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Abstract: Fractional calculus with symmetric kernels is a fast-growing field of mathematics with
many applications in all branches of science and engineering, notably electromagnetic, biology, optics,
viscoelasticity, fluid mechanics, electrochemistry, and signals processing. With the use of the Sardar
sub-equation and the Bernoulli sub-ODE methods, new trigonometric and hyperbolic solutions
to the time-fractional Caudrey–Dodd–Gibbon–Sawada–Kotera equation have been constructed in
this paper. Notably, the definition of our fractional derivative is based on the Jumarie’s modified
Riemann–Liouville derivative, which offers a strong basis for our mathematical explorations. This
equation is widely utilized to report a variety of fascinating physical events in the domains of classical
mechanics, plasma physics, fluid dynamics, heat transfer, and acoustics. It is presumed that the
acquired outcomes have not been documented in earlier research. Numerous standard wave profiles,
such as kink, smooth bell-shaped and anti-bell-shaped soliton, W-shaped, M-shaped, multi-wave,
periodic, bright singular and dark singular soliton, and combined dark and bright soliton, are
illustrated in order to thoroughly analyze the wave nature of the solutions. Painlevé analysis of the
proposed study is also part of this work. To illustrate how the fractional derivative affects the precise
solutions of the equation via 2D and 3D plots.

Keywords: Caudrey–Dodd–Gibbon–Sawada–Kotera equation; Bernoulli Sub-ODE method; Sardar
sub-equation method; Jumarie’s modified Riemann–Liouville derivative; soliton solutions; Painlevé
Analysis

MSC: 35C08; 35C09; 35Q51

1. Introduction

The fractional calculus (FC) [1] is an adaptation of classical calculus that is extended
to include non-integer (fractional) order integration and differentiation operations. The
introduction of the notion of fractional operators occurred nearly concurrently with the
advancement of the classical ones. The first recorded mention of the semi-derivative is in
a 1695 conversation between a German and French mathematician, namely Gotfield William
Leibniz and Guillaume François Antoine, Marquis de l’Hôpital, wherein the meaning of
the term is questioned [2]. As a result, many eminent mathematicians, including Riemann,
Grünwald, Liouville, Letnikov, Laplace, Euler, and many more, were interested in this
topic. The theory of FC has advanced quickly since the 19th century, primarily serving as a
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basis for several applied fields such as fractional geometry, fractional differential equations
(FDE), and fractional dynamics [3–5]. The study of FC and its numerous applications in
the fields of engineering, physical science, and life sciences have received a lot of attention
over the past three decades. Numerous fields can be successfully deprived by linear
or nonlinear fractional order differential equations, including chemical physics, optics,
electrical networks, solitary waves, control theory of dynamical systems, probability and
statistics, electrochemistry of corrosion and signal processing, and so forth, and also use
FC [6–8].

It is commonly known that nonlinear partial differential equations (NLPDEs) [9] are a
useful tool for modeling complicated events in a wide range of scientific domains, including
mathematical physics, biology, applied mathematics, chemical physics, optical science,
engineering, and so forth. NLPDEs also find extensive use in several domains such as
solid state physics, fluid mechanics, neuro physics, mathematical biology, quantum field
theory, optical fibers, and plasma physics [10–13]. Innumerable useful domains, including
oceanography, meteorology, and the aerospace industry, mostly rely on an understanding
of these NLPDEs [14–17]. Several scholars are interested in the efficient ways to develop
analytical solutions to nonlinear issues.

The term “soliton” [18,19] refers to a a very stable, nonlinear, self-reinforcing localized
wave packet that retains its shape even after interacting with other similar localized wave
packets and spreads freely at a constant speed and is widely used in fractional dynamics,
engineering finance, physics, and biology. For some classes of NLPDEs, solitons are interest-
ing solutions that propagate with their form and velocity intact without variance. By using
analytical approaches such as the tanh-coth method [20], unified transform method [21],
rational-expansion technique [22], modified F-expansion method [23], novel Kudryashov
approach [24], Hirota’s technique [25], bilinear approach [26], modified Khater method [27],
direct algebraic method [28], and generalized Khater method [29], a broad category for
finding analytical solutions of various NLPDEs such as the following: the Chen–Lee–Liu
(CLL) equation [30], the Kadomtsev–Petviashvili equation [31], Mikhailov–Novikov–Wang
equation [32], tsunami waves [33], the modified equal width equation [34], the fractional
biological population (FBP) model [35], the ill-posed Boussinesq (IPB) equation [36], the
Monge Ampere equation [37], and the Davey–Stewartson equation [38], to obtain the
appropriate solitons solutions.

A variety of definitions pertaining to the importance of the fractional order derivative
have been explored: the Katugampola derivative [39], the Sonin–Letnikov derivative [40],
the Grunwald–Letnikov derivative [41], the Davidson derivative [42], the β-derivative [43],
the M-truncated derivative (M-TD) [44], the conformable derivative (C-D) [45], and the
Atangana–Baleanu derivative [46] under the context of Caputo. The principal focus of this
investigation has been the analysis of effective solutions using the fractional derivative, or
the modified Riemann–Liouville derivative (RLD) [47,48], in accordance with the Caudrey–
Dodd–Gibbon–Sawada–Kotera model [49,50].

