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Abstract: Minimum norm problems consist of finding the distance of a closed subset of a normed
space to the origin. Usually, the given closed subset is also asked to be convex, thus resulting in a
convex minimum norm problem. There are plenty of techniques and algorithms to compute the
distance of a closed convex set to the origin, which mostly exist in the Hilbert space setting. In
this manuscript, we consider nonconvex minimum norm problems that arise from Bioengineering
and reformulate them in such a way that the solution to their reformulation is already known. In
particular, we tackle the problem of min ∥x∥ subject to ∥Rk(x)∥ ≥ ak for k = 1, . . . , l, where x ∈ X
and Rk : X → Y are continuous linear operators between real normed spaces X, Y, and ak > 0 for
k = 1, . . . , l. Notice that the region of constraints of the previous problem is neither convex nor
balanced. However, it is additively symmetric, which is also the case for the objective function,
due to the properties satisfied by norms, which makes possible the analytic resolution of such a
nonconvex minimization. The recent literature shows that the design of optimal coils for electronics
applications can be achieved by solving problems like this. However, in this work, we apply our
analytical solutions to design an optimal coil for an electromagnetic sensor.

Keywords: multioptimization; pareto optimality; normed spaces; matrix norms; ordered lattices

MSC: 47L05; 47L90; 49J30; 90B50

1. Introduction

Optimization problems consisting of minimizing the norm of a vector over a certain
closed subset of a real normed space are classical problems in Optimization Theory, with
plenty of applications found in Physics, Statistics, Electronics, Mechanics, etc. These
problems can be approached either geometrically [1,2] or analytically [3,4]. The applications
of these minimization problems include the optimal design of Transcranial Magnetic
Stimulation (TMS) coils and Magnetic Resonance Imaging (MRI) coils [5–8], as well as
the improvement of classical Statistical tools such as Principal Components [9]. The
geometric study of minimum norm problems probably started with the metric notion of
proximinality [10,11]. This notion, in the context of real normed spaces, led to remarkable
results such as the famous James characterization of reflexivity in terms of norm-attaining
functionals [12]. A few years later, James [13] found the existence of a noncomplete normed
space in which every functional is norm-attaining (bear in mind that the fact for a functional
to be norm-attaining is equivalent to that of the corresponding unit hyperplane to have a
minimum norm element). Later on, Blatter [2] proved that every normed space in which
each closed convex subset has a minimum norm element must be complete. This result
was later improved in [1] (Theorem 2.1). Other interesting results related to proximinality
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and minimum norm elements can be found in [14–18]. The purpose of this manuscript is to
approach the solution of the following minimization problem:

min ∥x∥
∥Rk(x)∥ ≥ ak k = 1, . . . , l
x ∈ X

(1)

where Rk : X → Y are continuous linear operators between real normed spaces X, Y, and
ak > 0 for k = 1, . . . , l. This problem appears quite often when modeling TMS coils [3,19,20],
but it has never been solved in an analytic way. By relying on the modern techniques
of Functional Analysis, Operator Theory, and the Geometry of Banach Spaces, we will
reformulate (1) to reduce it to a single-objective optimization problem for which there exists
plenty of library material to solve it both analytically and computationally [21,22]. Observe
that the region of constraints of (1) is neither convex nor balanced (except for the trivial
case where all Rks are null operators). However, the region of constraints of (1) is additively
symmetric, as well as for the objective function, due to the properties satisfied by norms,
which makes possible the analytic reformulation (and hence resolution) of (1).

