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Abstract: We propose a portfolio optimization method with a multi-trend objective and an accelerated
quasi-Newton method (MTO-AQNM). It leverages a BFGS-based quasi-Newton algorithm and
incorporates an `1 regularization term and the self-funding constraint. The MTO is designed to
identify multiple trend reversals. Different trend reversals are asymmetric, and we hoped to extract
rich and effective information from them. The AQNM adopts the BFGS method with the Wolfe
conditions, which reduces computational complexity and improves convergence speed. We wanted
to evaluate the performance of our algorithm through financial markets that were asymmetric in all
respects. To this end, we conducted comprehensive experimental approaches on six benchmark data
sets of real-world financial markets that were asymmetric in time, frequency, and asset type. Our
method demonstrated superior performance over other state-of-the-art competitors across several
mainstream evaluation metrics.

Keywords: accelerated quasi-Newton method; multi-trend objective price prediction; portfolio
optimization; Wolfe conditions

1. Introduction

The mean variance (MV) portfolio optimization (PO) theory [1] is designed to identify
an optimal investment allocation strategy that simultaneously maximizes the expected
return and minimizes risk. With the accelerated advancements in machine learning and
artificial intelligence, machine learning has emerged as a crucial component in quantita-
tive investing [2]. As we all know, financial markets are characterized by a high degree
of information asymmetry, and this asymmetry affects the effectiveness and efficiency
of the market. Based on this, some researchers have utilized time series information to
improve portfolio performance [3], an agent-based co-evolutionary multi-objective algo-
rithm for PO [4], and uncertain stochastic control systems in portfolios [5]. These not only
exploit computational capability but also mitigate the problems of human subjectivity and
information asymmetry, thus improving the accuracy of forecasting results.

PO methods can be generally categorized into two approaches: the MV approach
and the exponential growth rate (EGR) approach [2], each with distinct theoretical founda-
tions, trading logic, optimization techniques, and objectives. The EGR approach, inspired
by Kelly’s criterion in information theory [6], primarily concentrates on the dynamics of
wealth over time. The MV approach is model-driven and often requires strict statistical as-
sumptions about asset returns, such as accepting appropriate statistical distributions [7,8],
independence between different trading periods [9], and a stationary market [10]. In con-
trast, the EGR approach is typically data-driven, emphasizing how to use newly emerged
samples to update and enhance the investment portfolio [2]. While considering the port-
folio return, it pays more attention to the exponential growth of the portfolio, not just the
average return. On the other hand, the EGR approach is more robust against errors in
parameter estimation. Therefore, in terms of controlling risk and market uncertainty, the
performance of the EGR approach is often better than the MV approach in short-term PO.
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In real-world financial environments, the price relatives {xt}T
t=1 (defined in Equation (1))

may show instability, and strict statistical assumptions about asset returns may not always
hold. To address these challenges, some heuristic investing strategies based on behavioral
finance have been proposed [11–13]. There are three widely recognized trend representation
strategies: trend reversing [14–16], trend following [17–19], and trend pattern matching [20].
The trend-reversing strategy assumes that asset prices will return to their historical levels
in the near future. For example, the passive-aggressive mean reversion (PAMR) system [21]
uses historical average prices to represent reversions. It relies on the mean reversion phe-
nomenon in the financial market. Through online passive-aggressive learning techniques,
the PAMR strategy can effectively utilize the mean reversion property of the market. More-
over, it keeps a good balance between portfolio return and volatility risk, reflecting the
principle of mean reversion trading.

Short-term sparse portfolio optimization [22] (SSPO) is a trend-following strategy
that exploits an irrational investing phenomenon that anticipates that the current well-
performing assets will continue to exhibit a strong upward trend in the subsequent period.
Moreover, it imposes an `1 regularization term and a self-funding constraint on the portfolio,
to produce a sparse and eligible portfolio. Its solving algorithm is a first-order augmented
Lagrangian method, which may lead to high computational cost and slow convergence
speed. It also depends strongly on the problem structure and parameter selection.

Recently, multi-trend representation methods [23,24] have been proposed, to unify
different trends in the same PO system. These different trends can be fused by radial basis
functions [23] or embedded in downside risk metrics [24]. In addition, reference [25]
introduced a new self-scaling memoryless BFGS update, and [26] provided a comprehen-
sive review of quasi-Newton methods for multi-objective optimization, discussing various
Hessian approximation schemes and their validity in terms of convergence and accuracy.
Motivated by their approach, we propose a multi-trend objective and an accelerated quasi-
Newton method (MTO-AQNM) that concentrates on two key aspects: price prediction
and the solving algorithm. For price prediction, we employ four distinct trend-reversing
methods to forecast prices for the next trading period, which helps to improve robustness
in asset price prediction. For the solving algorithm, we have developed a quasi-Newton
method [27] that combines the BFGS method and the Wolfe conditions [27] to solve the
proposed PO model. The BFGS method has lower computational complexity than the
Newton method. Moreover, the Wolfe conditions follow the steepest descent direction at
each iteration, leading to a faster convergence. Our main contributions can be summarized
as follows:

• We propose a multi-trend objective price prediction method based on composite
representation.

• We have developed a subgradient descent algorithm that exploits the BFGS method
with the Wolfe conditions. This algorithm not only has lower computational com-
plexity than the Newton method but also enhances the convergence speed over the
ordinary first-order subgradient descent method.

The rest of the paper is organized as follows. Section 2 introduces the problem settings
and some related works. Section 3 illustrates the proposed method. Section 4 provides
the experimental results for the proposed method and some other competitors. Section 5
draws conclusions.