The limitations emerged regarding the generally acknowledged Riemann–Liouville [51]
definition of fractional derivatives, which does not enable the derivative of a constant to be
zero. The most beneficial solution that has been recommended for tackling this element is
the so-called Caputo derivative [52], but employing it subjects us to the unpleasant condi-
tion that, in the extreme case, we need to have the function’s second derivative in order to
acquire the derivative of the function. Alternatively, with this scheme, fractional derivative
is only applied to differentiable functions. To cope with this problem, in 2006, Jumarie
suggested an alteration of the RLD, modified RLD [47], for tackling non-differentiable
functions. This adjustment claims to offer a framework for a fractional calculus that bears
substantial parallels to classical calculus.

One of the fundamental models of soliton theory is the fifth-order nonlinear evolution
equation. It is referred to in the literature as the Sawada–Kotera (SK) equation or the
Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) [49,50] equation because it was pro-
posed more than 40 years ago by Sawada and Kotera as well as independently by Caudrey,
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Dodd, and Gibbon. Many approaches have been used in the many publications that have
already been published to study the fifth-order CDGSK equation such as Lie symmetry
analysis [53], the extended Kudryashov’s method [54], the Hirota bilinear method ensu-
ing one soliton, two soliton, and three soliton solutions [55], the new auxiliary equation
method resulting in bell, anti-bell, periodic, and singular wave solutions [49], the Bernoulli
sub-equation function approach ensuing bright, dark, and oscillating solutions [50], and
the integrability of the equation is ascertained by Painlevé analysis [56]. The CDGSK
hierarchy’s explicit Riemann theta function representations are built employing the theory
of Riemann surfaces [57]. A number of integrable features are also derived for the CDGSK
problem in addition to the soliton solutions, including the Bäcklund transformation, the
Lax pair, and the nonlinear superposition formula [58]. Also, the Bäcklund and Darboux
transformations were employed in bilinear forms to evaluate the CDGSK problem.

In this paper, we will precisely solve the time-fractional CDGSK equation [49,50].
We utilize the modified RLD [47,48] by Jumarie as a fractional derivative. For analytical
solutions, the CDGSK equation [49] is taken to be as follows:

℘τ + ℘χχχχχ + (60℘3 + 30℘℘χχ)χ = 0. (1)

The structure of the proposed model in the fractional modified RLD derivative is as follows:

Dκ
τ℘+ ℘χχχχχ + 30℘℘χχχ + 30℘χ℘χχ + 180℘2℘χ = 0. (2)

where Dκ
t is a fractional modified RLD derivative.

Two distinct strategies are applied in order to acquire the required solutions: the
Bernoulli sub-ODE method (BSOM) [59] and the Sardar sub-equation technique (SSET) [60].
These techniques are easy to apply and uncomplicated. Our model was not previously
implemented with these methods.

The article is formatted in the following way: Section 2 provides definitions of frac-
tional derivatives and an explanation of their properties. In Section 3, the fractional CDGSK
equation is mathematically analyzed. In Section 4, the description of analytical techniques
is given. In Section 5, the suggested model is subjected to the BSOM method and the
SSET analytical steps. In Section 6, computations and graphs are used to show how the
outcomes can be explained physically and in Section 7, comparisons of the results are done.
Section 8 provides the Painlevé analysis and Section 9 concludes the study with a few
closing remarks.

2. Preliminaries

In this section, the definitions of fractional derivative and its basic characteristics
are covered.

The Jumarie’s Modified Riemann–Liouville Derivative

Definition 1. The Jumarie’s modified Riemann–Liouville derivative [50] of order κ is defined by
the following:

Dκ
t ℘(t) =



1
Γ(1−κ)

t∫
0
(t − φ)−κ−1(℘(φ)− ℘(0))dφ, κ < 0

1
Γ(1−κ)

d
dt

t∫
0
(t − φ)−κ(℘(φ)− ℘(0))dφ, 0 < κ < 1

(℘(n)(t))
κ−n

, n ≤ κ < n + 1, n ≥ 1.

The Jumarie’s modified Riemann–Liouville derivative has the following properties.

1. Dκ
t ψN = Γ(N+1)

Γ(N+1−κ)
ψN−κ , N > 0.

2. Dκ
t ℓ = 0, ℓ is a constant.

3. Dκ
t (ℓ1r(t) + ℓ2s(t)) = ℓ1Dκ

t r(t) + ℓ2Dκ
t s(t), ℓ1 and ℓ2 are constants.
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4. Dκ
t (r(t)s(t)) = s(t)Dκ

t r(t) + r(t)Dκ
t s(t).

5. Dκ
t r(s(t)) = r′s[s(t)]Dκ

t s(t) = Dκ
t r[s(t)](s′(t))κ .

3. Mathematical Analysis of the Procedure

The time-fractional CDGSK equation’s (1) wave equation is produced using the subse-
quent wave transformation

℘(χ, τ) = ℘(φ), (3)

φ = h̄1χ − h̄2τα

Γ(1 + α)
, (4)

where h̄1 and h̄2 are nonzero arbitrary constants. Equation (4) and Equation (3)’s transfor-
mations are employed to generate Equation (2):

−h̄1h̄2℘
′ + (h̄5

1℘
′′′′ + 30h̄3

1℘℘
′′ + 60h̄1℘

3)′ = 0, (5)

where ℘′ = d℘
dφ . Integrating the Equation (5) with zero integration constants, we have

−h̄1h̄2℘+ h̄5
1℘

′′′′ + 30h̄3
1℘℘

′′ + 60h̄1℘
3 = 0. (6)

4. Description of Analytical Methods
4.1. Bernoulli Sub-ODE Method

This section explains how to get the traveling wave solutions of NLPDEs using the
BSOM [59]. Assume that the partial differential equation for a nonlinear system, with two
independent variables, χ and t, is as follows:

R(℘,℘τ ,℘χ,℘ττ ,℘χχ,℘χτ , . . . . . . . . .) = 0, (7)

where R is a polynomial of ℘(χ, τ) and its partial derivatives, which involve the highest
order derivatives and nonlinear terms, and ℘(φ) = ℘(χ, τ) is an unknown function. The
key steps of this procedure are listed below.