2. Materials and Methods

We deal with optimization problems in the context of Operator Theory and Func-
tional Analysis. When these optimization problems carry more than one objective function,
then two sets of solutions are considered: optimal solutions (feasible solutions that max-
imize/minimize all objective functions at once) and Pareto optimal solutions (feasible
solutions with the property that if they are improved by another feasible solution in a
certain objective function, then they improve that feasible solution in a different objective
function). The set of optimal solutions and Pareto optimal solutions of an optimization
problem are denoted by sol and Par, respectively. Refer to [23] for a wider perspective
on Pareto optimal solutions. Special attention is paid to optimization problems involving
continuous linear operators between real normed spaces, such as

max ∥Ti(x)∥ i = 1, . . . , m
min ∥Sj(x)∥ j = 1, . . . , n
x ∈ R

(2)

where Ti, Sj : X → Y are continuous linear operators between real normed spaces X, Y, and
R is a closed subset of X that is called the set of restrictions/constrains or the set of feasible
solutions (all normed spaces considered throughout this manuscript are over the reals).
For (2), the set of Pareto optimal solutions is interesting, since its set of optimal solutions
is generally void, as shown in [21] (Theorem 2). Recall that a subset A of a real vector
space X is called homogeneous provided that RA ⊆ A, strictly homogeneous provided
that (R \ {0})A ⊆ A, and positively homogeneous when R+A ⊆ A. It is a straightforward
observation that, if R is strictly or positively homogeneous, then so is Par(2). On the other
hand, notice that if ker(S1) ∩ · · · ∩ ker(Sm) ∩R = {0}, then 0 ∈ Par(2).

One important consideration is the fact that “subspace” refers to a subobject in a
certain category, thus meaning that if we are working with the category of normed spaces,
then “subspace” refers simply to a linear subspace, whereas if we are working with the
category of Banach spaces, then “subspace” refers to a closed linear subspace.

3. Results

We begin this section by proving that (2) can be reformulated to a problem of the fol-
lowing form: 

max ∥T(x)∥
min ∥S(x)∥
x ∈ R

(3)
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Theorem 1. Let X, Y be normed spaces, Ti, Sj : X → Y be continuous linear operators, i = 1, . . . , m,
j = 1, . . . , n, and R be a closed subset of X. Consider the continuous linear operators

T : X → ℓm
2 (Y) := Y⊕2

m· · · ⊕2Y
x 7→ T(x) := (T1(x), . . . , Tm(x))

and
S : X → ℓn

2 (Y) := Y⊕2
n· · · ⊕2Y

x 7→ S(x) := (S1(x), . . . , Sn(x))

Then,

1. Par(3) ⊆ Par(2).
2. If sol(2) ̸= ∅, then sol(2) = sol(3).

Proof. The proof is itemized according to the statement of the theorem:

1. Fix an arbitrary x ∈ Par(3). Suppose to the contrary that x /∈ Par(2). Then, there exists
y ∈ R satisfying at least one of the following two conditions:

• There exists i0 ∈ {1, . . . , m} with ∥Ti0(y)∥ > ∥Ti0(x)∥, ∥Ti(y)∥ ≥ ∥Ti(x)∥ for all
i ∈ {1, . . . , m} \ {i0} and ∥Sj(y)∥ ≤ ∥Sj(x)∥ for all j ∈ {1, . . . , n}.

• There exists j0 ∈ {1, . . . , n} with ∥Sj0(y)∥ < ∥Sj0(x)∥, ∥Sj(y)∥ ≤ ∥Sj(x)∥ for all
j ∈ {1, . . . , n} \ {j0} and ∥Ti(y)∥ ≥ ∥Ti(x)∥ for all i ∈ {1, . . . , m}.

We may assume, without any loss of generality, that the first condition holds.
Notice that

∥T(x)∥2 =
√
∥T1(x)∥2 + · · ·+ ∥Tm(x)∥2 <

√
∥T1(y)∥2 + · · ·+ ∥Tm(y)∥2 = ∥T(y)∥2,

and

∥S(x)∥2 =
√
∥S1(y)∥2 + · · ·+ ∥Sn(y)∥2 ≤

√
∥S1(x)∥2 + · · ·+ ∥Sn(x)∥2 = ∥S(y)∥2.

