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Abstract

:

In this work, the vibration analysis of a layered, cylinder-shaped shell is undertaken. The structure of the shell layers is composed of functionally graded and isotropic materials. The vibrations of four-layered cylindrical shells with a ring support along the axial direction are investigated in this research. The two internal layers are composed of isotropic materials, and the external two layers are composed of functionally graded materials. The outer functionally graded material layers considered are stainless steel, zirconia, and nickel. The inner two isotropic layers considered are aluminum and stainless steel. The shell frequency equation is acquired by employing the Rayleigh–Ritz method under the shell theory of Sanders. The trigonometric volume fraction law is used to sort the functionally graded material composition of the FGM layers. The natural frequencies are attained under two boundary conditions, namely simply supported–simply supported and clamped–clamped.
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1. Introduction


In the analysis of structures, a cylindrical shell is a major feature. Various mechanical facets of these shell structures are analyzed in addition to their potential implementation, one of which is shell vibration. In areas of technology such as liquid gases at high pressure, nuclear power stations, networks of pipes, and other marine and aircraft systems, the examination of such shells plays a crucial role. The biography for the past scientific work has been developed based on Love’s theory. Utilizing Sanders’ shell theory and the Ritz composition, many researchers [1,2,3,4,5,6,7,8] have analyzed the frequency of dimensionally stable cylindrical shells under ring support over many end situations. Zang et al. [9] described the study of a hypothesis in which, contrary to Love’s results, all strains disappear from any rigid body. It offered formulations for the stress effects and couples that satisfy the homogeneous equilibrium conditions based on three stress frictions. The effect of the boundary conditions on the free vibrations for a multilayered cylindrical shell was investigated using the concept based on Love’s first theorem and the beam functions utilized for the Ritz as inertial structural features. There were nine boundary conditions taken into account, four of which had the same finishing criterion as their starting criterion. The other five conditions had different end requirements. Zang et al. [10] created heat-resistant structures for space plane fusion reactors and airframes. Zhi et al. [11] compared the frequency parameters with a precise three-dimensional linear elasticity analysis to test the analysis. The vibrational analysis of the functionally graded materials (FGMs) also discussed the behavior of natural frequencies.



Iqbal et al. [12] discussed the vibrational analysis of cylindrical shells and natural frequencies (NFs) under different boundary conditions and investigated new precise programs for the motions of the circular cylindrical shell with intermediate ring support based on the Goldenviezer–Novozhilov shell principle. The analytical method investigated the vibrational behavior of the ring support cylinder, while the state-space technique was used to operate the homogeneous comparative methodology for the shell component, and the domain decomposition technique was investigated for the continuity criteria among shell parts in the sense of the previously described method. Iqbal et al. [13] suggested 3D anisotropic elasticity fundamental equations, from which time visibility with differential equations is constructed in a coherent matrix form, and examined numerous techniques such as power law, sigmoid, and exponential FGMs, and we will focus on the numerical solution that was predominantly derived from the theoretical formulation and calculated using the MARC system. With reference to the effects of the application of P-FGM to S-FGM and E-FGM, Li et al. [14] introduced four sets of in-plane boundary conditions for the strictly assisted FG cylindrical shell for which the free vibration analysis was conducted. Sofiyev et al. [15] investigated physical properties that were thought to be temperature-dependent and eventually modified in the stress distribution of the shell. The results of the temperature increase were studied by specifying an approximate elevated temperature on the cylinder’s outer surface and the average temperature on the cylinder’s inner surface. The properties were temperature-dependent and gradually changed as the intensity of the shell increased.



By evaluating the elevated temperature, Arshad et al. [16] also mentioned the rising temperature effect. The entire study examined the strength of cylindrical shells supported on Winkler–Pasternak frameworks and made of ceramic, FGM, and metal layers that were exposed to an axial load. The revised stability and durability equations of the Donnell form on the Pasternak base were gathered. Galerkin’s process analysis values were obtained for the critical axial load of three-layered cylindrical shells with and without an elastic foundation. Extensive parametric experiments were performed to investigate the effects of FGM sheet thickness differences on the radius-to-thickness ratio. Naeem et al. [17] studied the vibration properties of two-layered cylindrical shells made of isotropic material on a single layer and functionally graded material on another. A bi-layered cylindrical shell’s vibration frequency analysis consisting of two distinct functionally graded layers is proposed by Arshad et al. [18]. The thicknesses of the shell’s layers are considered to be constant and equivalent. It is anticipated that the components of the material of the bi-layered dynamically graded cylindrical shell will differ seamlessly.



Ghamkhar et al. [19] investigated the vibration analysis of a three-layered cylindrical shell, with the anterior and posterior layers made of mechanically graded materials and the buffer part made of isotropic material. Love’s thin shell theorem was applied to the relationships of strain vs. displacement and curvature vs. displacement. To manipulate the intensity formulas, the Rayleigh–Ritz method (RRM) was used to grow the computational Lagrangian to be expressed as an eigenvalue query. The frequency wavelengths for long, simple-assisted end states were calculated by altering the thickness-to-radius and length-to-radius ratios; two non-dimensional geometrical parameters; and small, dense, and thin CSs. Ghamkhar et al. [20] examined a three-layered FGM cylindrical shell’s vibration frequency with an FGM central layer and homogeneous material as the interior and posterior layers. The relationships between the strain and the stress were drawn from the shell theory of Sanders. By utilizing the RRM, the shell frequency result was derived. The effect of natural frequencies (NFs) was evaluated for different middle-layer thicknesses. The beam functions of the features were used to approximate the axial modal dependency. The fundamental natural frequency of a cylindrical shell against the time span and thickness-to-radius percentage in a broad range was reported and investigated through this research.