• Step 1: With the independent variables χ and τ combined into a single variable
φ = χ ± µτ, we assume that

℘(φ) = ℘(χ, τ), φ = χ ± µτ. (8)

The transformation provided in Equation (8) allows Equation (7) to be changed to the
following ODE:

R(℘,℘′,℘′′, . . . . . . . . .) = 0, (9)

where ℘′(φ) = d℘
dφ and R is a polynomial in ℘(φ) and its derivatives.

• Step 2: We assume that the formal solution to Equation (9) exists:

℘(φ) =
k

∑
i=0

giℜi, gi ̸= 0, (10)

where ℜ = ℜ(φ) satisfy the equation,

ℜ′ + ψℜ = ζℜ2, (11)

and gi(−k ≤ i ≤ k; k ∈ N) are constants to be determined later, and ψ ̸= 0.
when ζ ̸= 0, Equation (11) is the type of Bernoulli equation, we can obtain the
solution as

ℜ =
ψ

ζ + ψC exp(ψφ)
, (12)
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where C is an arbitrary constant.
When ζ = 0, Equation (12) reduces to

ℜ =
1
C

exp(−ψφ). (13)

Setting C = ζ
ψ in Equation (12), we obtain

ℜ = − ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
)

. (14)

Setting C = − ζ
ψ in Equation (12), we obtain

ℜ = − ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
)

. (15)

• Step 3: Taking into account the homogenous balance between the highest order
derivatives and the nonlinear terms found in Equation (7) or (9), one can ascertain the
positive integer k. Additionally, we precisely define the degree of ℘(φ) as D(℘(φ)) = k,
which in turn yields the degree of the following other expressions:

D
(

dn℘

dφn

)
= k + n, D

(
℘p
(

dn℘

dφn

)s)
= kp + s(k + n). (16)

Consequently, we can use Equation (16) to determine the value of k in Equation (10).
• Step 4: A system of algebraic Equations is produced by substituting Equation (10)

into Equation (9) using Equation (11), gathering all terms of the same powers of ℜ(φ)
together, and setting each coefficient of them to zero. We find the values of νi and
µ by solving this system. Lastly, we derive the exact traveling wave solutions of
Equation (7) by inserting νi, µ, and Equations (14) and (15) into Equation (10).

4.2. Sardar Sub-Equation Technique

We will address an NLPDE in its general form as follows:
Step 1:

R(N, Nτ , Nχ, Nττ , Nχχ, Nχτ , . . . . . . . . .) = 0, (17)

in which ℘(φ) = ℘(χ, τ) is an unknown function and R is a polynomial of ℘. Consider the
wave transformation,

φ = ηχ + µτ, (18)

in which η and µ are non-zero real constants. The transformation is used to change
Equation (17) into the subsequent ODE.

R(N, N′, N′′, . . . . . . . . .) = 0 (19)

where R is a polynomial in ℘ and the ordinary derivatives of R are represented by the
superscripts pertaining to φ.

Step 2: Let us assume that the NLPDE in Equation (7) has the following solution:

N(φ) =
k

∑
i=0

riℑ(φ)i, ri ̸= 0, (20)

where rk(0 ≤ k ≤ N) are real constants and ℑ(φ) satisfying the ode in the form

ℑ′(φ) =

√
f + uℑ(φ)2 +ℑ(φ)4, (21)

where f and u are real constants and Equation (21) presents the solutions as follows:
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Case I: if u > 0 and f = 0, then

ℑ±
1 (φ) = ±

√
−lmu sechlm

(√
uφ
)
,

ℑ±
2 (φ) = ±

√
lmu cschlm

(√
uφ
)
,

where

sechlm(φ) =
2

leφ + me−φ , cschlm(φ) =
2

leφ − me−φ , where l, m are non zero real values.

Case II: if u < 0 and f = 0, then

ℑ±
3 (φ) = ±

√
−lmu seclm

(√
−uφ

)
,

ℑ±
4 (φ) = ±

√
−lmu csclm

(√
−uφ

)
,

where

seclm(φ) =
2

leιφ + me−ιφ , csclm(φ) =
2ι

leιφ − me−ιφ , where l, m are non zero real values.

Case III: if u < 0 and f = u2

4 , then

ℑ±
5 (φ) = ±

√
−u
2

tanhlm

(√
−u
2

φ

)
,

ℑ±
6 (φ) = ±

√
−u
2

cothlm

(√
−u
2

φ

)
,

ℑ±
7 (φ) = ±

√
−u
2

(
tanhlm(

√
−2uφ)± ι

√
lm sechlm

(√
−2uφ

))
,

ℑ±
8 (φ) = ±

√
−u
2

(
cothlm(

√
−2uφ)± ι

√
lm cschlm

(√
−2uφ

))
,

ℑ±
9 (φ) = ±

√
−u
8

(
tanhlm(

√
−u
8

φ) + cothlm

(√
−u
8

φ

))
,

where

tanhlm(φ) =
leφ − me−φ

leφ + me−φ , cothlm(φ) =
leφ + me−φ

leφ − me−φ , where l, m are non zero real values.