2. Problem Settings and Related Works
2.1. Problem Settings

We formulate the PO settings based on the EGR approach [2,24,28]. In a financial
market of d assets, we denote pt ∈ Rd

+, t = 0, 1, 2, · · · as the closing prices at the end of the
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t(th) period, where Rd
+ represents the d-dimensional non-negative number space. The price

relative can be used to depict the growth rates of assets:

xt ,
pt

pt−1
∈ Rd

+, t = 1, 2, 3, · · · , (1)

where the division is conducted component-wise.
The portfolio b assigns the proportion of capital allocated to different assets at the

onset of the t(th) period. It resides in the d-dimensional simplex

bt ∈ ∆d := {b ∈ Rd
+ :

d

∑
i=1

b(i) = 1}, (2)

where the non-negativity constraint is imposed to prevent short-selling. The growth rate
for the t(th) period can be represented by b>t xt. Without loss of generality, we can set the
initial wealth as S0 = 1. Then, the final cumulative wealth (CW) of an investment that lasts
T trading periods can be calculated as follows:

ŜT =
T

∏
t=1

(b̂>t xt). (3)

To maximize ŜT , we need to develop a trading strategy by selecting a set of portfolios
{b̂t}T

t=1.

2.2. Related Works

In this section, we introduce several widely used trend-reversing methods: simple
moving average (SMA) [14], exponential moving average (EMA) [14], robust median rever-
sion (RMR) [15], and peak price (PP) [18]. Firstly, SMA and EMA are popular financial tools
that use moving averages to predict future asset prices. This is a defensive and moderate
strategy with a neutral risk preference that avoids overestimation and underestimation.
SMA calculates the average of asset prices within a recent time window of size w to predict
future price relatives, while EMA combines the current price with the previous EMA. SMA
and EMA can be represented in form of price relatives as follows:

x̂S,t+1(w) =
∑w−1

k=0 pt−k

wpt
, (4)

x̂E,t+1(ζ) = ζ1 + (1− ζ)
x̂E,t

xt
, (5)

where 0 < ζ < 1 is a smoothing parameter.
RMR calculates the multivariate L1-median of asset prices in the recent time window,

then estimates the next price relative. Its price relative form is given by

ϑ = argmin
ϑ

w−1

∑
k=0
‖pt−k − ϑ‖,

x̂L1,t+1(w) =
ϑ

pt
, (6)

where ‖ · ‖ denotes the Euclidean norm.
Empirical evidence indicates that both high and low asset prices in the market are

temporary and that asset prices are likely to exhibit mean-reverting behavior [29,30]. This
means that assets performing well (poorly) in previous periods are likely to perform
poorly (well) in subsequent periods. This phenomenon aligns more closely to the asset
trend changes in real-world financial markets. The following Table 1 shows some existing
trend-reversing strategies, as well as their advantages and limitations.
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Table 1. Advantages and disadvantages of methods based on trend-reversing strategies.

Methods Advantages Disadvantages

Anti-Correlation [31] Using statistical relationships; High transaction costs; overfitting;
adhering to a constant rebalancing strategy. data snooping bias.

Confidence-Weighted Mean Reversion [32] Applying confidence-weighted learning techniques; Sensitive to parameter selection;
leveraging second-order information. lacking traditional regret bounds.

Online Moving-Average Reversion [14] Utilizing historical prices; Possessing lag;
reducing market noise. sensitive to parameter selection.

Robust Median Reversion [15] Robustness to noise and outliers; Sensitive to transaction costs;
flexible parameter selection. market-dependent.

On the contrary, PP is a trend-following strategy. It assumes that the maximum price
in the recent time window reflects the increasing potential in the subsequent trading period:

p̂(i)
t+1 = max

0≤k≤w−1
p(i)

t−k, i = 1, 2, · · · , d.

x̂P,t+1 =
p̂t+1

pt
. (7)

It can be used in radial basis functions to improve diversity in the whole multi-trend
representation [23].

3. Methodology
3.1. Multi-Trend Objective Price Prediction

Contrary to PP, we propose the valley price (VP), which uses the minimum closing
price in the recent time window:

p̂(i)
t+1 = min

0≤k≤w−1
p(i)

t−k, i = 1, 2, · · · , d.

x̂V,t+1 =
p̂t+1

pt
. (8)

Multi-trend representation involves a large class of methods that combine different
price trends in various ways. We present only one possible organizational form among
them, hoping that this idea will be a catalyst for subsequent works. Since VP is a minimal-
type term, we intend to combine it with a maximal-type term, resulting in the maximum of
SMA, EMA, and L1-median. Moreover, we propose to exploit the mean between the VP
and the highest reversing trend as the predicted growth rate in the next period:

x̂(i)t+1 =
1
2

x̂(i)V,t+1 +
1
2

max{x̂(i)S,t+1(w), x̂(i)E,t+1(ζ), x̂(i)L1,t+1(w)}, i = 1, 2, · · · , d. (9)

This mean–min approach considers a deeper reversion from the largest mean towards
the VP, fully utilizing various patterns between different strategies, and it is a collection
of symmetric and asymmetric information for each method. To better demonstrate this
multi-trend objective, we extract a portion of asset data from the data sets as an example:

x̂V,t+1 = [1.0336 0.9951 0.9978]>, x̂S,t+1 = [0.9678 1.0099 0.9731]>,

x̂E,t+1 = [0.9593 1.0336 0.9351]>, x̂L1,t+1 = [1.0166 0.9898 0.9481]>,

x̂t+1 =
1
2

x̂V,t+1 +
1
2

max{x̂S,t+1, x̂E,t+1, x̂L1,t+1}

=
1
2
[1.0336 0.9951 0.9978]> +

1
2
[1.0166 1.0336 0.9731]>

= [1.0251 1.0144 0.9855]>.
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3.2. Portfolio Optimization Model

We propose the following multi-trend objective PO model. It incorporates a hyperpa-
rameter to adjust the growth factor. The objective function is defined as follows:

ψt+1 = −x̂t+1, (10)

min
b

g(b) = τψ>t+1b + ‖b‖1 s.t. 1>b = 1, (11)

where τ > 0 is a hyperparameter for the growth factor, ‖ · ‖1 denotes the `1 norm, and 1 rep-
resents a vector with all-one components. Note that maximizing the growth factor x̂>t+1b is
equivalent to minimizing ψ>t+1b. The constraint 1>b = 1 enforces a self-funding condition
that ensures full reinvestment and non-borrowing money. This is a convex optimization
problem with an equality constraint. To solve it, we convert it into an unconstrained
Lagrangian function by introducing a dual variable η [33]:

L(b, η) , τψ>t+1b + ‖b‖1 + η(1>b− 1). (12)

This can be solved by a primal-dual update scheme. In this scheme, the dual step regarding
the update of η is easy to develop. Hence, we mainly focus on the primal step that updates
b. To this end, we fix η and denote f (b) , L(b, η) in the rest of this paper, if not specified.