Liu et al. [21] focused on determining the axial buckling load of stiffened multilayer cylindrical shell panels made of functionally graded graphene-reinforced composites (FG-GPL RCs). They used rings and stringers as stiffening tools. The study utilized Halpin–Tsai relations for elastic properties and implemented the virtual work principle and finite element approach based on the first-order shear deformation theory and Lekhnitskii’s smeared stiffener approach to derive stability equations. It examined four nanofiller dispersion types (FG-X, FG-A, FG-O, and UD) and systematically investigated the effects of geometric and material parameters on buckling loads and mode shapes, providing valuable design insights. The present research investigates the vibrations of four-layered cylindrical shells with ring support along the axial direction. The shell layers consist of a combination of functionally graded and isotropic materials. Specifically, the two internal layers are made of isotropic materials, while the two external layers are composed of functionally graded materials. The outer layers are assumed to be made of stainless steel, zirconia, and nickel, whereas the inner isotropic layers are composed of aluminum and stainless steel. The shell frequency equation is derived using the Rayleigh–Ritz method based on Sander’s shell theory. It utilizes energy principles (strain energy and kinetic energy) to derive the governing equations in an approximate form. The resulting system of algebraic equations is solved as an eigenvalue problem to determine natural frequencies and mode shapes.




2. Materials and Methods


A coordinate mechanism of cylinders     x , θ , t     is represented as the shell of the center reference surface with x, θ, and z as the axial, angular, and thickness coordinates, respectively, where    u 1    x , θ , t    ,    u 2    x , θ , t    , and    u 3    x , θ , t     denote the deformations of the displacement functions in the longitudinal, tangential, and transverse instructions accordingly (see Figure 1).



The strain energy relation is given below


  I =  1 2      ∫  0 L    ∫  0  2 π      K   ′   S   K  R d θ d x  



(1)




where


    { K }  ′  = {  c 1  ,  c 2  , l ,  κ 1  ,    κ 2  ,   2  t  }  



(2)




The matrix [C] is represented as follows:


   C  =            ξ  11        ξ  12      0       ξ  12        ξ  22      0     0   0     ξ  66                ψ  11        ψ  12      0       ψ  12        ψ  22      0     0   0     ψ  66                  ψ  11        ψ  12      0       ψ  12        ψ  22      0     0   0     ψ  66                ζ  11        ζ  12      0       ζ  12        ζ  22      0     0   0     ζ  66              



(3)




where    c 1  ,  c 2  ,   l   express the strains that consist of the reference surface,      κ 1  ,  κ 2  ,  t      indicate the curvatures, and    ξ  i j    ,   ψ  i j    , and    ζ  i j     (i, j = 1, 2, 6) represent the extensional, coupling, and bending stiffness [5] (Loy et al. 1999).



They are defined by the following formulas:


  {  ξ  i j   ,  ψ  i j   ,  ζ  i j   } =   ∫   −  H 2     H 2     Q  i j     1 , z ,  z 2    d z  



(4)







The reduced stiffness    Q  i j     for isotropic materials is stated as,


    Q  11   =  E  ( 1 −  λ 2  )   =  Q  22       Q  12   =   λ E   1 −  λ 2      











And


   Q  66   =  E  2   1 −  λ 2       



(5)







The matrix    ψ  i j   = 0   is for isotropic circular-shaped CS, and    ψ  i j     ≠ 0   is for FG CS; considering its structure and the characteristics of its constituents, the expressions from (2) and (3) in (1),    E  s t r a i n    , are rewritten as:


     E  s t r a i n   =  1 2      ∫  0 L    ∫  0  2 π   {  ξ  11    c 1 2  +  ξ  22    c 2 2  + 2  ξ  11    c 1   c 2  +  ξ  66    l 2  + 2  ψ  11    c 1   K 1  + 2  ψ  12    c 1   K 2  + 2  ψ  12    c 2   K 1      + 2  ψ  22    c 2   K 2  + 4  ψ  66   l  t  +  ζ  11    K 1 2  +  ζ  22    K 2 2  + 2  ζ  12    K 1   K 2  + 4  ζ  66    l 2  } R d θ d x    



(6)







The expressions that follow are extracted from [19,20] and written as follows:


     c 1  ,  c 2  , l   =     ∂  u 1    ∂ x   ,  1 R      ∂  u 2    ∂ θ   +  u 3    ,     ∂  u 2    ∂ x   +  1 R    ∂  u 1    ∂ θ        



(7)






       κ 1  ,  κ 2  ,  t    =   −    ∂ 2   u 3    ∂  x 2    , −  1   R 2         ∂ 2   u 3    ∂  θ 2    −   ∂  u 2    ∂ θ     , −  2 R       ∂ 2   u 3    ∂ x ∂ θ   −  3 4    ∂  u 2    ∂ x   +  1  4 R     ∂  u 1    ∂ θ        



(8)







By substituting expressions (7) and (8) into Equation (6), expression (6) becomes as follows:


     E  s t r a i n   =  1 2      ∫  0 L    ∫  0  2 π   [  ξ  11        ∂  u 1    ∂ x     2  +    ξ  22      R 2         ∂  u 2    ∂ θ   +  u 3    2  +   2  ξ  12    R    ∂  u 1    ∂ x        ∂  u 2    ∂ θ   +  u 3    2  +  ξ  66        ∂  u 2    ∂ x   +  1 R    ∂  u 1    ∂ θ     2      −  ψ  11       ∂  u 1    ∂ x          ∂ 2   u 3    ∂  x 2      −   2  ψ  12      R 2        ∂  u 1    ∂ x          ∂ 2   u 3    ∂  θ 2    −   ∂  u 2    ∂ θ     −   2  ψ  12    R      ∂  u 2    ∂ θ   +  u 3         ∂ 2   u 3    ∂  x 2          −   2  ψ  22      R 3        ∂  u 2    ∂ θ   +  u 3         ∂ 2   u 3    ∂  θ 2    −   ∂  u 2    ∂ θ     −   4  ψ  66    R      ∂  u 2    ∂ x   +  1 R    ∂  u 1    ∂ θ          ∂ 2   u 3    ∂ x ∂ θ   −  3 4    ∂  u 2    ∂ x   +  1  4 R     ∂  u 1    ∂ θ         +  ζ  11         ∂ 2   u 3    ∂  x 2      2  +    ζ  22      R 4          ∂ 2   u 3    ∂  θ 2    −   ∂  u 2    ∂ θ     2  +   2 d  ζ  12      R 2         ∂ 2   u 3    ∂  x 2           ∂ 2   u 3    ∂  θ 2    −   ∂  u 2    ∂ θ         +   4  ζ  66      R 2          ∂ 2   u 3    ∂ x ∂ θ   −  3 4    ∂  u 2    ∂ x   +  1  4 R     ∂  u 1    ∂ θ     2  ] d x d θ    



(9)







Shell kinetic energy is stated as


  I =  1 2    ∫  0 L    ∫  0  2 π    ρ t          ∂  u 1    ∂ t      2  +       ∂  u 2    ∂ t      2  +       ∂  u 3    ∂ t      2    R d θ d x  



(10)




where


   ρ t  =   ∫   −  H 2     H 2    ρ   d z  



(11)




where  ρ  is the mass density.



The Lagrange energy functional  Γ  for a CS is described as follows as a function of the strain and kinetic energies:


  Γ   =   I −  E  s t r a i n    



(12)







Numerical Procedure


The RR method controls the normal frequencies of CS. The distortion defects in the longitudinal    u 1   , transverse    u 2   , and angular directions    u 3    are taken into account. The displacement domains are now assumed by the following relationships:


      u 1    x , θ , t   =  x n  D  x  cos   m θ   s i n   ϖ t   ,     u 2    x , θ , t   =  y n  E  x  sin   m θ   c o s   ϖ t     











And


   u 3    x , θ , t   =  z n  F  x  cos   m θ   sin   ϖ t    



(13)




where    x n  ,  y n   , and    z n    reflect the vibrational amplitudes in the x, θ, and t direction accordingly; the axial and circumferential wave numbers of mode shapes are indicated by n and m; ω symbolizes the angular vibration frequency of the shell wave; and     D ( x ) =   d φ ( x )   d x   , E ( x ) = φ ( x )  , and   F ( x ) = φ ( x )  ∏  i =  υ    ( x −  d i  )    l i    ,   which indicates the axial function that satisfies the end point conditions. In the longitudinal direction at   x =  d i   ,    i  t h     ring support is present. Here    l i  = 1   and    l i  = 0   represent with and without a ring support, respectively. m is the circumferential wave number and ω is the angular vibration frequency. And n denotes the axial model dependence in the longitudinal, circumferential, and transverse directions, respectively.



	
  φ  x    symbolizes the axial function that meets the geometric edge condition requirement and is defined as


  φ  x  =    β 1  cosh    μ m  x   +  β 2  cos    μ m  x   −  σ m   β 3   sin h     μ m  x   +  σ m   β 4  sin    μ m  x    



(14)










   μ m    represents the roots of some transcendental equations,   σ m    parameters depend on the values of    μ m   , and    β i    ( i = 1 , 2 , 3 , 4 )   change with respect to the edge conditions.



The geometric boundary conditions, namely simply supported and clamped boundary conditions, can be expressed mathematically in terms of the characteristic beam function   φ  x    as follows:



Simply supported boundary conditions   φ  x  = φ    x   ″  = 0  .



Clamped boundary conditions   φ  x  = φ    x   ′  = 0  .



The following non-dimensional parameters are used to expand this problem.


     U ⌢  =    D ( x )  H  ,     V ⌢  =    E ( x )  H  ,     W ⌢  =    F ( x )  R        a  i j    =     ξ  i j    H     ,     b  i j    =     ψ  i j      H 2       ,     d  i j    =     ζ  i j      H 3       a = R / L , b = H / R , X = x / L ,   ρ t  ⌢  =  ρ t  / H   



(15)







Expression (13) alters the structure as follows:


       u 1  ( x , θ , t ) = H  x n   U ⌢  cos ( m θ ) sin ( ϖ t )      u 2  ( x , θ , t ) = H  y n   V ⌢  sin ( m θ ) cos ( ϖ t )      u 3  ( x , θ , t ) = R  z n   W ⌢  cos ( m θ ) sin ( ϖ t )      



(16)







The Lagrangian function     £   m a x     is transformed by employing the principle of maximum energy.