Case IV: if u > 0 and f = u2

4 , then

ℑ±
10(φ) = ±

√
u
2

tanlm

(√
u
2

φ

)
,

ℑ±
11(φ) = ±

√
u
2

cotlm

(√
u
2

φ

)
,

ℑ±
12(φ) = ±

√
u
2

(
tanlm

(√
2uφ

)
±
√

lm seclm

(√
2uφ

))
,

ℑ±
13(φ) = ±

√
u
2

(
cotlm

(√
2uφ

)
±
√

lm csclm

(√
2uφ

))
,
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ℑ±
14(φ) = ±

√
u
8

(
tanlm

(√
u
8

φ

)
+ cotlm

(√
u
8

φ

))
,

where

tanlm(φ) = −ι
leιφ − me−ιφ

leιφ + me−ιφ , cotlm(φ) = ι
leιφ + me−ιφ

leιφ − me−ιφ , where l, m are non zero real values.

These functions, with non-zero parameters l and m, are generalized hyperbolic and
trigonometric functions. They emerge as hyperbolic and trigonometric functions if we
assign l = m = 1.

Step 3: Using the homogeneous balancing rule, we begin the process by determining
k. Once k has been determined, insert Equations (20) and (21) into Equation (19). All of
the powers of ℑ(φ) must have their coefficients equal to zero since we are searching for a
non-zero solution to ℑ(φ) = 0.

Step 4: The necessary parameters and the precise solution to the given equation can
be found using this set of Equations.

5. Application of Analytical Techniques
5.1. Bernoulli Sub-ODE Method

We determine the value of k by applying a homogeneous balancing principle to
Equation (6), which yields k = 2. So Equation (10) becomes

℘(φ) = g0 + g1ℜ(φ) + g2ℜ(φ)2, (22)

where the constants g0, g1, g2 are variables that can be found later. Plugging Equation (22)
and (11) into Equation (6) yields

− h̄1h̄2g0 + 60h̄1g3
0 − h̄1h̄2g1℘(φ) + ψ4h̄5

1g1℘(φ)− 15ψ3ζ h̄5
1g1℘(φ)2 + 50ψ2ζ2h̄5

1g1℘(φ)3 − 60ψζ3h̄5
1g1℘(φ)4

24ζ4h̄5
1g1℘(φ) + 30ψ2h̄3

1g1g0℘(φ)− 90ψζ h̄3
1g1g0℘(φ)2 + 60ζ2h̄3

1g1g0℘(φ)3 + 180h̄1g2
0g1℘(φ) + 30ψ2h̄3

1g2
1℘(φ)2

− 90ψζ h̄3
1g2

1℘(φ)3 + 60ζ2h̄3
1g2

1℘(φ)4 + 180h̄1g0g2
1℘(φ)2 + 60h̄1g3

1℘(φ)3 − h̄1h̄2g2℘(φ)2 + 16ψ4h̄5
1g2℘(φ)2−

130ψ3ζ h̄5
1g2℘(φ)3 + 330ψ2ζ2h̄5

1g2℘(φ)4 − 336ψζ3h̄5
1g2℘(φ)5 + 120ζ4h̄5

1g2℘(φ)6 + 120ψ2h̄3
1g0g2℘(φ)2−

300ψζ h̄3
1g0g2℘(φ)3 + 180ζ2h̄3

1g0g2℘(φ)4 + 180h̄1g2
0g2℘(φ)2 + 150ψ2h̄3

1g1g2℘(φ)3 − 390ψζ h̄3
1g1g2℘(φ)4+

240ζ2h̄3
1g1g2℘(φ)5 + 360h̄1g0g1g2℘(φ)3 + 180h̄1g2

1g2℘(φ)4 + 120ψ2h̄3
1g2

2℘(φ)4 − 300ψζ h̄3
1g2

2℘(φ)5+

180ζ2h̄3
1g2

2℘(φ)6 + 180h̄1g0g2
2℘(φ)4 + 180h̄1g1g2

2℘(φ)5 + 60h̄1g3
2℘(φ)6 = 0. (23)

Equating each coefficient of ℘(φ)p to zero, where (p = 0, 1 ,2, 3, 4, 5 and 6), we have

℘(φ)0 : −h̄2h̄1g0 + 60h̄1g3
0 = 0,

℘(φ)1 : −h̄1h̄2g1 + ψ4h̄5
1g1 + 30ψ2h̄3

1g0g1 + 180h̄1g2
0g1 = 0,

℘(φ)2 : −15ψ3ζ h̄5
1g1 − 90ψζ h̄3

1g0g1 + 30ψ2h̄3
1g2

1 + 180h̄1g0g2
1 − h̄1h̄2g2 + 16ψ4h̄5

1g2 + 120ψ2h̄3
1g0g2 + 180h̄1g2

0g2 = 0,

℘(φ)3 : 50ψ2ζ2h̄5
1g1 + 60ζ2h̄3

1g0g1 − 90ψζ h̄3
1g2

1 + 60h̄1g3
1 − 130ψ3ζ h̄5

1g2 − 300ψζ h̄3
1g0g2 + 150ψ2h̄2

1g1g2+

360h̄1g0g1g2 = 0,

℘(φ)4 : −60ψζ3h̄5
1g1 + 60ζ2h̄3

1g2
1 + 330ψ2ζ2h̄5

1g2 + 180ζ2h̄3
1g0g2 − 390ψζ h̄3

1g1g2 + 180h̄1g2
1g2 + 120ψ2h̄3

1g2
2+

180h̄1g0g2
2 = 0,

℘(φ)5 : 24ζ4h̄5
1g1 − 336ψζ3h̄5

1g2 + 240ζ2h̄3
1g1g2 − 300ψζ h̄3

1g2
2 + 180h̄1g1g2

2 = 0,

℘(φ)6 : 120ζ4h̄5
1g2 + 180ζ2h̄3

1g2
2 + 60h̄1g3

2 = 0.