3.3. Accelerated Quasi-Newton Method

In this section, we concentrate on solving (12) by employing the BFGS method, a
crucial technique of the quasi-Newton method framework. This approach is particularly
effective in unconstrained optimization problems [27], named after its developers Broyden,
Fletcher, Goldfarb, and Shanno. It is widely recognized for its proficiency in approximating
the Hessian matrix [27]. This method leverages gradient information at the current iteration
point, allowing for the continuous adjustment of the search direction and step size. Notably,
the BFGS method exhibits superior global convergence properties, enabling a more rapid
approach to the optimal solution.

In optimization, quasi-Newton methods including BFGS methods place significant
emphasis on the first derivative of the objective function and treat it as crucial information.
However, there are non-differentiable points of f (b), due to the presence of ‖b‖1, which
should be handled before the primal-dual update. First, we define a zero-measure set
as follows:

D = {b : ∃ i, b(i) = 0}. (13)

Next, we check the subdifferential set ∂‖b‖1 in two cases of whether b lies in D: (1) If
b /∈ D, ∂‖b‖1 actually becomes a gradient sign(b), where the sign operator is conducted
component-wise. (2) If b ∈ D, it can be seen that 0 ∈ (∂|b(i)|)|b(i)=0. Thus, we can directly
take 0 to serve as the surrogate for the gradient of ‖b‖1. Summarizing both cases, we can
use ∂‖b‖1 , sign(b) throughout the rest of this paper. Then, the first subgradient of f (b)
can be calculated by

∂ f (b) = τψt + sign(b) + η1. (14)

To exploit the quasi-Newton method inherent in the BFGS algorithm, we need to
employ a surrogate matrix B to approximate the Hessian matrix in the second-order Taylor
expansion of f (b). This approach allows for a more efficient and accurate representation
of the Hessian matrix in the context of Taylor expansion. At the (k + 1)th iteration, the
second-order Taylor expansion of f (b) around b(k+1) can be approximated by

f (b) ≈ f (b(k+1)) + ∂ f>(b(k+1))(b− b(k+1)) +
1
2
(b− b(k+1))

>B(k+1)(b− b(k+1)). (15)
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Taking another subgradient on both sides of (15) and approximating the Hessian by
B(k+1) again, we obtain

∂ f (b(k)) ≈ ∂ f (b(k+1)) + B(k+1)(b(k) − b(k+1)), (16)

∂ f (b(k+1))− ∂ f (b(k)) ≈ B(k+1)(b(k+1) − b(k)). (17)

For the convenience of illustration and understanding, we introduce the following
two vectors:

m(k) = b(k+1) − b(k), p(k) = ∂ f (b(k+1))− ∂ f (b(k)). (18)

Inserting (18) into (17) yields

p(k) ≈ B(k+1)m(k). (19)

Note that for the objective function f (b), the following equation regarding the Hessian holds:

p(k) = H(k+1)m(k). (20)

Hence, it is effective to use (19) to approximate (20) provided B(k+1) is a good surrogate for
H(k+1). We refer to (19) as the quasi-Newton condition or the quasi-Newton equation [27],
which is crucial in the subsequent BFGS correction steps.

The BFGS method uses a technique called rank-two correction to update B(k+1) [34].
This technique adds two rank-one matrices ee> and zz> to B(k+1). It has a simple form and
ensures positive definiteness. On one hand, the rank-two update is simple, which saves
operations for complex matrices. It leads to improved computational efficiency and makes
the BFGS method faster than many other optimization methods. On the other hand, the
rank-two update also ensures the positive definiteness of the matrix B(k+1). In other words,
B(k+1) remains a valid estimate of H(k+1) at each iteration. This property is crucial for the
convergence of the algorithm.

Consider the following iterative scheme for B(k+1):

B(k+1) = B(k) + ∆B(k), ∆B(k) = µee> + ξzz>, (21)

where µ, ξ, e, z are coefficients and vectors to be decided in the next step. Inserting (21) into
(19), we obtain

p(k) = B(k)m(k) + (µe>m(k))e + (ξz>m(k))z. (22)

Although µ, ξ, e, z are still not uniquely determined, an intuitive setting for them is
as follows:

µe>m(k) = 1, e = p(k), ξz>m(k) = −1, z = B(k)m(k). (23)

Since B(k) and B(k+1) are positive definite, µ and ξ can be calculated as

µ =
1

p>
(k)m(k)

, ξ = − 1
m>

(k)B(k)m(k)
. (24)

Combining (21) and (24), the iterative update becomes

B(k+1) = B(k) + ∆B(k) = B(k) +
p(k)p>(k)
p>
(k)m(k)

−
B(k)m(k)m>(k)B(k)

m>
(k)B(k)m(k)

. (25)
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Then, (25) can be rearranged as a matrix computation form:

B(k+1) = B(k) +

[
−

B(k)m(k)

m>
(k)B(k)m(k)

p(k)

p>
(k)m(k)

][
m>(k)B(k)

p>(k)

]
. (26)

To compute the inverse of B(k+1), we adopt the Sherman–Morrison–Woodbury for-
mula [34] to establish the relationship between B−1

k+1 and B−1
k .