This contradicts the fact that x ∈ Par(3).
2. Since sol(2) ̸= ∅, we have that Par(2) = sol(2). Notice that sol(3) ⊆ Par(3) ⊆ Par(2) =

sol(2). It only remains to show that sol(2) ⊆ sol(3). Indeed, take any x ∈ sol(2). Let
y ∈ R. Then, ∥Ti(x)∥ ≥ ∥Ti(y)∥ for all i = 1, . . . , m and ∥Sj(x)∥ ≤ ∥Sj(y)∥ for all
j = 1, . . . , n. Therefore,

∥T(x)∥2 =
√
∥T1(x)∥2 + · · ·+ ∥Tm(x)∥2 ≥

√
∥T1(y)∥2 + · · ·+ ∥Tm(y)∥2 = ∥T(y)∥2,

and

∥S(x)∥2 =
√
∥S1(y)∥2 + · · ·+ ∥Sn(y)∥2 ≤

√
∥S1(x)∥2 + · · ·+ ∥Sn(x)∥2 = ∥S(y)∥2.

As a consequence, the arbitrariness of y shows that x ∈ sol(3).

Thanks to Theorem 1, we can restrict the multioptimization (2) to maxmin problems
of the form of (3). Our next result shows that (3) can be solved via the following (single-
objective) optimization problem: 

max ∥T(x)∥
∥S(x)∥ ≤ 1
x ∈ R

(4)

Theorem 2. Let X, Y be normed spaces, T, S : X → Y be continuous linear operators, and R be a
positively homogeneous closed subset of X. Then, we have the following:
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1. Par(3) \ ker(S) ⊆ (R+ \ {0})sol(4).
2. If (ker(S) ∩R) \ ker(T) ̸= ∅, then Par(3) = sol(4) = ∅.
3. If ker(S) ∩R ⊆ ker(T), then ker(S) ∩R ⊆ Par(3).
4. If ker(S)∩R ⊆ ker(T) and R\ ker(T) ̸= ∅, then sol(4) ⊆ Par(3)∩ {x ∈ X : ∥S(x)∥ = 1}.

Proof. The proof is itemized according to the statement of the theorem:

1. Fix an arbitrary x0 ∈ Par(3) \ ker(S). Then, S(x0) ̸= 0. In this case, we can write
x0 = ∥S(x0)∥ x0

∥S(x0)∥
. If we prove that y0 := x0

∥S(x0)∥
∈ sol(4), then we obtain that

x0 = ∥S(x0)∥y0 ∈ R+sol(4). Indeed, let us observe first that ∥S(y0)∥ = 1 and
y0 = 1

∥S(x0)∥
x0 ∈ R, since x0 ∈ R and R are positively homogeneous. As a

consequence, y0 is a feasible solution of (4). Suppose on the contrary that y0 is not
an optimal solution of (4); in other words, y0 /∈ sol(4). Then, there exists z ∈ R such
that ∥S(z)∥ ≤ 1 and ∥T(z)∥ > ∥T(y0)∥. Then, we obtain that∥∥∥∥T

(
x0

∥S(x0)∥

)∥∥∥∥ < ∥T(z)∥,

thus meaning that ∥T(x0)∥ < ∥T(∥S(x0)∥z)∥. Note that ∥S(x0)∥z ∈ R. Since x0 ∈
Par(3) by hypothesis, we reach the contradiction that ∥S(x0)∥ < ∥S(∥S(x0)∥z)∥ =
∥S(x0)∥∥S(z)∥ ≤ ∥S(x0)∥.

2. Fix z ∈ (ker(S) ∩R) \ ker(T). If there exists x ∈ sol(4), then we can find an n ∈ N
sufficiently large so that n∥T(z)∥ > ∥T(x)∥. However, ∥S(nz)∥ = n∥S(z)∥ = 0 ≤ 1
and nz ∈ R, which implies the contradiction that n∥T(z)∥ = ∥T(nz)∥ ≤ ∥T(x)∥ <
n∥T(z)∥. As a consequence, sol(4) = ∅. Suppose next that there exists y ∈ Par(3).
We can find a m ∈ N sufficiently large so that m∥T(z)∥ > ∥T(y)∥. Then, ∥T(mz)∥ =
m∥T(z)∥ > ∥T(y)∥ and mz ∈ R, which implies the contradiction that ∥S(y)∥ <
∥S(mz)∥ = m∥S(z)∥ = 0. As a consequence, Par(3) = ∅.