(24)
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When the aforementioned Equations for h̄1, h̄2, ψ, g0, g1, and g2 are solved, we
obtain

Case 1. If g0 = 1
120

(
−15ψ2h̄2

1 −
√

105ψ2h̄2
1

)
, g1 = ψζ h̄2

1, g2 = −ζ2h̄2
1,

h̄2 = 1
8

(
11ψ4h̄4

1 +
√

105ψ4h̄4
1

)
, then the following solutions are obtained.

When ζ ̸= 0, using the above coefficients and Equation (12) in Equation (22) yields

℘1,1(χ, τ) =
1

120

(
−15ψ2h̄2

1 −
√

105ψ2h̄2
1

)
+ ψζ h̄2

1

(
ψ

ζ + ψC exp(ψφ)

)
− ζ2h̄2

1

(
ψ

ζ + ψC exp(ψφ)

)2
.

Using above coefficients and Equation (14) in Equation (22) yields

℘1,2(χ, τ) =
1

120

(
−15ψ2h̄2

1 −
√

105ψ2h̄2
1

)
+ ψζ h̄2

1

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))

− ζ2h̄2
1

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))2

. (25)

Using the above coefficients and Equation (15) in Equation (22) yields

℘1,3(χ, τ) =
1

120

(
−15ψ2h̄2

1 −
√

105ψ2h̄2
1

)
+ ψζ h̄2

1

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))

− ζ2h̄2
1

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))2

.

Case 2. If g0 = 0, g1 =
√

h̄2ζ
ψ , g2 = −

√
h̄2ζ2

ψ2 , h̄1 =
h̄1/4

2
ψ , then the following solutions

are obtained.
When ζ ̸= 0, using the above coefficients and Equation (12) in Equation (22) yields

℘2,1(χ, τ) =

√
h̄2ζ

ψ

(
ψ

ζ + ψC exp(ψφ)

)
−

√
h̄2ζ2

ψ2

(
ψ

ζ + ψC exp(ψφ)

)2
.

Using the above coefficients and Equation (14) in Equation (22) yields

℘2,2(χ, τ) =

√
h̄2ζ

ψ

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))

−
√

h̄2ζ2

ψ2

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))2

. (26)

Using the above coefficients and Equation (15) in Equation (22) yields

℘2,3(χ, τ) =

√
h̄2ζ

ψ

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))

−
√

h̄2ζ2

ψ2

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))2

.

Case 3. If g0 =
−26

√
2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2+
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
, g1 =

√
− (−11+

√
105)h̄2

ψ4 ψζ
√

2
,

g2 = −

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

, h̄1 = −

(
11h̄2
ψ4 −

√
105h̄2
ψ4

)1/4

21/4 , then the following solutions are obtained.
When ζ ̸= 0, using the above coefficients and Equation (12) in Equation (22) yields

℘3,1(χ, τ) =

−26
√

2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2 +
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
+√

− (−11+
√

105)h̄2

ψ4 ψζ
√

2

(
ψ

ζ + ψC exp(ψφ)

)
−

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

(
ψ

ζ + ψC exp(ψφ)

)2
.

Using the above coefficients and Equation (14) in Equation (22) yields
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℘3,2(χ, τ) =

−26
√

2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2 +
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
−√

− (−11+
√

105)h̄2

ψ4 ψζ
√

2

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))

−

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))2

. (27)

Using the above coefficients and Equation (15) in Equation (22) yields

℘3,3(χ, τ) =

−26
√

2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2 +
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
−√

− (−11+
√

105)h̄2

ψ4 ψζ
√

2

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))

+

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))2

.

Case 4. If g0 =
26
√

2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2−
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
, g1 = −

√
− (−11+

√
105)h̄2

ψ4 ψζ
√

2
,

g2 =

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

, h̄1 = −
ι

(
11h̄2
ψ4 −

√
105h̄2
ψ4

)1/4

21/4 , then the following solutions are obtained.
When ζ ̸= 0, using the above coefficients and Equation (12) in Equation (22) yields

℘4,1(χ, τ) =

26
√

2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2 −
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
−√

− (−11+
√

105)h̄2

ψ4 ψζ
√

2

(
ψ

ζ + ψC exp(ψφ)

)
−

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

(
ψ

ζ + ψC exp(ψφ)

)2
.

