting in redundant goods flow routes and reduced operational efficiency.
Therefore, the next step will focus on addressing the existing issues.

The center is about 460 m long and 280 m wide. According to the functional at-
tributes, there are 10 functional zones: the intelligent control center, refrigerated storage,
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fresh-keeping storage, ambient temperature storage, circulation packaging zone, multi-
temperature shared distribution zone, business office zone, comprehensive service zone,
central kitchen, and the exhibition trading zone. The current layout of the center is shown
in Figure 4.
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In Figure 4, the initial layout of each functional zone exhibits an upper and lower
symmetry, with goods flow paths and channels also being relatively symmetrical. However,
during practical operations, adhering to symmetrical paths and channels for transporting
goods between two functional zones may lead to redundant logistics routes, thereby
reducing the system’s operational efficiency. Therefore, considering the internal logistics
flow and transportation demands within the cold chain logistics center, an asymmetric
layout was employed in this case study to reduce the time and energy consumption during
transportation and storage processes. The information for each functional zone is provided
in Table 2.

Table 2. Information of functional zones.

Number Name Length × Width/(m) Storage Capacity/t

1 Intelligent control center 70 × 60 —
2 Refrigerated storage 100 × 100 2676
3 Fresh-keeping storage 140 × 100 3009
4 Ambient temperature storage 100 × 70 1455
5 Circulation packaging zone 70 × 80 1101

6 Multi-temperature shared
distribution zone 120 × 80 1926

7 Central kitchen 100 × 70 —
8 Business office zone 64 × 40 —
9 Comprehensive service zone 50 × 56 —
10 Exhibition trading zone 60 × 50 —

5.2. Optimization Solution
5.2.1. Parameter Determination

According to the research report on the average carbon emission factor of China’s
regional power grids in 2023, the average carbon emission factor for each province in China
is approximately Ec= 0.608 kg/kWh. The carbon emissions attributable to the functional
zones providing refrigeration services are shown in Table 3. In this case, electric forklifts
are used to facilitate the movement of goods between various functional zones, with
energy consumption rates of U∗= 0.876 kWh/km and U0= 0.732 kWh/km for full load
and empty load, respectively.
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Table 3. Power consumption and carbon emissions of functional zones.

Number Name
Average Daily

Electricity
Consumption/kWh

Carbon Emissions/kg

2 Refrigerated storage 2493 1515.744
3 Fresh-keeping storage 2946 1791.168
4 Ambient temperature storage 1389 844.512
5 Circulation packaging zone 978 594.624

6 Multi-temperature shared
distribution zone 1851 1125.408

The system layout planning method is used to analyze both the non-logistics and
logistics relationships. While ensuring the minimization of total logistics costs, it is essential
to consider the continuity and connectivity of workflow processes. Therefore, assigning
equal importance to both non-logistics and logistics relationships, with a weight ratio of
1:1, and quantifying the grades of logistics and non-logistics, obtains the comprehensive
mutual relationship value and its corresponding grades, as illustrated in Table 4.

Table 4. Comprehensive mutual relationship.

Logistics Flow Path Rij
Cumulative

Proportion/% Grade

7—6 7 14.89 A
3—6 7 29.78 A
3—7 7 44.67 E
5—6 6 57.44 E
2—6 5 68.08 E
3—5 4 76.59 I
4—6 3 82.97 I
2—7 2 87.23 I
4—7 2 91.49 O
1—6 2 95.75 O
4—5 1 97.88 O
1—8 1 100.00 O

5.2.2. Comparison of Results

The DBO and IDBO algorithms were applied to solve the problem, respectively, with
the number of iterations set to 300, and the initial population size of 30, in which the
number of ball-rolling dung beetles, reproducing dung beetles, foraging dung beetles,
and stealing dung beetles were 6, 6, 7, and 11, respectively. Since the algorithms yielded
different results each time, to avoid differences due to random factors, each algorithm was
simulated 30 times. The optimal solutions obtained from both algorithms were compared,
and the corresponding iteration curves are shown in Figure 5.

Figure 5 illustrates that the DBO algorithm reached the optimum at the 50th iteration,
after which it entered a stagnation phase. Conversely, the IDBO algorithm exhibited rela-
tively rapid convergence in the initial stages, indicating that the introduction of Chebyshev
mapping facilitated the generation of a diverse initial population. By the 120th iteration, its
fitness value has been better than the optimal fitness value of the DBO algorithm, indicat-
ing a significant improvement in the convergence speed. Although stagnation occurred
around the 180th iteration, it consistently escapes local optima after brief stagnations. More-
over, even after 300 iterations, there was still a possibility for improvement, indicating the
effectiveness of the adaptive Gaussian–Cauchy mixed mutation disturbance strategy in
enhancing the algorithm’s global exploration capability.
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The coordinates of the functional zones obtained by the two algorithms are shown in
Table 5. Comparing Figure 5 and Table 5, it can be seen how the algorithm progressively
optimizes the layout during iterations and ultimately reaches a stable state. The combina-
tion of the convergence of the iterative curve and the final position in the table verifies the
effectiveness of the algorithm.

Table 5. Position coordinate table.