Theorem 1 (Sherman–Morrision–Woodbury formula). If Q ∈ Rd×d is an invertible matrix,
vectors U, V ∈ Rd×p where 1 ≤ p ≤ d when (I + V>Q−1U)−1 exist, then

(Q + UV>)−1 = Q−1 −Q−1U(I + V>Q−1U)−1V>Q−1. (27)

According to Theorem 1 and (26), we let

U =

[
−

B(k)m(k)

m>
(k)B(k)m(k)

p(k)

p>
(k)m(k)

]
, V> =

[
m>(k)B(k)

p>(k)

]
. (28)

Then, we apply Theorem 1 to (26) and obtain

B−1
(k+1) = B−1

(k) − B−1
(k)U(I2 + V>B−1

(k)U)−1V>B−1
(k). (29)

It can be seen that the matrix

I2 + V>B−1
(k)U =

 0 1

−(m(k)B(k)m(k)

p>
(k)m(k)

)−1 p>
(k)B

−1
(k)p(k)

p>
(k)m(k)

+ 1

 (30)

is invertible. Its inverse is

(I2 + V>B−1
(k)U)−1 =

(1 + p>
(k)B

−1
(k)p(k)

p>
(k)m(k)

)
m>

(k)B(k)m(k)

p>
(k)m(k)

−
m>

(k)B(k)m(k)

p>
(k)m(k)

1 0

. (31)

The relationship between B−1
(k+1) and B−1

(k) is

B−1
(k+1) =B−1

(k) −
m(k)p>(k)B

−1
(k)

p>
(k)m(k)

−
B−1
(k)p(k)m>(k)
p>
(k)m(k)

+

(1 +
p>
(k)B

−1
(k)p(k)

p>
(k)m(k)

)m(k)m>(k)

p>
(k)m(k)

=(I−
m(k)p>(k)
p>
(k)m(k)

)B−1
(k)(I−

p(k)m>(k)
p>
(k)m(k)

) +
m(k)m>(k)
p>
(k)m(k)

. (32)

This formula directly updates B−1
(k+1) from B−1

(k), which will be used in the BFGS method.
Next, we intend to find a more effective selection of the update step size α. We adopt

an inexact line search scheme to find an appropriate α. It is a descending search with α0 > 0,
β ∈ (0, 1) and αl+1 = βαl , l = 0, 1, 2, · · · . The search continues until it satisfies the Wolfe
conditions [27]:

f (b(k) + αld(k)) ≤ f (b(k)) + c1αl∂ f>(bk)d(k), (33)

∂ f (b(k) + αld(k))
>d(k) ≥ c2∂ f>(bk)d(k), (34)
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where c1 and c2 are scalar parameters, such that 0 < c1 < c2 < 1, and d(k) is a descent
direction; (33) and (34) are commonly known as the Armijo rule [35] and the curvature
condition, respectively. As for the setting of d(k), we use the following Newton step [33]:

d(k) = −B−1
(k)∂ f (b(k)), (35)

where B(k) is the approximation for the Hessian H(k) by the BFGS method. B−1
(k) can be

iteratively calculated by (32).
Next, the portfolio is updated by

b(k+1) = b(k) + αld(k), (36)

where αl is a step size satisfying the Wolfe conditions (33) and (34). The dual variable η(k+1)
is updated by

η(k+1) = η(k) + γ(1>b(k+1) − 1), (37)

where γ > 0 is the dual step size. After reaching the stopping criterion, the last iteration
should be normalized to produce the next portfolio [22,36]:

b̂t+1 = argmin
b∈∆d

‖b− σb(k+1)‖2
2, (38)

where ‖ · ‖2 denotes the `2 norm and σ > 0 is a scale parameter. The whole algorithmic
framework for the proposed method is summarized in Algorithm 1:

Algorithm 1 MTO-AQNM

Input: Set the parameters τ,γ,σ,β,c1,c2,Max_Iter,Tol, the current portfolio b̂t. Initialization:
α0,η0, b(0) = b(1) = b̂t, B−1

(0) = B−1
(1) = I.

1: Compute the predicted price relatives by (9).
2: for k = 1→ Max_Iter do
3: Compute the first derivative ∂ f (b(k)) by (14).
4: Compute the Newton step d(k) by (35).
5: Update step size αl by the Wolfe conditions (33) and (34).
6: Compute m(k) = αld(k).
7: if ‖m(k)‖2 < Tol then
8: Break.
9: end if

10: Update portfolio b(k+1) by (36).
11: Update dual variable η(k+1) by (37).
12: Compute ∂ f (b(k+1)) by (14).
13: if ‖∂ f (b(k+1))‖2 < Tol then
14: Break.
15: end if
16: p(k) = ∂ f (b(k+1))− ∂ f (b(k)).
17: Compute B−1

(k+1) by (32).
18: end for
19: Update and normalize the next portfolio by (38).
Output: The next portfolio b̂t+1.

The flowchart of MTO-AQNM is shown in Figure 1. It first gathers historical asset
prices. Then it wraps them into a multi-trend objective. In the next step, it uses an
accelerated quasi-Newton algorithm to obtain the optimized portfolio. This information is
then fed back to the investors for their references.



Symmetry 2024, 16, 821 9 of 20

Environment
Historical asset price

Historical asset price ...

Multitrend Objective Price 
Prediction Strategy

Algorithm 
System

Investment decision

Investor

Investments

Result

 Portfolio Optimization
Model

Accelerated quasi-Newton method

Figure 1. Flowchart of the whole MTO-AQNM strategy.

4. Experimental Results

We wanted to demonstrate the effectiveness of our model and algorithm using ex-
perimental metrics in financial markets where there was asymmetry in all aspects, and
we conducted experiments on six benchmark data sets from diverse financial circum-
stances: NYSE(N) [32], FTSE100 [37], Dowjones [37], HS300 [23], NAS100 [37], and FF32
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html, accessed
on 3 June 2023). Their profiles are given in Table 2. For comparison, we used nine state-
of-the-art PO systems: peak price tracking (PPT, [18]), reweighted price relative tracking
(RPRT, [38]), kernel-based trend pattern tracking (KTPT, [39]), S1, S2, S3 [40], SSPO [22],
adaptive input and composite trend representation (AICTR, [23]), multi-trend conditional
value at risk (MT-CVaR, [24]), as well as one trivial system 1/N (equally weighted portfo-
lio, [41]) to test the effectiveness of MTO-AQNM. Moreover, we used multiple indicators to
assess the performance of these competitors.

Table 2. Profiles of six benchmark data sets.