Using the above coefficients and Equation (14) in Equation (22) yields

℘4,2(χ, τ) =

26
√

2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2 +
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
−√

− (−11+
√

105)h̄2

ψ4 ψζ
√

2

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))

+

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))2

. (28)

Using the above coefficients and Equation (15) in Equation (22) yields

℘4,3(χ, τ) =

26
√

2h̄2

√
− (−11+

√
105)h̄2

ψ4 ψ2 +
√

2
(
− (−11+

√
105)h̄2

ψ4

)3/2
ψ6

240h̄2
−√

− (−11+
√

105)h̄2

ψ4 ψζ
√

2

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))

+

√
− (−11+

√
105)h̄2

ψ4 ζ2

√
2

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))2

.
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Case 5. If g0 =
26
√

2h̄2

√
− (−11+

√
105)h̄2

h̄4
1

h̄2
1−

√
2
(
− (−11+

√
105)h̄2

h̄4
1

)3/2
h̄6

1

240h̄2
, g1 = −

iµ
(
− (−11+

√
105)h̄2

h̄4
1

)1/4
h̄2

1

21/4 ,

g2 = −µ2h̄2
1, ψ = −

i
(

11h̄2
h̄4

1
−

√
105h̄2
h̄4

1

)1/4

21/4 , then the following solutions are obtained.
When ζ ̸= 0, using the above coefficients and Equation (12) in Equation (22) yields

℘5,1(χ, τ) =

26
√

2h̄2

√
− (−11+

√
105)h̄2

h̄4
1

h̄2
1 −

√
2
(
− (−11+

√
105)h̄2

h̄4
1

)3/2
h̄6

1

240h̄2
−

iµ
(
− (−11+

√
105)h̄2

h̄4
1

)1/4
h̄2

1

21/4

(
ψ

ζ + ψC exp(ψφ)

)
− µ2h̄2

1

(
ψ

ζ + ψC exp(ψφ)

)2
.

Using the above coefficients and Equation (14) in Equation (22) yields

℘5,2(χ, τ) =

26
√

2h̄2

√
− (−11+

√
105)h̄2

h̄4
1

h̄2
1 −

√
2
(
− (−11+

√
105)h̄2

h̄4
1

)3/2
h̄6

1

240h̄2
−

iµ
(
− (−11+

√
105)h̄2

h̄4
1

)1/4
h̄2

1

21/4

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))

− µ2h̄2
1

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))2

. (29)

Using the above coefficients and Equation (15) in Equation (22) yields

℘5,3(χ, τ) =

26
√

2h̄2

√
− (−11+

√
105)h̄2

h̄4
1

h̄2
1 −

√
2
(
− (−11+

√
105)h̄2

h̄4
1

)3/2
h̄6

1

240h̄2
−

iµ
(
− (−11+

√
105)h̄2

h̄4
1

)1/4
h̄2

1

21/4

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))

−µ2h̄2
1

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))2

.

Case 6. If g0 = 0, g1 = h̄1/4
2 ζ h̄1, g2 = −ζ2h̄2

1, ψ =
h̄1/4

2
h̄1

, then the following solutions
are obtained.

When ζ ̸= 0, using the above coefficients and Equation (12) in Equation (22) yields

℘6,1(χ, τ) = h̄1/4
2 ζ h̄1

(
ψ

ζ + ψC exp(ψφ)

)
− ζ2h̄2

1

(
ψ

ζ + ψC exp(ψφ)

)2
.

Using the above coefficients and Equation (14) in Equation (22) yields

℘6,2(χ, τ) = h̄1/4
2 ζ h̄1

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))

− ζ2h̄2
1

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))2

. (30)

Using the above coefficients and Equation (15) in Equation (22) yields

℘6,3(χ, τ) = h̄1/4
2 ζ h̄1

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))

− ζ2h̄2
1

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))2

.

Case 7. If g0 = 0, g1 = ιh̄1/4
2 ζ h̄1, g2 = −ζ2h̄2

1, ψ =
ιh̄1/4

2
h̄1

, then the following solutions
are obtained.
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When ζ ̸= 0, using the above coefficients and Equation (12) in Equation (22) yields

℘7,1(χ, τ) = ιh̄1/4
2 ζ h̄1

(
ψ

ζ + ψC exp(ψφ)

)
− ζ2h̄2

1

(
ψ

ζ + ψC exp(ψφ)

)2
.

Using the above coefficients and Equation (14) in Equation (22) yields

℘7,2(χ, τ) = ιh̄1/4
2 ζ h̄1

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))

− ζ2h̄2
1

(
− ψ

2ζ

(
tanh

(
ψ

2
φ

)
− 1
))2

. (31)

Using the above coefficients and Equation (15) in Equation (22) yields

℘7,3(χ, τ) = ιh̄1/4
2 ζ h̄1

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))

− ζ2h̄2
1

(
− ψ

2ζ

(
coth

(
ψ

2
φ

)
− 1
))2

.

5.2. Sardar Sub-Equation Technique

In this section, Sardar sub-equation technique [60] is applied to the CDGSK equation
to construct the soliton wave solution. By the equilibrium rule, Equation (20) reduces into

N(φ) = r0 + r1ℑ(φ) + r2ℑ(φ)2, (32)

where r0, r1, r2 are constants. Substituting Equations (32) and (21) into Equation (6),
we obtain