       Γ  max   =   π H L R  2     R 2   ϖ 2    ρ t  ⌢     ∫ 0 1      b 2       x n   U ⌢     2  +  b 2       y n   V ⌢     2  +  b 2       z n   W ⌢     2    d X −             ∫ 0 1      a 2   b 2    a ⌢   11        x n    d  U ⌢    d X      2       +   a ⌢   22      − m b  y n   V ⌢  +  z n   W ⌢    2  − 2  a 3   b 2    b ⌢   11      x n    d  U ⌢    d X        z n     d 2   W ⌢    d  X 2          + 2 a b   a ⌢   12      x n    d  U ⌢    d X       − m b  y n   V ⌢  +  z n   W ⌢    +   a ⌢   66      a b  y n    d  V ⌢    d X   m b  x n   U ⌢    2      − 2 a  b 2    b ⌢   12      x n    d  U ⌢    d X       −  m 2   z n   W ⌢  + m b  y n   V ⌢    − 2  a 2  b   b ⌢   12     − m b  y n   V ⌢  +  z n   W ⌢       z n 2     d 2   W ⌢    d  X 2          − 2 b   b ⌢   22     − m b  y n   V ⌢  +  z n   W ⌢      −  m 2   z n   W ⌢  + m b  y n   V ⌢    +  a 4   b 2    d ⌢   11       z n 2     d 2   W ⌢    d  X 2      2      − 4 b   b ⌢   66     a b  y n    d  V ⌢    d X   + m b  x n   U ⌢      n a  z n    d  W ⌢    d X   −   3 a b  y n   4    d  V ⌢    d X   +   m b  4   x n   U ⌢        +  b 2    d ⌢   22      −  m 2   z n   W ⌢  + m b  y n   V ⌢    2  + 2  a 2   b 2    d ⌢   12      z n 2     d 2   W ⌢    d  X 2        −  m 2   z n   W ⌢  + m b  y n   V ⌢        + 4   d ⌢   66           m a  z n    d  W ⌢    d X   −   3 a b  y n   4    d  V ⌢    d X   +   m b  4   x n   U ⌢     2      d X      



(17)







Lagrangian energy functional    Γ  max     is extremized with respect to vibrational amplitudes    x n  ,  y n   , and    z n   , as shown below:


    ∂  Γ  max     ∂  x n    =   ∂  Γ  max     ∂  y n    =   ∂  Γ  max     ∂  z n    = 0  



(18)







The resulting relation is defined in the form of a matrix as


     K  −  Ω 2   M     X ⌢  = 0  



(19)




where


   Ω 2  =  R 2   ω 2    ρ  t  ,  



(20)







   K    and    M    are the stiffness and mass matrices corresponding to the cylindrical shell.





3. Classification of Material


In the current study, a CS is taken into consideration, which is made up of four layers: isotropic material is used to construct the internal layers, while nickel, zirconia, and stainless steel are used to construct the outermost layers(see Figure 2).



The two elements using the trigonometric volume fraction law (VFL) are as follows:


   V  f 1   =   sin  2          z −  H 1     H 2  −  H 1       N    ,  V  f 2   =   cos  2          z −  H 1     H 2  −  H 1       N    , 0 ≤ N ≤ ∞  











This relation fulfills the VFL, i.e.,    V  f 1   +  V  f 2   = 1  , where  h  is the shell’s thickness and  N  indicates the power law exponent. Every layer is assumed to be the same thickness   h / 4  . The material parameters are as follows:    E 1  ,  λ 1  ,  ρ 1    for nickel;    E 2  ,  λ 2  ,  ρ 2    for zirconia;    E 3  ,  λ 3  ,  ρ 3    for stainless steel;    E 4  ,  λ 4  ,  ρ 4    for aluminum;    E 5  ,  λ 5  ,  ρ 5    for stainless steel and zirconia. Then, the effective material quantities are as follows:


    E  f g m 1   =    E 1  −  E 2      sin  2          z −  H 1     H 2  −  H 1       N    +  E 2      λ  f g m 1   =    λ 1  −  λ 2      sin  2          z −  H 1     H 2  −  H 1       N    +  λ 2      ρ  f g m 1   =    ρ 1  −  ρ 2      sin  2          z −  H 1     H 2  −  H 1       N    +  ρ 2      E  f g m 2   =    E 4  −  E 5      sin  2          z −  H 3     H 4  −  H 3       N    +  E 5      λ  f g m 2   =    λ 4  −  λ 5      sin  2          z −  H 3     H 4  −  H 3       N    +  λ 5      ρ  f g m 2   =    ρ 4  −  ρ 5      sin  2          z −  H 3     H 4  −  H 3       N    +  ρ 5    











For the expression above at   z = −  H 2  ,  H 2   



   E  f g m 1   =  E 2  ,  λ  f g m 1   =  λ 2  ,  ρ  f g m 1   =  ρ 2    and



   E  f g m 2   =  E 5  ,  λ  f g m 2   =  λ 5  ,  ρ  f g m 2   =  ρ 5   , respectively.



The stiffness moduli are altered as follows:


    ξ  i j   =  ξ  i j     F G M   +  ξ  i j     i s o   +  ξ  i j     i s o   +  ξ  i j     F G M   ,     ψ  i j   =  ψ  i j     F G M   +  ψ  i j     i s o   +  ψ  i j     i s o   +  ψ  i j     F G M   ,      ζ  i j   =  ζ  i j     F G M   +  ζ  i j     i s o   +  ζ  i j     i s o   +  ζ  i j     F G M    








where   i . j = 1 , 2 , 6 ,   and iso signify the two internal isotropic layers, and FGM symbolizes the two outer FGM layers.