3. Fix an arbitrary x ∈ ker(S) ∩ R. If x /∈ Par(3), then there exists y ∈ R such that
∥T(y)∥ > ∥T(x)∥ and ∥S(y)∥ ≤ ∥S(x)∥ = 0, thus concluding that y ∈ ker(S) ∩R ⊆
ker(T) and reaching the contradiction that ∥T(x)∥ < ∥T(y)∥ = 0.

4. Fix an arbitrary y0 ∈ sol(4). We will prove first that ∥S(y0)∥ = 1. So, suppose on the
contrary that ∥S(y0)∥ < 1. We distinguish between two cases:

• S(y0) = 0. In this case, T(y0) = 0, so it only suffices to take any z ∈ R \ ker(T)

to reach the contradiction that
∥∥∥S

(
z

∥S(z)∥

)∥∥∥ = 1, z
∥S(z)∥ ∈ R, and∥∥∥∥T

(
z

∥S(z)∥

)∥∥∥∥ =
∥T(z)∥
∥S(z)∥ > 0 = ∥T(y0)∥

(note that S(z) ̸= 0, because z ∈ R \ ker(T), and ker(S) ∩R ⊆ ker(T)).
• S(y0) ̸= 0. In this case, it only suffices to observe that

∥∥∥S
(

y0
∥S(y0)∥

)∥∥∥ = 1 and
y0

∥S(y0)∥
∈ R, but ∥∥∥∥T

(
y0

∥S(y0)∥

)∥∥∥∥ =
∥T(y0)∥
∥S(y0)∥

> ∥T(y0)∥,

thus reaching a contradiction with the fact that y0 ∈ sol(4).

As a consequence, ∥S(y0)∥ = 1. Next, suppose to the contrary that y0 /∈ Par(3). Then,
there exists z ∈ R satisfying at least one of the following two conditions:

• ∥T(z)∥ > ∥T(y0)∥ and ∥S(z)∥ ≤ ∥S(y0)∥. In this case, ∥S(z)∥ ≤ ∥S(y0)∥ ≤ 1
and ∥T(z)∥ > ∥T(y0)∥, which directly contradicts that y0 ∈ sol(4).

• ∥S(z)∥ < ∥S(y0)∥ and ∥T(z)∥ ≥ ∥T(y0)∥. In this case, ∥S(z)∥ < ∥S(y0)∥ = 1
and ∥T(z)∥ ≥ ∥T(y0)∥, thus, since y0 ∈ sol(4), it must occur that ∥T(z)∥ =
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∥T(y0)∥, hence z ∈ sol(4), which means that ∥S(z)∥ = 1, and this contradicts
that ∥S(z)∥ < ∥S(y0)∥ = 1.

The single-objective optimization (4) can in fact be reformulated into another single-
objective optimization whose set of constraints is definitely not convex:

min ∥S(x)∥
∥T(x)∥ ≥ 1
x ∈ R

(5)

Notice that the set of restrictions of (5) is most likely nonconvex even if R is also convex.

Lemma 1. Let X, Y be normed spaces, T, S : X → Y be continuous linear operators, and R be
a positively homogeneous closed subset of X. If ker(S) ∩R ⊆ ker(T), then sol(5) ⊆ {x ∈ X :
∥T(x)∥ = 1}.

Proof. Fix an arbitrary y0 ∈ sol(5). Notice that S(y0) ̸= 0, since otherwise, we have that
y0 ∈ ker(S) ∩R ⊆ ker(T), thus contradicting that ∥T(y0)∥ ≥ 1. If ∥T(y0)∥ > 1, then it
only suffices to observe that

∥∥∥T
(

y0
∥T(y0)∥

)∥∥∥ = 1, and y0
∥T(y0)∥

∈ R, but∥∥∥∥S
(

y0

∥T(y0)∥

)∥∥∥∥ =
∥S(y0)∥
∥T(y0)∥

< ∥S(y0)∥

thus reaching a contradiction with the fact that y0 ∈ sol(5).