Data Set Region Time Periods Frequency Assets Asset Type Portfolio Type

NYSE(N) US 1 January 1985∼30 June 2010 6431 Daily 23 Stock Hybrid Portfolio
FTSE100 UK 11 July 2002∼11 April 2016 717 Weekly 83 Stock Hybrid Portfolio

Dowjones US 16 February 1990∼7 April 2016 1363 Weekly 28 Stock Hybrid Portfolio
HS300 CN 21 January 2016∼16 October 2017 421 Daily 44 Stock Hybrid Portfolio

NAS100 US 3 November 2004∼11 April 2016 596 Weekly 82 Stock Hybrid Portfolio
FF32 US July 1971∼May 2023 623 Monthly 32 Portfolio Hybrid Portfolio

In the first five data sets, we set the window size w = 5 for MTO-AQNM, which was
the same as other competitors [18,22–24,38,40]. In FF32, we set w = 120 to be consistent
with the conventional setting for monthly data in the literature [42,43]. For other parameters
of MTO-AQNM, we empirically set τ = 0.5, γ = 0.005 and η0 = 0.8 for reasonable results.
The iteration parameters were set as Max_Iter = 105, Tol = 10−4 and σ = 107. The
parameters for the quasi-Newton method were set as β = 0.2, c1 = 10−4, c2 = 0.9 and
α0 = 10.

Next, we used ablation experiments to examine whether the key parameters τ, γ and
η0 of MTO-AQNM were robust within small changes: τ ∈ (0.3, 0.7), γ ∈ (0.003, 0.007), and
η0 ∈ (0.6, 1.0). We took the final CWs as the evaluating metric, then changed one parameter
at a time while fixing the other two as their defaults. The results are shown in Figures 2–4,
which indicate that MTO-AQNM is robust against small changes of these parameters.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 2. Final cumulative wealths of MTO-AQNM with respect to τ on six benchmark data sets (fix
γ = 0.005 and η0 = 0.8).
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Figure 3. Final cumulative wealths of MTO-AQNM with respect to γ on six benchmark data sets (fix
τ = 0.5 and η0 = 0.8).

0

0.5

1

1.5

2

C
um

ul
at

iv
e 

W
ea

lth

109

0.6 0.7 0.8 0.9 1.0

0

(a) NYSE(N)

0

50

100

150

C
um

ul
at

iv
e 

W
ea

lth

0.6 0.7 0.8 0.9 1.0

0

(b) FTSE100

400

800

1200

C
um

ul
at

iv
e 

W
ea

lth

0.6 0.7 0.8 0.9 1.0

0

(c) Dowjones

Figure 4. Cont.



Symmetry 2024, 16, 821 11 of 20

0

0.5

1

1.5

C
um

ul
at

iv
e 

W
ea

lth

0.6 0.7 0.8 0.9 1.0

0

(d) HS300

0

5

10

15

C
um

ul
at

iv
e 

W
ea

lth

0.6 0.7 0.8 0.9 1.0

0

(e) NAS100

0

150

300

500

C
um

ul
at

iv
e 

W
ea

lth

0.6 0.7 0.8 0.9 1.0

0

(f) FF32

Figure 4. Final cumulative wealths of MTO-AQNM with respect to η0 on six benchmark data sets (fix
τ = 0.5 and γ = 0.005).

4.1. Cumulative Wealth and Mean Excess Return

The final cumulative wealth (CW) ŜT in (3) is a main evaluating metric for a PO system.
In addition, the mean excess return (MER, [44]) evaluates the long-term average return of
a PO system that surpasses the market strategy:

MER = r̄s − r̄m =
1
T

T

∑
t=1

(rs,t − rm,t), (39)

where rs,t and rm,t represent the returns of a PO system and the market strategy on the t(th)

period, respectively. According to [45], the market strategy is computed by the uniform-
buy-and-hold strategy. Table 3 shows the CWs and MERs of different PO systems. It
indicates that MTO-AQNM outperformed all the other competitors on five out of six data
sets. For instance, MTO-AQNM significantly outperformed RPRT (the second place) in CW
on Dowjones. Furthermore, only MTO-AQNM (0.0005), RPRT (0.0004), AICTR (0.0003),
and MT-CVaR (0.0002) had positive MERs on HS300, among which, MTO-AQNM achieved
the highest MER. The MER of MTO-AQNM was significantly higher than those of other
competitors on NAS100. In FF32, only MTO-AQNM achieved a positive MER. We also
plotted the CWs of different PO systems in Figure 5. The plot of MTO-AQNM remained
consistently higher than the other competitors for most of the time. Hence, MTO-AQNM
showed effective performance in these two investing metrics.

Table 3. Final cumulative wealths and mean excess returns of portfolio optimization systems on six
benchmark data sets.

System
NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

CW MER CW MER CW MER CW MER CW MER CW MER

1/N 31.55 0.0000 4.66 0.0000 33.63 −0.0005 1.33 0.0000 6.60 −0.0005 424.42 −0.0005
PPT 2.89× 109 0.0036 22.28 0.0054 105.64 0.0015 1.09 −0.0004 3.82 0.0004 149.01 −0.0013

RPRT 6.25× 108 0.0033 133.87 0.0074 735.63 0.0028 1.46 0.0004 3.42 0.0001 6.28 −0.0061
KTPT 7.54× 108 0.0033 54.22 0.0063 422.03 0.0024 1.28 0.0000 6.44 0.0007 16.15 −0.0052

S1 2.37× 106 0.0022 54.26 0.0061 137.79 0.0012 1.11 −0.0004 4.36 −0.0001 32.12 −0.0038
S2 1.92× 106 0.0022 46.50 0.0048 125.14 0.0014 1.12 −0.0002 5.47 −0.0011 26.58 −0.0041
S3 2.53× 106 0.0022 57.87 0.0060 135.92 0.0016 1.20 −0.0005 4.99 0.0003 27.08 −0.0039

SSPO 1.62× 109 0.0035 23.94 0.0056 101.91 0.0015 1.08 −0.0004 4.32 0.0006 130.21 −0.0016
AICTR 7.66× 108 0.0033 89.74 0.0070 178.84 0.0018 1.42 0.0003 15.68 0.0026 7.88 −0.0059

MT-CVaR 2.59× 108 0.0031 86.96 0.0070 135.49 0.0015 1.35 0.0002 3.75 −0.0010 12.45 −0.0052

MTO-AQNM 2.11× 109 0.0034 156.22 0.0075 1119.73 0.0031 1.56 0.0005 18.23 0.0029 509.83 0.0010
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Figure 5. Cumulative wealth plots of portfolio optimization systems on six benchmark data sets.