4. Results and Discussion


To explain the accuracy and knowledge of the exact outcome, the current outcome is used by FGM and isotropic CS for SS edge conditions. RRM is used to achieve the current result. Table 1 represents the comparison of frequency parameters for simply supported isotropic cylindrical shells (n = 1, L = 20, R = 1, H = 0.01, and λ = 0.3) with those in [4]. Three materials are used to make two types of FG materials known as FGM cylindrical layers: stainless steel, zirconia, and nickel. Two FGM variations for the form of substance are found. Table 2 represents the material distribution.



	
Type 1:






In type 1 FGM CS, inner surfaces are made of nickel and zirconia; on the other hand, outer layers are composed of stainless steel and zirconia.



	
Type 2:






In type 2 FGM CS, inner surfaces are made with zirconia and nickel, and the outer layers are composed of zirconia and stainless steel.



In Table 3, the variation in natural frequencies (NFs) is presented under SS to SS edge conditions observed with (n = 1, R = 1, d = 0.01, H = 0.002, and L = 20). As the value of circumferential wave number m increases from 1 to 10, the value of NFs decreases. For power law exponent ranging from N = 1 to N = 9, the values of NFs also decrease, but slowly. For values ranging from N = 1 to 20, the values change from 366.3000 to 363.0547.



In Table 4, the variation in NFs for length-to-radius ratios is presented against the circumference wave number m for shell I with parameters (n = 2, R = 1, d = 0.01, H = 0.002, and L = 20) under the S-S Edge condition. As the value of m increases from 1 to 10, the values of NFs change, and for N = 1 to 11, the values of NFs change from 362.6197 to 359.2090.



In Table 5, the variation is the same as in Table 3 with parameters (n = 3, R = 1, d = 0.03, H = 0.002, and L = 90).



Table 6 represents the variation in NFs for length-to-radius ratios against m for shell I with parameters (n = 4, R = 1, d = 0.04, H = 0.02, and L = 20) under the S-S Edge condition. NFs increase up to 10. The value of NFs decreases from 4755.773 to 4575.089.



Configurations of shells:



The composition of the four-layered cylindrical shell made by FGM and the isotropic type of material is defined below in Table 2.



Table 7 describes the variation in NFs for length-to-radius ratios against m for shell I with parameters (n = 1, d = 0.4, R = 1, N = 5, and L = 20) under the S-S edge condition, and it was observed that NFs change from 4493.442 to 798.6292 for m.



Table 8 presents the variation in NFs for length-to-radius ratios against m for the shell I with parameters (n = 1, R = 1, N = 5, and L = 20). It was observed and noted that the values of NFs change from 4313.561 to 792.0536 for m = 1 to m = 10. And for exponential law H = 0.001 to H = 0.07, the values change from 4313.561 to 4314.682.



Table 9 shows the variation in NFs for length-to-radius ratios against m for the shell I with parameters (n = 1, R = 1, N = 10, d = 0.06, and L = 20) under the S-S Edge condition, and it is noted that NFs vary from 4280.537 to 4280.562.



Table 10 shows NFs for length-to-radius ratios against m for shell I with parameters (n = 1, R = 1, d = 0.7, N = 20, and L = 20). It is observed that its variation for m = 1 to m = 10 changes from 425.7616 to 425,7638. It has been noticed that a very small change occurs throughout the region.



Table 11 shows NFs for length-to-radius ratios against circumference wave number n for shell I with parameters (n = 1, R = 1, N = 1, H = 0.005, and d = 0.8) under the S-S Edge condition by changing the value of H. The value of NFs changes from 418.758 to 594.9993 as n increases from 1 to 10. As the thickness of the shell varies, NFs remain nearly the same for different thicknesses from 0.001 to 0.07. It is noticed that for small changes in thickness, the values of NFs remain the same. Another noticeable variation for L is that the value of NFs increases when the range is from L = 10 to L = 70, increasing from 418.758 to 439.2311, indicating an increase in the frequency value.



Figure 3 represents the variation in natural frequencies against circumferential wave number m for type 1 shell. The lower line shows the behavior of NFs for N = 1 and the upper line presents the behavior of NFs for N = 2. Natural frequencies increased swiftly from m = 1 to 2 and then increased slowly. Figure 4 represents the same for N = 1 and N = 3 under simply supported end point conditions for type 2 shell.



Figure 5 presents the behavior of NFs against m for type 1 four-layered cylinder-shaped shell. The natural frequencies are obtained under simply supported edge conditions. Natural frequencies rapidly decreased from m = 1 to 2 and then slowly increased for m = 3, after which they behaved smoothly. The results are acquired for thicknesses 0.001 and 0.005 of type 1 shell. In Figure 6, the same behavior of NFs is observed for thicknesses 0.001, 0.005, and 0.007 of type 2 shell.



Figure 7 represents the variation in NFs against m of type 2 SS-SS four-layer CS with n = 2, d = 0.9, N = 1, R = 1, and H = 0.005. It is noticed that NFs are very close for L = 10, 20, and 40. The results increased rapidly from m = 1 to 2 and then increased slowly with increasing m.