Theorem 3. Let X, Y be normed spaces, T, S : X → Y be continuous linear operators, and R be a
positively homogeneous closed subset of X. If ker(S) ∩R ⊆ ker(T) and R \ ker(T) ̸= ∅; then,
(R+ \ {0})sol(4) = (R+ \ {0})sol(5).

Proof. Fix an arbitrary x0 ∈ sol(4). We will prove that x0
∥T(x0)∥

∈ sol(5). So first, let us show
that T(x0) ̸= 0. Indeed, if T(x0) = 0, then by taking any z ∈ R \ ker(T), we reach the
contradiction that

∥∥∥S
(

z
∥S(z)∥

)∥∥∥ = 1, z
∥S(z)∥ ∈ R, and thus∥∥∥∥T

(
z

∥S(z)∥

)∥∥∥∥ =
∥T(z)∥
∥S(z)∥ > 0 = ∥T(x0)∥

Therefore, T(x0) ̸= 0. Next, according to Theorem 2(4), ∥S(x0)∥ = 1. Suppose that
x0

∥T(x0)∥
/∈ sol(5). There exists y ∈ R with ∥T(y)∥ ≥ 1 such that

∥S(y)∥ <

∥∥∥∥S
(

x0

∥T(x0)∥

)∥∥∥∥
Next, ∥S(∥T(x0)∥y)∥ < ∥S(x0)∥ = 1, ∥T(x0)∥y ∈ R, and

∥T(∥T(x0)∥y)∥ = ∥T(x0)∥∥T(y)∥ ≥ ∥T(x0)∥

Since x0 ∈ sol(4), we conclude that ∥T(y)∥ = 1, and ∥T(x0)∥y ∈ sol(4). In accor-
dance with Theorem 2(4), ∥S(∥T(x0)∥y)∥ = 1, thus contradicting the above assertion
that ∥S(∥T(x0)∥y)∥ < ∥S(x0)∥ = 1. This proves that sol(4) ⊆ (R+ \ {0})sol(5). Con-
versely, fix an arbitrary y0 ∈ sol(5). We prove that y0

∥S(y0)∥
∈ sol(4). So first, let us show

that S(y0) ̸= 0. Indeed, if S(y0) = 0, then y0 ∈ ker(S) ∩R ⊆ ker(T), which contradicts
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that ∥T(y0)∥ = 1 in view of Lemma 1. Thus, S(y0) ̸= 0. Suppose on the contrary that
y0

∥S(y0)∥
/∈ sol(4). There exists x ∈ R with ∥S(x)∥ ≤ 1 such that

∥T(x)∥ >

∥∥∥∥T
(

y0

∥S(y0)∥

)∥∥∥∥
Next, ∥T(∥S(y0)∥x)∥ > ∥T(y0)∥ = 1, ∥S(y0)∥x ∈ R, and

∥S(∥S(y0)∥x)∥ = ∥S(y0)∥∥S(x)∥ ≤ ∥S(y0)∥

Since y0 ∈ sol(5), we conclude that ∥S(x)∥ = 1 and ∥S(y0)∥x ∈ sol(5). In accordance with
Lemma 1, ∥T(∥S(y0)∥x)∥ = 1, thus contradicting the above assertion that ∥T(∥S(y0)∥x)∥ >
∥T(y0)∥ = 1. This proves that sol(5) ⊆ (R+ \ {0})sol(4).

