Portfolio Optimization with Multi-Trend Objective and Accelerated Quasi-Newton Method
Abstract
:1. Introduction
- We propose a multi-trend objective price prediction method based on composite representation.
- We have developed a subgradient descent algorithm that exploits the BFGS method with the Wolfe conditions. This algorithm not only has lower computational complexity than the Newton method but also enhances the convergence speed over the ordinary first-order subgradient descent method.
2. Problem Settings and Related Works
2.1. Problem Settings
2.2. Related Works
3. Methodology
3.1. Multi-Trend Objective Price Prediction
3.2. Portfolio Optimization Model
3.3. Accelerated Quasi-Newton Method
Algorithm 1 MTO-AQNM |
Input: Set the parameters ,,,,,,,, the current portfolio . Initialization: ,, , . |
|
Output: The next portfolio . |
4. Experimental Results
4.1. Cumulative Wealth and Mean Excess Return
4.2. The Factor
4.3. Sharpe Ratio and Information Ratio
4.4. Treynor Ratio
4.5. Sortino Ratio
4.6. Transaction Cost
4.7. Accelerated Quasi-Newton Method vs. First-Order Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MTO-AQNM | multi-trend objective and accelerated quasi-Newton method |
MV | mean variance |
PO | portfolio optimization |
EGR | exponential growth rate |
PAMR | passive-aggressive mean reversion |
SSPO | short-term sparse portfolio optimization |
CW | cumulative wealth |
SMA | simple moving average |
EMA | exponential moving average |
RMR | robust median reversion |
PP | peak price |
VP | valley price |
PPT | peak price tracking |
RPRT | reweighted price relative tracking |
KTPT | kernel-based trend pattern tracking |
AICTR | adaptive input and composite trend representation |
MT-CVaR | multi-trend conditional value at risk |
MER | mean excess return |
CAPM | capital asset pricing model |
STD | sample standard deviation |
SR | Sharpe ratio |
IR | information ratio |
TR | Treynor ratio |
References
- Markowitz, H.M. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Lai, Z.R.; Yang, H. A Survey on Gaps between Mean-variance Approach and Exponential Growth Rate Approach for Portfolio Optimization. ACM Comput. Surv. 2023, 55, 1–36. [Google Scholar] [CrossRef]
- Kalina, B.; Lee, J.H.; Na, K.T. Enhancing Portfolio Performance through Financial Time-Series Decomposition-Based Variational Encoder-Decoder Data Augmentation. Symmetry 2024, 16, 283. [Google Scholar] [CrossRef]
- Dreżewski, R.; Doroz, K. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization. Symmetry 2017, 9, 168. [Google Scholar] [CrossRef]
- Wu, C.; Yang, L.; Zhang, C. Uncertain Stochastic Optimal Control with Jump and Its Application in a Portfolio Game. Symmetry 2022, 14, 1885. [Google Scholar] [CrossRef]
- Kelly, J. A new interpretation of information rate. IRE Trans. Inf. Theory 1956, 2, 185–189. [Google Scholar] [CrossRef]
- Ban, G.Y.; Karoui, N.E.; Lim, A.E.B. Machine Learning and Portfolio Optimization. Manag. Sci. 2018, 64, 1136–1154. [Google Scholar] [CrossRef]
- Ledoit, O.; Wolf, M. Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks. Rev. Financ. Stud. 2017, 30, 4349–4388. [Google Scholar] [CrossRef]
- Li, D.; Ng, W.L. Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation. Math. Financ. 2000, 10, 387–406. [Google Scholar] [CrossRef]
- Kolm, P.N.; Tütüncü, R.; Fabozzi, F.J. 60 Years of portfolio optimization: Practical challenges and current trends. Eur. J. Oper. Res. 2014, 234, 356–371. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica 1979, 47, 263–292. [Google Scholar] [CrossRef]
- Shiller, R.J. From Efficient Markets Theory to Behavioral Finance. J. Econ. Perspect. 2003, 17, 83–104. [Google Scholar] [CrossRef]