Figure 8 shows the vibrations of NFs (Hz) for a four-layered clamped–simply supported circular cylinder-shaped shell against the position of the ring support with different H/R ratios   ( m = 10 , n = 1 , L / R = 20 , H / R = 0.001 , 0.01 , 0.05 )  .



Figure 8 describes the vibrations of NFs (Hz) for a four-layered free circular cylinder-shaped shell against the position of the ring support with different H/R ratios   ( n = 10 , m = N = 1 , L = 20 , H / R = 0.001 , 0.01 , 0.05 )  . The extreme lower line is obtained for H/R = 0.001, the extreme upper line is obtained for H/R = 0.01, and the middle line represents H/R = 0.05. It is clearly seen that NFs behave symmetrically as they increase from d = 0 to 0.5, attain their maximum value at d = 0.5, and then decrease from d = 0.05 to d = 1.




5. Discussion


The study presented in this work delves into the intricate vibration behavior and natural frequencies of layered cylindrical structures composed of functionally graded and isotropic materials. By investigating the vibrations of four-layered cylindrical shells assisted by a ring over their length, this research aims to uncover valuable insights into the dynamics of such composite structures. One of the distinctive features of this study is the composition of the layered cylindrical shells. The internal two layers are constructed by using isotropic materials, specifically aluminum and stainless steel, while the external two layers consist of functionally graded materials (FGM), namely stainless steel, zirconia, and nickel. This combination offers a diverse range of mechanical properties, making it an intriguing subject for exploration. The research involves a cylindrical shell with each of its four layers having an equal thickness, denoted as h/4.



To effectively analyze the vibration behavior and natural frequencies of these layered cylindrical shells, the Rayleigh–Ritz method (RRM) is employed within the framework of Sander’s shell theory. This method allows for the derivation of the shell frequency equation, providing valuable insights into the system’s dynamic response. Furthermore, the research investigates the natural frequencies of the shells under two distinct boundary conditions: simply supported–simply supported (SS-SS) and clamped–clamped (C-C). By exploring these boundary conditions, the study aims to provide a thorough understanding of how different support configurations impact the vibrational characteristics of the cylindrical shells.



In summary, this research contributes significantly to the understanding of vibration behavior and natural frequencies in layered cylindrical structures composed of functionally graded and isotropic materials. By leveraging advanced analytical techniques and exploring various material compositions and boundary conditions, the study sheds light on the complex dynamics of such composite systems, with potential implications for a wide range of engineering applications.




6. Conclusions


The current study was conducted to check the vibration characteristics of thin circular CS formed from FGM. The FG cylindrical shell constituents are made of stainless steel, nickel, zirconia, and aluminum. These four types were studied by changing the configuration of the layers of FG material. These constituents in type 1 of the cylindrical shells vary across the shell’s thickness constantly, seamlessly, and steadily from the FG layer’s inner to its outermost layer. The basic objectives were to obtain shell frequency equations with the help of these theories and techniques. Sander’s shell theory was applied to solve the shell frequency equations based on Kirchhoff’s assumptions. RRM was used to solve the shell vibration problems by utilizing the Lagrangian energy relation to obtain the shell’s frequency equation in numerical form. Axial modal dependence was approximated by trigonometric functions for simply supported end conditions and characteristic beam functions for number-clamped boundary conditions.



The study found that the minimum frequency occurs at specific wave numbers for all boundary conditions and is influenced directly by increasing the value of N, L, n, d, H, and L/R. The NFs decreased by varying N under different conditions. All the results were very close to each other. This analysis may be extended for the study of different shell problems, such as changing parameters like the thickness or length of the shell and the position of the ring. The frequency curves of the shell with ring support at different positions obtain symmetric shapes because of the same edge conditions. They are not symmetrical around the center because of different end point conditions. The induction of ring support on a cylinder-shaped shell has a significant effect on the NFs compared to the shell frequencies without ring support.



For the presented cylindrical shell, the results were obtained using MATLAB software version 2019 under simply supported–simply supported and clamped–clamped boundary conditions. These results illustrate the natural frequency behavior as a function of the circumferential wave number. Significant findings are as follows: The natural frequency increases as the power law index N″ increases. An increase in the length L″ of the shell leads to an increase in the natural frequency. Increasing the shell thickness h″ results in higher natural frequencies. Varying the ring support position along the longitudinal path shows that the natural frequency increases, reaching its maximum when the ring is at the central position of the shell, and then decreases as the ring position moves beyond the center.



These findings highlight the critical influence of geometric and material parameters on the vibrational behavior of cylindrical shells, providing insights for optimizing design and performance.
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Figure 1. Structure of CS with a ring support that is located along the length. 
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Figure 2. Component materials of shell layers. 






Figure 2. Component materials of shell layers.
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Figure 3. Variation in NFs against m of type 1 SS-SS four-layer CS (n = 1, d = 0.1, H = 0.002, R = 1, and L = 20). 






Figure 3. Variation in NFs against m of type 1 SS-SS four-layer CS (n = 1, d = 0.1, H = 0.002, R = 1, and L = 20).