At this stage, let us go back to (1). The region of constraints of (1) is

R := {x ∈ X : ∥Rk(x)∥ ≥ ak ∀k = 1, . . . , l},

which is most likely nonconvex. Special attention is paid to the subsets of R given by R0 :=
{x ∈ R : ∥Rk(x)∥ = ak ∀k = 1, . . . , l} and R1 := {x ∈ R : ∃k ∈ {1, . . . l} ∥Rk(x)∥ = ak}.
Our next results are aimed at relating (1) with the multioptimization

max ∥Rk(x)∥ k = 1, . . . , l
min ∥x∥
x ∈ X

(6)

This approach follows the ideas of the previous theorems, but it is more straightforward.

Theorem 4. Let X, Y be normed spaces, Rk : X → Y be continuous linear operators, lwt
k = 1, . . . , l, and lwt ak > 0 for k = 1, . . . , l. Then,

1. sol(1) ⊆ R1.
2. If sol(1) ⊆ R0, then sol(1) = Par(6) ∩R0.

Proof. The proof is itemized according to the statement of the theorem:

1. Suppose to the contrary that there exists x0 ∈ sol(1) \ R1. Then, 0 < ak
∥Rk(x0)∥

< 1 for
all k ∈ {1, . . . , l}, so we can take

0 < ε := max
{

ak
∥Rk(x0)∥

: k ∈ {1, . . . , l}
}

< 1.

Observe that
ε ≥ ak

∥Rk(x0)∥
for all k ∈ {1, . . . , l}. In particular,

∥Rk(x0)∥
ak

≥ 1
ε

(7)

for all k ∈ {1, . . . , l}. Notice also that 0 < ε < 1, so ∥εx0∥ = ε∥x0∥ < ∥x0∥. If we prove
that εx0 ∈ R, then we will reach a contradiction with the fact that x0 ∈ sol(1). Indeed,
fix an arbitrary k ∈ {1, . . . , l}. By relying on (7),

∥Rk(εx0)∥ = ε∥Rk(x0)∥ = εak
∥Rk(x0)∥

ak
≥ εak

1
ε
= ak

As a consequence, εx0 ∈ R, and we have obtained the desired contradiction. This
contradiction forces that x0 ∈ R1. Finally, the arbitrariness of x0 implies that sol(1) ⊆ R1.
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2. We prove first that sol(1) ⊆ Par(6) ∩ R0. By hypothesis, sol(1) ⊆ R0, so it only
remains to show that sol(1) ⊆ Par(6). Suppose to the contrary that there exists
x0 ∈ sol(1) \ Par(6). There exists y ∈ X satisfying one of the following two conditions:

•
∥∥Rk0(y)

∥∥ > ∥Rk0(x0)∥ for some k0 ∈ {1, . . . , l}, ∥Rk(y)∥ ≥ ∥Rk(x0)∥ for all
k ∈ {1, . . . , l} \ {k0}, and ∥y∥ ≤ ∥x0∥. Notice that y ∈ R. Since x0 ∈ sol(1), we
conclude that ∥x0∥ ≤ ∥y∥. Thus, ∥x0∥ = ∥y∥, thus meaning that y ∈ sol(1). By
hypothesis, sol(1) ⊆ R0; hence, y ∈ R0, so ∥Rk(y)∥ = ak for all k = 1, . . . , l. This
contradicts the fact that

∥∥Rk0(y)
∥∥ > ∥Rk0(x0)∥ = ak0 .

• ∥y∥ < ∥x0∥ and ∥Rk(y)∥ ≥ ∥Rk(x0)∥ for all k = 1, . . . , l. In this situation,
y ∈ R. Since x0 ∈ sol(1), we conclude that ∥x0∥ ≤ ∥y∥, which contradicts that
∥y∥ < ∥x0∥.

In both cases, we have obtained a contradiction. As a consequence, x0 ∈ Par(6).
Conversely, let us prove now that sol(1) ⊇ Par(6) ∩R0. Suppose again to the contrary
that there exists x0 ∈ (Par(6) ∩R0) \ sol(1). Since x0 ∈ R0 ⊆ R, there exists y ∈ R,
with ∥y∥ < ∥x0∥. However, x0 ∈ Par(6), which means that there exists k1 ∈ {1, . . . , l}
such that

∥∥Rk1(x0)
∥∥ >

∥∥Rk1(y)
∥∥. Then, we obtain the following contradiction: ak1 =∥∥Rk1(x0)

∥∥ >
∥∥Rk1(y)

∥∥ ≥ ak1 . As a consequence, x0 ∈ sol(1).