- Shiller, R.J. Irrational Exuberance; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Li, B.; Hoi, S.C.H.; Sahoo, D.; Liu, Z.Y. Moving average reversion strategy for on-line portfolio selection. Artif. Intell. 2015, 222, 104–123. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, J.; Li, B.; Hoi, S.C.H.; Zhou, S. Robust Median Reversion Strategy for Online Portfolio Selection. IEEE Trans. Knowl. Data Eng. 2016, 28, 2480–2493. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, X.; Xue, J.; Li, H.; Chen, Y. Adaptive neural control for a class of pure-feedback nonlinear systems via dynamic surface technique. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 1969–1975. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Hazan, E.; Kale, S.; Schapire, R.E. Algorithms for portfolio management based on the Newton method. In Proceedings of the International Conference on Machine Learning (ICML), Pittsburgh, PA, USA, 25–29 June 2006. [Google Scholar]
- Lai, Z.R.; Dai, D.Q.; Ren, C.X.; Huang, K.K. A Peak Price Tracking based Learning System for Portfolio Selection. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2823–2832. [Google Scholar] [CrossRef] [PubMed]
- Helmbold, D.P.; Schapire, R.E.; Singer, Y.; Warmuth, M.K. On-line portfolio selection using multiplicative updates. Math. Financ. 1998, 8, 325–347. [Google Scholar] [CrossRef]
- Györfi, L.; Udina, F.; Walk, H. Nonparametric nearest neighbor based empirical portfolio selection strategies. Stat. Decis. 2008, 26, 145–157. [Google Scholar] [CrossRef]
- Li, B.; Zhao, P.; Hoi, S.C.H.; Gopalkrishnan, V. PAMR: Passive aggressive mean reversion strategy for portfolio selection. Mach. Learn. 2012, 87, 221–258. [Google Scholar] [CrossRef]
- Lai, Z.R.; Yang, P.Y.; Fang, L.; Wu, X. Short-term Sparse Portfolio Optimization Based on Alternating Direction Method of Multipliers. J. Mach. Learn. Res. 2018, 19, 1–28. [Google Scholar]
- Lai, Z.R.; Dai, D.Q.; Ren, C.X.; Huang, K.K. Radial basis functions with adaptive input and composite trend representation for portfolio selection. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 6214–6226. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.R.; Li, C.; Wu, X.; Guan, Q.; Fang, L. Multitrend Conditional Value at Risk for Portfolio Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 1545–1558. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, J.; Liu, Y. A New Self-Scaling Memoryless Quasi-Newton Update for Portfolio Optimization. Comput. Optim. Appl. 2023, 84, 725–745. [Google Scholar]
- Kumar, K.; Ghosh, D.; Upadhayay, A.; Yao, J.; Zhao, X. Quasi-Newton Methods for Multiobjective Optimization Problems: A Systematic Review. Appl. Set-Valued Anal. Optim. 2023, 5, 291–321. [Google Scholar]
- Wright, J.N.S.J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Cover, T.M. Universal Portfolios. Math. Financ. 1991, 1, 1–29. [Google Scholar] [CrossRef]
- Bondt, W.F.M.D.; Thaler, R. Does the Stock Market Overreact? J. Financ. 1985, 40, 793–805. [Google Scholar] [CrossRef]
- Lo, A.W.; MacKinlay, A.C. When Are Contrarian Profits Due to Stock Market Overreaction? Rev. Financ. Stud. 2015, 3, 175–205. [Google Scholar] [CrossRef]
- Borodin, A.; El-Yaniv, R.; Gogan, V. Can We Learn to Beat the Best Stock. J. Artif. Intell. Res. 2004, 21, 579–594. [Google Scholar] [CrossRef]
- Li, B.; Hoi, S.C.H.; Zhao, P.; Gopalkrishnan, V. Confidence Weighted Mean Reversion Strategy for Online Portfolio Selection. ACM Trans. Knowl. Discov. Data 2013, 7, 4. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Yuan, Y.; Sun, W. Optimization Theory and Methods; Science Press: Beijing, China, 1999. [Google Scholar]