[image: Symmetry 16 00812 g003]







[image: Symmetry 16 00812 g004] 





Figure 4. Variation in NFs against m of type 2 SS-SS four-layer CS (n = 2, d = 0.1, H = 0.002, R = 1, L = 20). 
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Figure 5. Variation in NFs against m of type 1 SS-SS four-layer CS (n = 1, d = 0.4, N = 1, R = 1, L = 20, and H = 0.001, 0.005). 
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Figure 6. Variation in NFs against m of type 2 SS-SS four-layer CS (n = 1, d = 0.5, N = 5, R = 1, L = 20, and H = 0.001, 0.005, and 0.007). 
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Figure 7. Variation in NFs against m of type 2 SS-SS four-layer CS (n = 2, d = 0.9, N = 1, R = 1, and H = 0.005). 
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Figure 8. Vibrations of NFs (Hz) for a three-layered free circular cylinder-shaped shell against the position of the ring support with different H/R ratios   ( n = 10 , m = N = 1 , L = 20 , H / R = 0.001 , 0.01 , 0.05 )  . 
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Table 1. Comparison of frequency parameters for simply supported isotropic cylindrical shell (n = 1, L = 20, R = 1, H = 0.01, and λ = 0.3).
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	m
	[4]
	Present
	Difference





	1
	0.016101
	0.016100
	0.006%



	2
	0.009382
	0.009376
	0.06%



	3
	0.022105
	0.022101
	0.02%



	4
	0.042095
	0.042092
	0.007%



	5
	0.068008
	0.068006
	0.009%










 





Table 2. Configurations of shell types.
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	Types of

Shell
	1st Layer

FGM
	2nd Layer

Isotropic
	3rd Layer

Isotropic
	4th Layer

FGM





	Type 1
	Nickel, Zirconia
	Stainless Steel
	Aluminum
	Stainless Steel,

Zirconia



	Type 2
	Zirconia, Nickel
	Stainless Steel
	Aluminum
	Zirconia,

Stainless Steel










 





Table 3. Vibration of NFs (Hz) against n for FGM CS under SS-SS boundary conditions when (n = 1, L = 20, H = 0.02, R = 1, and d = 0.1).
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	m
	N = 1
	N = 2
	N = 5
	N = 7
	N = 9





	1
	366.3000
	364.0547
	363.0547
	363.0547
	363.0547



	2
	456.1014
	454.0393
	452.3383
	452.3383
	452.3383



	3
	477.2445
	475.0875
	473.3106
	473.3106
	473.3106



	4
	485.2193
	483.0266
	481.2239
	481.2239
	481.2239



	5
	489.6059
	487.3932
	485.5785
	485.5785
	485.5785



	6
	493.1564
	490.9264
	489.1031
	489.1031
	489.1031



	7
	497.0930
	494.8423
	493.0085
	493.0085
	493.0085



	8
	502.1957
	499.9165
	498.0668
	498.0668
	498.0668



	9
	509.0963
	506.7773
	504.9033
	504.9033
	504.9033



	10
	518.3668
	515.9934
	514.0839
	514.0839
	514.0839










 





Table 4. Vibration of NFs (Hz) against n for FGM CS under SS-SS boundary conditions when (n = 2, L = 20, H = 0.02, R = 1, and d = 0.1).






Table 4. Vibration of NFs (Hz) against n for FGM CS under SS-SS boundary conditions when (n = 2, L = 20, H = 0.02, R = 1, and d = 0.1).





	m
	N = 1
	N = 3
	N = 5
	N = 7
	N = 9
	N = 11





	1
	362.6197
	359.9578
	359.2090
	359.2090
	359.2090
	359.2090



	2
	455.8980
	452.9469
	452.1372
	452.1372
	452.1372
	452.1372



	3
	477.2085
	474.1213
	473.2755
	473.2755
	473.2755
	473.2755



	4
	485.2101
	482.0728
	481.2149
	481.2149
	481.2149
	481.2149



	5
	489.6049
	486.4406
	485.5777
	485.5777
	485.5777
	485.5777



	6
	493.1596
	489.9726
	489.1063
	489.1063
	489.1063
	489.1063



	7
	497.0994
	493.8851
	493.0148
	493.0148
	493.0148
	493.0148



	8
	502.2050
	498.9528
	498.0760
	498.0760
	498.0760
	498.0760



	9
	509.1086
	505.8025
	504.9154
	504.9154
	504.9154
	504.9154



	10
	518.3821
	515.0016
	514.0989
	514.0989
	514.0989
	514.0989










 





Table 5. Behavior of NFs (Hz) against n for FGM CS under SS-SS boundary conditions when (n = 1, L = 20, N = 1, R = 1, and d = 0.4).
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	m
	H = 0.001
	H = 0.005
	H = 0.007
	H = 0.01
	H = 0.05
	H = 0.07





	1
	4493.442
	4493.443
	4493.444
	4493.445
	4493.46
	4493.469



	2
	785.8470
	785.7706
	785.7388
	785.6991
	786.0900
	786.9266



	3
	794.0083
	793.8696
	793.8343
	793.8241
	798.5644
	804.2985



	4
	796.3821
	796.2296
	796.2626
	796.4488
	814.3950
	833.7276



	5
	797.3917
	797.3464
	797.5922
	798.2960
	844.7577
	891.3993



	6
	797.9048
	798.1816
	798.8778
	800.6169
	897.6645
	988.5901



	7
	798.1968
	799.1243
	800.6216
	804.1492
	979.4344
	1131.8350



	8
	798.3810
	800.4223
	803.2025
	809.5400
	979.4344
	1131.8350



	9
	798.5141
	802.2857
	806.9778
	817.4377
	1242.7268
	1560.6494



	10
	798.6292
	804.9192
	812.3117
	828.5070
	1425.3211
	1842.6299










 