The Wilcoxon signed-rank test is used to determine whether there is a significant
difference between two related or paired samples. In PO, it can be used to compare
the performance of portfolios generated by two different methods. To test whether the
investment performance of MTO-AQNM is similar to that of competitors, we conducted
the Wilcoxon signed-rank test on the CWs between MTO-AQNM and others. Specifically,
we computed the CW Ss,t for some PO method s at time t, resulting in T samples of Ss,t
in a data set with T trading periods. Each benchmark data set in this paper had more
than 400 trading periods, which is sufficient for statistical tests. The results in Table 4
show that MTO-AQNM differed from each competitor in terms of investment performance,
with a confidence level greater than 95% (with all p-values close to 0), suggesting that
MTO-AQNM differs significantly from all other competitors in terms of CWs. There is
another statistical test for the investing returns in Section 4.2.
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Table 4. The p-values of Wilcoxon tests for CWs between MTO-AQNM and other portfolio optimiza-
tion systems on six benchmark data sets.

System NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

MTO-AQNM vs. 1/N 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MTO-AQNM vs. PPT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MTO-AQNM vs. RPRT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MTO-AQNM vs. KTPT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MTO-AQNM vs. S1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MTO-AQNM vs. S2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MTO-AQNM vs. S3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MTO-AQNM vs. SSPO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MTO-AQNM vs. AICTR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MTO-AQNM vs. MT-CVaR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4.2. The α Factor

The α factor is derived from the capital asset pricing model (CAPM, [46]). It represents
the pure excess return that excludes market volatility [47]:

E(rs) = α + βE(rm),

β̂ =
ĉov(rs, rm)

σ̂2(rm)
, α̂ = r̄s − β̂r̄m, (40)

where σ̂ and ĉov represent the sample standard deviation (STD) and the covariance during
T trading periods, respectively. Table 5 shows the α factors of different PO methods. MTO-
AQNM performed better than all the competitors on most data sets, while slightly worse
than PPT or 1/N on NYSE(N) or FF32, respectively. Specifically, only MTO-AQNM (0.0003),
RPRT (0.0001), and AICTR (0.0001) achieved positive α factors on HS300. In addition, only
MTO-AQNM (0.0021), PPT (0.0004), KTPT (0.0013), S2 (0.0001), SSPO (0.0005), and AICTR
(0.0019) achieved positive α factors on NAS100. Furthermore, MTO-AQNM achieved the
highest α factors on both data sets. Moreover, whether α̂ was significantly larger than 0
could be tested by a left-tailed t-test in the regression model (40), in order to demonstrate
that inherent excess returns were not due to luck. According to the results in Table 5, the
confidence level of MTO-AQNM was significantly higher than that of other experimental
indicators in multiple markets. For example, in the FTSE100, the confidence level of MTO-
AQNM reached 99.44%, far exceeding other systems. In the Dowjones, the confidence
level of MTO-AQNM was 99.93%, again showing outstanding performance. These results
indicate that the performance of MTO-AQNM in different markets has higher confidence,
making it more stable and reliable.

Table 5. The α factors (with p-values of t-tests) of portfolio optimization systems on six benchmark
data sets.

System
NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

α p-Value α p-Value α p-Value α p-Value α p-Value α p-Value

1/N 0.0000 0.0314 0.0000 0.4058 0.0010 0.0080 0.0000 0.6273 −0.0002 0.6975 0.0009 0.3782
PPT 0.0035 0.0000 0.0037 0.0896 0.0020 0.0536 −0.0005 0.7465 0.0004 0.4312 −0.0019 0.8962

RPRT 0.0032 0.0000 0.0064 0.0103 0.0036 0.0019 0.0001 0.4364 −0.0002 0.5396 −0.0074 1.0000
KTPT 0.0032 0.0000 0.0051 0.0301 0.0031 0.0061 0.0000 0.5562 0.0013 0.3035 −0.0037 0.9877

S1 0.0021 0.0000 0.0046 0.0349 0.0020 0.0241 −0.0005 0.9060 −0.0003 0.5707 −0.0049 0.9998
S2 0.0021 0.0000 0.0045 0.0413 0.0020 0.0288 −0.0004 0.8596 0.0001 0.4777 −0.0052 0.9999
S3 0.0022 0.0000 0.0047 0.0322 0.0020 0.0251 −0.0003 0.7913 −0.0001 0.5152 −0.0051 0.9997

SSPO 0.0034 0.0000 0.0040 0.0799 0.0020 0.0552 −0.0005 0.7620 0.0005 0.4173 −0.0020 0.9221
AICTR 0.0032 0.0000 0.0055 0.0167 0.0025 0.0208 0.0001 0.4638 0.0019 0.1876 −0.0068 1.0000

MT-CVaR 0.0031 0.0000 0.0054 0.0184 0.0022 0.0327 −0.0002 0.5113 −0.0006 0.6764 −0.0062 1.0000

MTO-AQNM 0.0034 0.0000 0.0065 0.0056 0.0040 0.0007 0.0003 0.3373 0.0021 0.1706 −0.0020 0.5378
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The β̂ factor is a core part of the CAPM and is used to calculate the expected return
and risk of an asset. The β̂ factor reflects the volatility of a portfolio relative to a market
benchmark. It reflects the relationship between a stock or portfolio and the systematic risk
of the market. When β̂ = 1, it indicates that the asset price fluctuates in synchronization
with the market; when β̂ < 1, it indicates that the asset price fluctuates less than the market,
and when β̂ > 1, it indicates that the asset price fluctuates more than the market. Table 6
shows that the MTO-AQNM system is more stable compared to other systems.