- Bertsekas, D. Nonlinear Programming; Athena Scientific: Nashua, NH, USA, 1999. [Google Scholar]
- Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; Chandra, T. Efficient projections onto the ℓ1-ball for learning in high dimensions. In Proceedings of the International Conference on Machine Learning (ICML), Helsinki, Finland, 5–9 July 2008. [Google Scholar]
- Bruni, R.; Cesarone, F.; Scozzari, A.; Tardella, F. Real-world datasets for portfolio selection and solutions of some stochastic dominance portfolio models. Data Brief 2016, 8, 858–862. [Google Scholar] [CrossRef]
- Lai, Z.R.; Yang, P.Y.; Fang, L.; Wu, X. Reweighted Price Relative Tracking System for Automatic Portfolio Optimization. IEEE Trans. Syst. Man, Cybern. Syst. 2020, 50, 4349–4361. [Google Scholar] [CrossRef]
- Lai, Z.R.; Yang, P.Y.; Wu, X.; Fang, L. A Kernel-based Trend Pattern Tracking System for Portfolio Optimization. Data Min. Knowl. Discov. 2018, 32, 1708–1734. [Google Scholar] [CrossRef]
- Luo, Z.; Yu, X.; Xiu, N.; Wang, X. Closed-form solutions for short-term sparse portfolio optimization. Optimization 2020, 71, 1937–1953. [Google Scholar] [CrossRef]
- DeMiguel, V.; Garlappi, L.; Uppal, R. Optimal versus Naive Diversification: How Inefficient Is the 1/N Portfolio Strategy? Rev. Financ. Stud. 2009, 22, 1915–1953. [Google Scholar] [CrossRef]
- Goto, S.; Xu, Y. Improving Mean Variance Optimization through Sparse Hedging Restrictions. J. Financ. Quant. Anal. 2015, 50, 1415–1441. [Google Scholar] [CrossRef]
- Ao, M.; Li, Y.; Zheng, X. Approaching Mean-Variance Efficiency for Large Portfolios. Rev. Financ. Stud. 2019, 32, 2890–2919. [Google Scholar] [CrossRef]
- Jegadeesh, N. Evidence of Predictable Behavior of Security Returns. J. Financ. 1990, 45, 881–898. [Google Scholar] [CrossRef]
- Li, B.; Sahoo, D.; Hoi, S.C.H. OLPS: A toolbox for on-line portfolio selection. J. Mach. Learn. Res. 2016, 17, 1242–1246. [Google Scholar]
- Sharpe, W.F. Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. J. Financ. 1964, 19, 425–442. [Google Scholar]
- Lintner, J. The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Rev. Econ. Stat. 1965, 47, 13–37. [Google Scholar] [CrossRef]
- Sharpe, W.F. Mutual Fund Performance. J. Bus. 1966, 39, 119–138. [Google Scholar] [CrossRef]
- Treynor, J.L.; Black, F. How to Use Security Analysis to Improve Portfolio Selection. J. Bus. 1973, 46, 66–86. [Google Scholar] [CrossRef]
- Treynor, J.L. Towards a Theory of Market Value of Risky Assets. J. Financ. 1965, 20, 415–429. [Google Scholar]
- Sortino, F.A. The Sortino Framework for Constructing Portfolios; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Blum, A.; Kalai, A. Universal Portfolios With and Without Transaction Costs. Mach. Learn. 1999, 35, 193–205. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages |
---|---|---|
Anti-Correlation [31] | Using statistical relationships; | High transaction costs; overfitting; |
adhering to a constant rebalancing strategy. | data snooping bias. | |
Confidence-Weighted Mean Reversion [32] | Applying confidence-weighted learning techniques; | Sensitive to parameter selection; |
leveraging second-order information. | lacking traditional regret bounds. | |
Online Moving-Average Reversion [14] | Utilizing historical prices; | Possessing lag; |
reducing market noise. | sensitive to parameter selection. | |
Robust Median Reversion [15] | Robustness to noise and outliers; | Sensitive to transaction costs; |
flexible parameter selection. | market-dependent. |
Data Set | Region | Time | Periods | Frequency | Assets | Asset Type | Portfolio Type |
---|---|---|---|---|---|---|---|