Table 6. Behavior of NFs (Hz) when (n = 1, L = 20, N = 5, R = 1, and d = 0.5).
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	m
	H = 0.001
	H = 0.005
	H = 0.007
	H = 0.01
	H = 0.05
	H = 0.07





	1
	4313.561
	4314.657
	4314.658
	4314.659
	4314.673
	4314.682



	2
	779.3320
	838.7948
	838.7603
	838.7167
	839.0724
	839.9035



	3
	787.4543
	838.7012
	838.6600
	838.6395
	843.0766
	848.5493



	4
	789.8100
	838.6410
	838.6587
	838.8150
	855.6305
	873.9499



	5
	790.8129
	838.6853
	838.8951
	839.5266
	883.1276
	927.3678



	6
	791.3239
	838.9250
	839.5478
	841.1367
	932.4724
	1019.1568



	7
	791.6158
	839.4714
	840.8337
	844.0830
	1009.7367
	1156.0430



	8
	791.8012
	840.4554
	843.0066
	848.8724
	1009.7367
	1156.0430



	9
	791.9362
	842.0268
	846.3550
	856.0697
	1262.0934
	1571.3251



	10
	792.0536
	844.3534
	851.1977
	866.2819
	1438.9259
	1846.7592










 





Table 7. Behavior of NFs (Hz) against n for FGM cylindrical shell when (n = 4, H = 0.005, N = 1, R = 1, and d = 1).
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	m
	L = 10
	L = 20
	L = 30
	L = 40
	L = 50
	L = 70





	1
	461.9686
	329.8816
	306.7
	302.7992
	302.8946
	304.7281



	2
	420.4381
	387.3319
	385.3606
	385.4567
	385.6814
	385.9822



	3
	415.7960
	406.0455
	405.6847
	405.7264
	405.7787
	405.8421



	4
	417.1420
	413.4404
	413.3143
	413.3238
	413.3382
	413.3561



	5
	419.1609
	417.3701
	417.2904
	417.2846
	417.2859
	417.2891



	6
	421.3530
	420.2377
	420.1592
	420.1424
	420.1365
	420.1324



	7
	423.9559
	423.0649
	422.9713
	422.9443
	422.9328
	422.9233



	8
	427.3108
	426.4492
	426.3323
	426.2948
	426.2780
	426.2637



	9
	431.7691
	430.8393
	430.6941
	430.6454
	430.6232
	430.6041



	10
	437.6788
	436.6267
	436.4497
	436.3891
	436.3612
	436.3372










 





Table 8. Variation in NFs (Hz) against n for FGM cylindrical shell under the SS-SS boundary condition (n = 1, R = 1, H = 0.002, L = 20, and d = 0.1).
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	m
	N = 1
	N = 2
	N = 3
	N = 4
	N = 5
	N = 10





	1
	356.7561
	353.1512
	351.5667
	350.1086
	348.8782
	348.4389



	2
	451.3025
	447.1279
	445.3168
	443.6651
	442.2836
	441.7932



	3
	472.5032
	468.1340
	466.2384
	464.5095
	463.0634
	462.5501



	4
	480.1950
	475.7544
	473.8275
	472.0697
	470.5992
	470.0773



	5
	483.8605
	479.3859
	477.4437
	475.6717
	474.1890
	473.6626



	6
	485.9757
	481.4816
	479.5303
	477.7496
	476.2593
	475.7301



	7
	487.4275
	482.9202
	480.9625
	479.1754
	477.6793
	477.1480



	8
	488.6148
	484.0970
	482.1339
	480.3413
	478.8402
	478.3069



	9
	489.7555
	485.2281
	483.2599
	481.4619
	479.9556
	479.4204



	10
	490.9919
	486.4545
	484.4807
	482.6771
	481.1654
	480.6281










 





Table 9. Variation in NFs (Hz) against n for FGM cylindrical shell under SS-SS when (n = 2, R = 1, H = 0.002, L = 20, and d = 0.2).
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	m
	N = 1
	N = 2
	N = 3
	N = 4
	N = 5
	N = 10





	1
	419.8248
	413.2517
	410.2073
	407.3157
	404.8068
	403.8956



	2
	542.1721
	537.1515
	534.9731
	532.9863
	531.3244
	530.7345



	3
	563.7859
	558.5723
	556.3103
	554.2473
	552.5216
	551.9091



	4
	571.2834
	566.0004
	563.7079
	561.6167
	559.8672
	559.2462



	5
	574.7881
	569.4725
	567.1653
	565.0602
	563.2989
	562.6735



	6
	576.7816
	571.4475
	569.1315
	567.0180
	565.2491
	564.6210



	7
	578.1269
	572.7805
	570.4583
	568.3385
	566.5639
	565.9337



	8
	579.2045
	573.8485
	571.5211
	569.3958
	567.6161
	566.9839



	9
	580.2178
	574.8530
	572.5207
	570.3902
	568.6054
	567.9712



	10
	581.2970
	575.9233
	573.5858
	571.4497
	569.6594
	569.0231










 





Table 10. Variation in NFs (Hz) against n for FGM cylindrical shell under the SS-SS boundary condition (N = 1, R = 1, n = 1, H = 0.005, and d = 0.8).
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	m
	L = 10
	L = 20
	L = 40
	L = 50
	L = 70





	1
	413.1000
	419.8248
	428.9463
	431.2599
	434.1054



	2
	540.9617
	542.1822
	542.5790
	542.6293
	542.6737



	3
	563.6582
	563.8588
	563.9190
	563.9265
	5