From Theorem 4, an immediate corollary can be inferred in (1), where it is assumed
that k = 1. In this situation, R0 = R1.

Corollary 1. Let X, Y be normed spaces, R : X → Y be a continuous linear operator, and let a > 0.
Then, sol(1) = Par(6) ∩R0.

4. Discussion

Slight modifications to the proofs of Theorems 2 and 3 allow for reformulations
of (4) and (5) into single-objective optimization problems of the forms

max ∥T(x)∥
∥S(x)∥

∥S(x)∥ ̸= 0
x ∈ R

(8)

and 
min ∥S(x)∥

∥T(x)∥
∥T(x)∥ ̸= 0
x ∈ R

(9)

which may be approached using certain software based upon Heuristic algorithms (al-
though we do not recommend the use of any Heuristic method unsupported by theoretical
or mathematical proofs). With respect to (1), in virtue of Theorem 4, (1) can be studied
through (6). Since (6) has the form of (2), it can be reformulated and solved by means of
Theorems 1–3. As a consequence, the reformulation scheme is the following:

max ∥Ti(x)∥ i = 1, . . . , m
min ∥Sj(x)∥ j = 1, . . . , n
x ∈ R

→


max ∥T(x)∥
min ∥S(x)∥
x ∈ R

→


max ∥T(x)∥
∥S(x)∥ ≤ 1
x ∈ R

↔


min ∥S(x)∥
∥T(x)∥ ≥ 1
x ∈ R

Observe that the set of restrictions of (5) is R∩ {x ∈ X : ∥T(x)∥ ≥ 1}, which is closed but
not convex in general. If this nonconvexity issue wants to be overcome, then simply restrict
to (4), whose set of constraints is R∩ {x ∈ X : ∥S(x)∥ ≤ 1}, which is convex provided that
R is also convex.
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5. Conclusions

According to Theorems 1–3, a Pareto optimal solution of (2) can be found if an optimal
solution of (4) or (5) is computed. In [21], a solution of (4) is found under not so restrictive
conditions in terms of the left inverses of continuous linear operators.
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Appendix A. Application to Optimal Coil Design for Electronics Sensors

A direct application of Corollary 1 is used to optimally design a coil to characterize
a magnetic measurement system. The following nonconvex minimization induces an
optimal coil: {

min ψT Lψ∥∥Byψ
∥∥

2 = 1
(A1)

We will turn (A1) into a problem of the form (1) for k = 1. Cholesky decomposition applies
to L as L = CTC, thus obtaining ψT Lψ = (Cψ)T(Cψ) = ∥Cψ∥2

2; hence, (A1) turns into{
min ∥Cψ∥2∥∥Byψ

∥∥
2 = 1

(A2)

Since C is an invertible square matrix, (A2) is reformulated as{
min∥χ∥2∥∥(ByC−1)χ

∥∥
2 = 1

(A3)

Notice that (A3) is already of the form (1) for k = 1. According to Corollary 1, sol(A3) =
Par(A4) ∩R0, where {

max
∥∥(ByC−1)χ

∥∥
2

min ∥χ∥2
(A4)

and R0 :=
{

χ ∈ RN :
∥∥(ByC−1)χ

∥∥
2 = 1

}
. Following the Discussion Section, the multiop-

timization (A4) can be solved via [21]. The resulting coils are displayed in Figure A1a–c.
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Figure A1. (a) Conducting surface and Region of Interest (ROI) where the sensor is placed; (b) coil
wires obtained from the solution of the optimization problem; (c) y component of the magnetic field
in a z = 0 plane. Dotted white lines indicate the location of the sensor.
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