Functional Zone
Solution DBO Optimization IDBO Optimization

1 (110, 151) (318, 35)
2 (111, 60) (333, 126)
3 (363, 55) (131, 55)
4 (399, 202) (55, 222)
5 (202, 131) (242, 45)
6 (227, 45) (171, 151)
7 (293, 146) (55, 146)
8 (37, 141) (391, 25)
9 (30, 33) (30, 33)

10 (379, 136) (419, 76)

Figure 6 depicts the optimal layouts derived from the two algorithms, with yellow
arrows representing the flow of goods between functional zones. The numbers indicate the
codes for each functional zone (detailed in Figure 4). The coordinates for each functional
zone are listed in Table 5. An analysis of Figure 6 reveals that the DBO layout exhibits
intersecting logistics routes, which are detrimental to efficient system operation. In contrast,
after the IDBO optimized layout, there were no detours or intersections, resulting in more
reasonable logistics flow paths between functional zones, thus ensuring continuity in
system operations.
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To further compare the optimization effects of each layout scheme and ensure the
generality of the simulation, the average values of the random simulation results are
presented in Table 6. By comparing Figure 6 and Table 6, the improvements in different
layout schemes during the optimization process can be observed. The intuitive display in
the figure, combined with the specific values in the table, provides a more comprehensive
evaluation of the optimization effects. Table 6 demonstrates that after optimization, the
DBO algorithm reduces the total logistics cost by 14.47% and the IDBO algorithm by 25.54%
compared to the original layout. The adjacency correlation increased by 14.96% and 29.93%,
respectively, while carbon emissions decreased by 3.54% and 6.75%, respectively. This
indicates that the IDBO algorithm can further reduce total logistics costs, enhance adjacency
correlation, and decrease carbon emissions based on the DBO algorithm.

Table 6. Comparison of layout optimization effects.

Layout Plan Total Logistics
Cost/Yuan

Adjacent
Correlation

Carbon
Emissions/kg

Original layout 189,021.79 27.4 6312.96
DBO optimized layout 161,669.75 31.5 6089.17
IDBO optimized layout 140,740.09 35.6 5886.57

6. Discussion and Conclusions

The optimization of the cold chain logistics center layout is crucial, as it directly affects
the operational efficiency, environmental, and economic benefits of the entire cold chain
logistics system. It also significantly influences supply chain stability, food safety, and
national and regional public health. However, existing studies have paid little attention to
the optimization of cold chain logistics center layouts, and the optimization of the layout
of cold chain logistics centers considering carbon emission factors, especially, is scarce. A
reasonable cold chain logistics center layout can not only effectively reduce logistics costs
but also improve operational efficiency and profitability for businesses [37]. For example,
some studies have shown that optimizing the logistics network layout can reduce overall
operating costs and improve the service level of cold chain logistics [38]. Additionally,
layout optimization can enhance inventory management and distribution efficiency, thereby
increasing customer satisfaction [39]. Therefore, studying the optimization of cold chain
logistics center layouts, particularly in terms of environmental sustainability, is crucial for
promoting green development in the logistics industry and achieving economic benefits for
enterprises [40].

Many studies in the existing literature have explored the optimization of logistics
center layouts. Compared with the existing studies, this study has the following innovations
and advantages:

First, in terms of model establishment, attention is paid to the particularity of cold chain
logistics centers. Previous studies have primarily focused on optimizing costs and efficiency,
with less attention to environmental influence. By incorporating carbon emission factors, this
study not only optimizes the layout of cold chain logistics centers but also reduces carbon
emissions, providing a new approach to achieving a low-carbon economy. This is consistent
with the current global trends of environmental protection and sustainable development.

Secondly, in terms of algorithm solving, although existing research has employed
genetic algorithms and particle swarm optimization algorithms to solve logistics layout
problems, these algorithms have certain limitations in convergence speed and solution
accuracy. The improved dung beetle algorithm enhances the quality of the initial population
by introducing Chebyshev chaotic mapping in the early stages, and introduces the adaptive
Gaussian–Cauchy hybrid mutation disturbance strategy in the later iteration to prevent the
population from falling into local optima and enhance the algorithm’s global exploration
capability. This approach can better solve the layout model, demonstrating the algorithm’s
potential application in optimization problems.
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Moreover, the existing literature generally believes that reasonable layout optimization
can enhance the overall efficiency of logistics system [41,42], and this study further confirms
this point. Meanwhile, consistent with many multi-objective optimization studies, this
study adopts a method that comprehensively considers multiple factors and emphasizes
the importance of balancing different objectives in the optimization process [43].

However, this study also has some limitations. Firstly, the model simplifies certain
real-world issues, such as neglecting complex factors like weather conditions and personnel
movements, which may influence the results. Secondly, although the improved dung beetle
algorithm has enhanced solving efficiency, its adaptability and stability in various applica-
tion scenarios need to be further validated, especially in handling problems of different
scales and complexities. Lastly, the practical operability and implementation effects of
the research results also require validation to further assess the practical effectiveness of
deploying optimization models and algorithms in real-world environments.

In the future, the research could further expand to comprehensively consider more
environmental factors and societal benefits, for example: 1⃝ The real-time optimization
of cold chain logistics center layout in dynamic environments, like demand changes and
traffic conditions; 2⃝ Incorporating more environmental factors into optimization models,
such as energy consumption, water resource utilization, and waste management; 3⃝ A
comprehensive consideration of the contribution of the cold chain logistics center layout to
local economic development, employment opportunities, and social welfare benefits, etc.

Overall, this study provides new methods and perspectives for optimizing the layout
of cold chain logistics centers, demonstrating both theoretical significance and practical
application value.
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