− h̄2h̄1r0 + 60h̄1r3
0 − h̄2h̄1ℑ(φ)r1 + u2h̄5

1ℑ(φ)r1 + 12 f h̄5
1ℑ(φ)r1 + 20uh̄5

1ℑ(φ)3r1 + 24h̄5
1ℑ(φ)5r1+

30uh̄3
1ℑ(φ)r0r1 + 60h̄3

1ℑ(φ)3r0r1 + 180h̄1ℑ(φ)r2
0r1 + 30uh̄3

1ℑ(φ)2r2
1 + 60h̄3

1ℑ(φ)4r2
1 + 180h̄1ℑ(φ)2r0r2

1+

60h̄1ℑ(φ)3r3
1 + 8u f h̄5

1r2 − h̄2h̄1ℑ(φ)2r2 + 16u2h̄5
1ℑ(φ)2r2 + 72 f h̄5

1ℑ(φ)2r2 + 120uh̄5
1ℑ(φ)4r2 + 120h̄5

1ℑ(φ)6r2+

60 f h̄3
1r0r2 + 120uh̄3

1ℑ(φ)2r0r2 + 180h̄3
1ℑ(φ)4r0r2 + 180h̄1ℑ(φ)2r2

0r2 + 60 f h̄3
1ℑ(φ)r1r2 + 150uh̄3

1ℑ(φ)3r1r2+

240h̄3
1ℑ(φ)5r1r2 + 360h̄1ℑ(φ)3r0r1r2 + 180h̄1ℑ(φ)4r2

1r2 + 60 f h̄3
1ℑ(φ)2r2

2 + 120uh̄3
1ℑ(φ)4r2

2 + 180h̄3
1ℑ(φ)6r2

2+

180h̄1ℑ(φ)4r0r2
2 + 180h̄1ℑ(φ)5r1r2

2 + 60h̄1ℑ(φ)6r3
2 = 0. (33)

After all the coefficients of ℑ(φ)p are set to zero, the following set of algebraic Equa-
tions emerges:

ℑ(φ)0 : −h̄2h̄1r0 + 60h̄1r3
0 + 8 f uh̄5

1r2 + 60 f h̄3
1r0r2 = 0,

ℑ(φ)1 : −h̄2h̄1r1 + u2h̄5
1r1 + 12 f h̄5

1r1 + 30uh̄3
1r0r1 + 180h̄1r2

0r1 + 60 f h̄3
1r1r2 = 0,

ℑ(φ)2 : 30uh̄3
1r2

1 + 180h̄1r0r2
1 − h̄2h̄1r2 + 16u2h̄5

1r2 + 72 f h̄5
1r2 + 120uh̄3

1r0r2 + 180h̄1r2
0r2 + 60 f h̄3

1r2
2 = 0,

ℑ(φ)3 : 20uh̄5
1r1 + 60h̄3

1r0r1 + 60h̄1r3
1 + 150uh̄3

1r1r2 + 360h̄1r0r1r2 = 0,

ℑ(φ)4 : 60h̄3
1r2

1 + 120uh̄5
1r2 + 180h̄3

1r0r2 + 180h̄1r2
1r2 + 120uh̄3

1r2
2 + 180h̄1r0r2

2 = 0,

ℑ(φ)5 : 24h̄5
1r1 + 240h̄3

1r1r2 + 180h̄1r1r2
2 = 0,

ℑ(φ)6 : 120h̄5
1r2 + 180h̄3

1r2
2 + 60h̄1r3

2 = 0.

(34)

The following constants are found using Mathematica software, by solving the afore-
mentioned Equations:

r0 = −2uh̄2
1

3
, r1 = 0, r2 = −2h̄2

1, h̄2 = 16
(

u2h̄4
1 − 3 f h̄4

1

)
. (35)
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The following answers are built using Equations (21), (32), and (35) in conjunction
with Equation (4).

Set 1: if u > 0 and f = 0, then by using Equation (35), the analytical solution of
Equation (32) is as follows:

N1(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−lmu sechlm

(√
uφ
))2

, (36)

N2(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
lmu cschlm

(√
uφ
))2

. (37)

Set 2: if u < 0 and f = 0, then by using Equation (35), the analytical solution of
Equation (32) is as follows:

N3(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−lmu seclm

(√
−uφ

))2
, (38)

N4(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−lmu csclm

(√
−uφ

))2
. (39)

Set 3: if u < 0 and f = u2

4 , then by using Equation (35), the analytical solution of
Equation (32) is as follows:

N5(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−u
2

tanhlm

(√
−u
2

φ

))2

, (40)

N6(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−u
2

cothlm

(√
−u
2

φ

))2

, (41)

N7(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−u
2

(
tanhlm(

√
−2uφ) + ι

√
lm sechlm

(√
−2uφ

)))2

, (42)

N8(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−u
2

(
cothlm(

√
−2uφ) + ι

√
lm cschlm

(√
−2uφ

)))2

, (43)

N9(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
−u
8

(
tanhlm(

√
−u
8

φ) + cothlm

(√
−u
8

φ

)))2

. (44)

Set 4: if u > 0 and f = u2

4 , then by using Equation (35), the analytical solution of
Equation (32) is as follows:

N10(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
u
2

tanlm

(√
u
2

φ

))2

, (45)

N11(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
u
2

cotlm

(√
u
2

φ

))2

, (46)

N12(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
u
2

(
tanlm

(√
2uφ

)
+
√

lm seclm

(√
2uφ

)))2

, (47)

N13(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
u
2

(
cotlm

(√
2uφ

)
+
√

lm csclm

(√
2uφ

)))2

, (48)

N14(χ, τ) = −2uh̄2
1

3
− 2h̄2

1

(√
u
8

(
tanlm

(√
u
8

φ

)
+ cotlm

(√
u
8

φ

)))2

. (49)
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6. Results and Discussion