Table 6. The β factors of portfolio optimization systems on six benchmark data sets.

System NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

1/N 1.0164 1.0034 0.5598 0.9908 0.9245 0.9474
PPT 1.1210 1.6813 0.8419 1.1204 0.9914 1.1088

RPRT 1.1518 1.5201 0.7674 1.2841 1.0737 1.1096
KTPT 1.1347 1.4942 0.7945 1.0332 1.0620 0.8630

S1 1.1350 1.6217 0.7798 1.1180 1.0471 1.1011
S2 1.1040 1.5744 0.7655 1.1268 1.0771 1.0804
S3 1.1285 1.6135 0.7841 1.1111 1.0378 1.0950

SSPO 1.1161 1.6471 0.8387 1.1143 1.0203 1.0352
AICTR 1.1710 1.6088 0.7825 1.2564 1.1589 1.0947

MT-CVaR 1.1505 1.6468 0.8001 1.2126 0.9038 1.0899

MTO-AQNM 1.0375 1.2228 0.8469 1.2540 1.0956 1.0968

4.3. Sharpe Ratio and Information Ratio

In both theoretical and practical portfolio management, it is consistently observed that
higher returns tend to be associated with higher risks. The Sharpe ratio (SR [48]) serves as a
conventional metric for evaluating the risk-adjusted returns and assessing the risk control
efficacy of PO systems. It is defined as

SR =
r̄s − r f

σ̂(rs)
, (41)

where r f corresponds to the risk-free return. Since the risk-free asset was not considered in
this paper, r f was set to 0.

Another similar metric in this context is the information ratio (IR, [49]), but it directly
calculates the returns and risks relative to the market strategy:

IR =
r̄s − r̄m

σ̂(rs − rm)
. (42)

Table 7 shows the SRs and IRs of different PO systems. MTO-AQNM achieved the highest
SRs and IRs in most cases. According to [41], 1/N has a natural risk-control inclination and,
thus, achieves high SRs. Nevertheless, MTO-AQNM still outperformed 1/N in 9 out of
12 cases. Hence, MTO-AQNM is also competitive in regard to risk control.
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Table 7. Sharpe ratios and information ratios of portfolio optimization systems on six benchmark
data sets.

System
NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

SR IR SR IR SR IR SR IR SR IR SR IR

1/N 0.0506 0.0255 0.0933 0.0100 0.1112 −0.0256 0.0734 −0.0275 0.1221 −0.0581 0.2213 −0.0690
PPT 0.1087 0.1008 0.0915 0.0711 0.0894 0.0320 0.0246 −0.0255 0.0673 0.0066 0.1557 −0.0359

RPRT 0.1046 0.0967 0.1210 0.1023 0.1173 0.0605 0.0550 0.0228 0.0648 0.0014 0.0775 −0.1539
KTPT 0.1067 0.0988 0.1073 0.0864 0.1093 0.0524 0.0424 0.0007 0.0709 0.0114 0.1048 −0.1275

S1 0.0903 0.0807 0.1079 0.0883 0.1012 0.0327 0.0244 −0.0516 0.0731 −0.0030 0.1174 −0.1109
S2 0.0782 0.0678 0.0868 0.0646 0.0931 0.0317 0.0293 −0.0128 0.0476 −0.0213 0.1112 −0.1128
S3 0.0867 0.0767 0.1062 0.0863 0.1059 0.0401 0.0166 −0.0494 0.0799 0.0072 0.1131 −0.1088

SSPO 0.1060 0.0979 0.0929 0.0727 0.0887 0.0314 0.0231 −0.0275 0.0704 0.0100 0.1542 −0.0466
AICTR 0.1056 0.0979 0.1179 0.0998 0.0978 0.0386 0.0555 0.0181 0.1042 0.0486 0.0827 −0.1509

MT-CVaR 0.1020 0.0939 0.1168 0.0989 0.0947 0.0342 0.0476 0.0106 0.0751 −0.0314 0.0937 −0.1358

MTO-AQNM 0.1125 0.1050 0.1290 0.1092 0.1243 0.0666 0.0657 0.0347 0.1074 0.0538 0.1754 0.0223

4.4. Treynor Ratio

The Treynor ratio (TR, [50]) is the ratio of the excess return to the β factor in (40). It
measures the systematic-risk-adjusted excess return for a PO system, since the β factor is a
metric for the systematic risk. TR can be calculated as follows:

TR =
r̄s − r f

β̂
. (43)

Table 8 presents the TRs for different PO systems. MTO-AQNM achieved the best TRs across
most data sets, except on NYSE(N) or FF32, where it was slightly worse than PPT or 1/N,
respectively. This indicates that MTO-AQNM is competitive in systematic risk control.

Table 8. Treynor ratios of portfolio optimization systems on six benchmark data sets.

System NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

1/N 0.0006 0.0025 0.0052 0.0007 0.0039 0.0116
PPT 0.0036 0.0047 0.0059 0.0003 0.0045 0.0097

RPRT 0.0033 0.0068 0.0082 0.0009 0.0039 0.0049
KTPT 0.0034 0.0059 0.0074 0.0007 0.0047 0.0073

S1 0.0024 0.0053 0.0060 0.0003 0.0038 0.0071
S2 0.0024 0.0046 0.0064 0.0005 0.0027 0.0069
S3 0.0024 0.0053 0.0064 0.0002 0.0042 0.0069

SSPO 0.0036 0.0048 0.0059 0.0003 0.0046 0.0096
AICTR 0.0033 0.0059 0.0067 0.0008 0.0057 0.0052

MT-CVaR 0.0032 0.0057 0.0062 0.0007 0.0034 0.0059

MTO-AQNM 0.0035 0.0070 0.0088 0.0010 0.0058 0.0114

4.5. Sortino Ratio

The Sortino ratio [51] is a metric used in the field of finance and investment to measure
the risk-adjusted return of an investment. It is an improvement on the Sharpe ratio,
specifically taking into account downside risk rather than total volatility. The Sortino ratio
can be calculated as follows:

Sortino Ratio =
r̄s − r f

σd
, σd =

√√√√ 1
T

T

∑
t=1

(r̄s,t − r f ,t)
2, (44)

where σd is the downside standard deviation. Table 9 presents the Sortino ratios for different
PO systems. MTO-AQNM achieved the best Sortino ratios on most of the data sets, with
only a slight inferiority of 1/N on FF32. This suggests that MTO-AQNM has more effective
risk management under downside market conditions.