NYSE(N) | US | 1 January 1985∼30 June 2010 | 6431 | Daily | 23 | Stock | Hybrid Portfolio |
FTSE100 | UK | 11 July 2002∼11 April 2016 | 717 | Weekly | 83 | Stock | Hybrid Portfolio |
Dowjones | US | 16 February 1990∼7 April 2016 | 1363 | Weekly | 28 | Stock | Hybrid Portfolio |
HS300 | CN | 21 January 2016∼16 October 2017 | 421 | Daily | 44 | Stock | Hybrid Portfolio |
NAS100 | US | 3 November 2004∼11 April 2016 | 596 | Weekly | 82 | Stock | Hybrid Portfolio |
FF32 | US | July 1971∼May 2023 | 623 | Monthly | 32 | Portfolio | Hybrid Portfolio |
System | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CW | MER | CW | MER | CW | MER | CW | MER | CW | MER | CW | MER | |
1/N | ||||||||||||
PPT | ||||||||||||
RPRT | ||||||||||||
KTPT | ||||||||||||
S1 | ||||||||||||
S2 | ||||||||||||
S3 | ||||||||||||
SSPO | ||||||||||||
AICTR | ||||||||||||
MT-CVaR | ||||||||||||
MTO-AQNM |
System | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 |
---|---|---|---|---|---|---|
MTO-AQNM vs. 1/N | ||||||
MTO-AQNM vs. PPT | ||||||
MTO-AQNM vs. RPRT | ||||||
MTO-AQNM vs. KTPT | ||||||
MTO-AQNM vs. S1 | ||||||
MTO-AQNM vs. S2 | ||||||
MTO-AQNM vs. S3 | ||||||
MTO-AQNM vs. SSPO | ||||||
MTO-AQNM vs. AICTR | ||||||
MTO-AQNM vs. MT-CVaR |
System | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
-Value | -Value | -Value | -Value | -Value | -Value | |||||||
1/N | ||||||||||||
PPT | ||||||||||||
RPRT | ||||||||||||
KTPT | ||||||||||||
S1 | ||||||||||||
S2 | ||||||||||||
S3 | ||||||||||||
SSPO | ||||||||||||
AICTR | ||||||||||||
MT-CVaR | ||||||||||||
MTO-AQNM |
System | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 |
---|---|---|---|---|---|---|
1/N | ||||||
PPT | ||||||
RPRT | ||||||
KTPT | ||||||
S1 | ||||||
S2 | ||||||
S3 | ||||||
SSPO | ||||||
AICTR | ||||||
MT-CVaR | ||||||
MTO-AQNM |
System | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SR | IR | SR | IR | SR | IR | SR | IR | SR | IR | SR | IR | |
1/N | ||||||||||||
PPT | ||||||||||||
RPRT | ||||||||||||
KTPT | ||||||||||||
S1 | ||||||||||||
S2 | ||||||||||||
S3 | ||||||||||||
SSPO | ||||||||||||
AICTR | ||||||||||||
MT-CVaR | ||||||||||||
MTO-AQNM |
System | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 |
---|---|---|---|---|---|---|
1/N | ||||||
PPT | ||||||
RPRT | ||||||
KTPT | ||||||
S1 | ||||||
S2 | ||||||
S3 | ||||||
SSPO | ||||||
AICTR | ||||||
MT-CVaR | ||||||
MTO-AQNM |
System | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 |
---|---|---|---|---|---|---|
1/N | ||||||
PPT | ||||||
RPRT | ||||||
KTPT | ||||||
S1 | ||||||
S2 | ||||||
S3 | ||||||
SSPO | ||||||
AICTR | ||||||
MT-CVaR | ||||||
MTO-AQNM |
Algorithm | NYSE(N) | FTSE100 | Dowjones | HS300 | NAS100 | FF32 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | Iter. | Time | Iter. | Time | Iter. | Time | Iter. | Time | Iter. | Time | Iter. | |
First-order | 100,000 | 100,000 | 100,000 | 100,000 | 100,000 | 100,000 | ||||||
AQNM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.; He, X. Portfolio Optimization with Multi-Trend Objective and Accelerated Quasi-Newton Method. Symmetry 2024, 16, 821. https://doi.org/10.3390/sym16070821
Lin C, He X. Portfolio Optimization with Multi-Trend Objective and Accelerated Quasi-Newton Method. Symmetry. 2024; 16(7):821. https://doi.org/10.3390/sym16070821
Chicago/Turabian StyleLin, Caiming, and Xinyi He. 2024. "Portfolio Optimization with Multi-Trend Objective and Accelerated Quasi-Newton Method" Symmetry 16, no. 7: 821. https://doi.org/10.3390/sym16070821
APA StyleLin, C., & He, X. (2024). Portfolio Optimization with Multi-Trend Objective and Accelerated Quasi-Newton Method. Symmetry, 16(7), 821. https://doi.org/10.3390/sym16070821