Symmetry 2024, 16, 821 16 of 20

Table 9. Sortino ratios of portfolio optimization systems on six benchmark data sets.

System NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

1/N 0.0790 0.1555 0.2025 0.0917 0.1882 0.3795
PPT 0.1957 0.1760 0.1560 0.0309 0.1122 0.2755

RPRT 0.1870 0.2333 0.2068 0.0864 0.1072 0.1308
KTPT 0.1935 0.2051 0.1954 0.0647 0.1399 0.1706

S1 0.1636 0.2084 0.1773 0.0344 0.1196 0.2044
S2 0.1401 0.1636 0.1576 0.0471 0.0783 0.1939
S3 0.1573 0.2048 0.1882 0.0245 0.1321 0.1991

SSPO 0.1923 0.1786 0.1557 0.0286 0.1181 0.2760
AICTR 0.1893 0.2163 0.1709 0.0805 0.1834 0.1361

MT-CVaR 0.1811 0.2169 0.1657 0.0714 0.1116 0.1598

MTO-AQNM 0.2092 0.2416 0.2226 0.1017 0.1933 0.3298

4.6. Transaction Cost

To assess the influence of transaction costs on the performance of the PO systems, we
employed a proportional transaction cost model [2,14,52] to compute CWs associated with
transaction costs:

Sρ
T = S0

T

∏
t=1

[(b̂>t xt) · (1−
ρ

2

d

∑
i=1
|b̂(i)

t − b̃(i)
t−1|)], (45)

b̃(i)
t−1 =

b̂(i)
t−1x(i)t−1

b̂>t−1xt−1
, (46)

where b̃(i)
t−1 denotes the updated portfolio of the ith asset at the end of period (t − 1),

while ρ represents the bidirectional transaction cost rate. If the cost rates for buying and
selling were equal, then transitioning from the evolved portfolio b̃t−1 to the subsequent
portfolio b̂t incurred a proportional transaction cost of ρ

2 ∑d
i=1 |b̂

(i)
t − b̃(i)

t−1|. By varying ρ
from 0 to 0.5%, the final CWs of different PO systems are depicted in Figure 6. In general,
MTO-AQNM performed well, with moderate-to-low transaction cost rates. If a fund was
operating with large enough capital, ρ could be negotiated to be very small (e.g., ≤0.05%).
Hence MTO-AQNM is able to withstand a certain level of transaction cost.

4.7. Accelerated Quasi-Newton Method vs. First-Order Method

For this part, we examined whether the proposed AQNM runs faster than an ordinary
first-order subgradient descent method. The computing machine was an ordinary personal
computer with an Intel Core i7-10700 2.90 GHz CPU and an 8 GB 2933 MHz DDR4 RAM.
Table 10 shows the average running times and iterations per trading period for both
algorithms with the same parameters. It shows that AQNM greatly reduces the number of
iterations and running times compared with the first-order method. In fact, the first-order
method cannot converge until reaching the maximum iterations, while AQNM can finish
computation in only a few seconds. This indicates that AQNM is necessary and efficient in
solving the proposed PO model.
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Figure 6. Final cumulative wealths of portfolio optimization systems with respect to transaction cost
rate ρ on six benchmark data sets.

Table 10. Average running times (in seconds) and iterations per trading period for accelerated
quasi-Newton method and first-order method.

Algorithm
NYSE(N) FTSE100 Dowjones HS300 NAS100 FF32

Time Iter. Time Iter. Time Iter. Time Iter. Time Iter. Time Iter.

First-order 1145.4971 100,000 141.5923 100,000 246.2983 100,000 75.4959 100,000 117.6703 100,000 112.4363 100,000

AQNM 8.6836 9.7988 1.2089 7.6360 1.0718 7.8921 0.3761 7.7553 0.9090 7.3993 2.2292 7.2857

5. Conclusions

This paper proposes a multi-trend objective and accelerated quasi-Newton method
(MTO-AQNM) for portfolio optimization. Some existing state-of-the-art portfolio optimiza-
tion systems mainly focus on trend-reversing and multi-trend representation. MTO-AQNM



Symmetry 2024, 16, 821 18 of 20

combines four trend-reversing representations into one objective function, which is more
adaptive to the fluctuations of financial markets. To solve this model, MTO-AQNM uses the
BFGS method with the Wolfe conditions to reduce computational complexity and improve
convergence speed.

Extensive experiments on six data sets showed that MTO-AQNM is effective in portfo-
lio optimization. It outperformed nine state-of-the-art competitors in most cases regarding
cumulative wealth, mean excess return, and α factor, showing good ability for gaining
returns. It also achieved the highest Sharpe ratios, information ratios and Treynor ratios
in most cases, showing good risk control ability. As for practical issues, MTO-AQNM can
withstand a certain level of transaction costs and it runs fast. Future works may fall into de-
veloping new multi-trend objective models and corresponding efficient solving algorithms.
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The following abbreviations are used in this manuscript:

MTO-AQNM multi-trend objective and accelerated quasi-Newton method
MV mean variance
PO portfolio optimization
EGR exponential growth rate
PAMR passive-aggressive mean reversion
SSPO short-term sparse portfolio optimization
CW cumulative wealth
SMA simple moving average
EMA exponential moving average
RMR robust median reversion
PP peak price
VP valley price
PPT peak price tracking
RPRT reweighted price relative tracking
KTPT kernel-based trend pattern tracking
AICTR adaptive input and composite trend representation
MT-CVaR multi-trend conditional value at risk
MER mean excess return
CAPM capital asset pricing model
STD sample standard deviation
SR Sharpe ratio
IR information ratio
TR Treynor ratio
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