In this work, the CDGSK model has been analytically solved using fractional opera-
tors by employing Jumarie’s modified RL derivative. To find these solutions, the BSOM
approaches and the successful SSET strategy were employed. Multiple outcomes have
been generated by the approaches, and 2D graphs have been utilized for evaluating the
answers acquired for derivative operators. The methods outlined above can be used to
create solitary waves in a range of forms, such as multiwave, kink, smooth-bell-shaped,
and anti-bell-shaped soliton, W-shaped, M-shaped, periodic, bright singular, and dark
singular solitons, and combined dark and bright solitons. When the value of the frac-
tional parameter is changed, it can be seen that the solitary wave is somewhat altered
without changing the shape of the curve. With varying parameter values, Figures 1–6 de-
pict the different soliton solutions of ℘1,2(χ, τ), ℘2,2(χ, τ), ℘3,2(χ, τ), ℘5,2(χ, τ), ℘6,2(χ, τ),
and ℘7,2(χ, τ) as solved by the BSOM technique. When we consider the values of α =
0.9, h̄1 = −2, ψ = −0.35, ζ = −0.95, τ = 10 within the range −10 ≤ χ ≤ 10, 2 ≤ τ ≤ 3,
as seen in Figure 1, we find the bright soliton solutions for the 2D and 3D graphs of
℘1,2(χ, τ). When we consider the values of α = 1, h̄2 = 0.75, ψ = 0.25, ζ = 0.5,
τ = 10 within the range −10 ≤ χ ≤ 10, 1 ≤ τ ≤ 2, as seen in Figure 2, we find
the anti-kink soliton solutions for the 2D and 3D graphs of ℘2,2(χ, τ). When we con-
sider the values of α = 1, h̄2 = −0.08, ψ = −0.5, ζ = −0.75, τ = 10 within the
range −15 ≤ χ ≤ 15, 4 ≤ τ ≤ 5, as seen in Figure 3, we find the M-shaped soli-
ton solutions for the 2D and 3D graphs of ℘3,2(χ, τ). When we consider the values of
α = 1, h̄1 = −2, h̄2 = −0.25, ζ = −5, τ = 20 within the range −10 ≤ χ ≤ 10, 1 ≤ τ ≤ 2,
as seen in Figure 4, we find the M-shaped soliton solutions for the 2D and 3D graphs
of ℘5,2(χ, τ). When we consider the values of α = 0.5, h̄1 = 10, h̄2 = −10, ζ = 1,
τ = 8 within the range −10 ≤ χ ≤ 10, 1 ≤ τ ≤ 2, as seen in Figure 5, we find the
soliton solutions for the 2D and 3D graphs of ℘6,2(χ, τ). When we consider the values of
α = 1, h̄1 = −4, h̄2 = −5, ζ = −2, τ = 5 within the range −4 ≤ χ ≤ 7, 1 ≤ τ ≤ 2, as seen
in Figure 6, we find the M-shaped soliton solutions for the 2D and 3D graphs of ℘7,2(χ, τ).
With varying parameter values, Figure 7–18 depict the different soliton solutions of N1(χ, τ),
N2(χ, τ), N3(χ, τ), N4(χ, τ), N5(χ, τ), N6(χ, τ), N7(χ, τ), N8(χ, τ), N9(χ, τ), N11(χ, τ),
N13(χ, τ), and N14(χ, τ) as solved by the SSET technique. Figure 7 illustrates the W-shaped
soliton for parameters u = 0.2, α = 1, h̄1 = 1, f = 0, l = 0.25, m = 0.75, τ = 5 in the
range of −5 ≤ χ ≤ 10, 1 ≤ τ ≤ 2, and τ = 1, 2, 3 for 2D plots. Figure 8 illustrates the bright
singular soliton for parameters u = 0.2, α = 1, h̄1 = 1, f = 0, l = 0.25, m = 0.75, τ = 5
in the range of −5 ≤ χ ≤ 10, 1 ≤ τ ≤ 5, and τ = 1, 2, 3 for 2D plots. Figure 9 illustrates
the periodic soliton for parameters u = 0.2, α = 1, h̄1 = 1, f = 0, l = 0.25, m = 0.75,
τ = 5 in the range of −10 ≤ χ ≤ 10, 0 ≤ τ ≤ 1, and τ = 1, 2, 3 for 2D plots. Figure 10
illustrates the anti-bell-shaped soliton for parameters u = −0.3, α = 1, h̄1 = −0.3, f = 0,
l = −0.35, m = −0.5, τ = 20 in the range of −5 ≤ χ ≤ 5, 2 ≤ τ ≤ 3, and τ = 0, 10, 20
for 2D plots. Figure 11 illustrates the W-shaped soliton for parameters u = −0.6, α = 1,
h̄1 = 1, l = 0.25, m = 0.75, τ = 5 in the range of −1 ≤ χ ≤ 10, 2 ≤ τ ≤ 3,
and τ = 1, 2, 3 for 2D plots. Figure 12 illustrates the W-shaped soliton for parameters
u = −1, α = 0.9, h̄1 = −1, l = 0.25, m = −10, τ = 0.3 in the range of −13 ≤ χ ≤ 5,
0 ≤ τ ≤ 1, and τ = 0.1, 0.2, 0.3 for 2D plots. Figure 13 illustrates the combined dark and
bright soliton for parameters u = −0.1, α = 0.5, h̄1 = −3, l = 0.25, m = 0.75, τ = 3 in the
range of −7 ≤ χ ≤ 3, 1 ≤ τ ≤ 5, and τ = 1, 2, 3 for 2D plots. Figure 14 illustrates the com-
bined dark and bright soliton for parameters u = −0.3, α = 1, h̄1 = −2, l = −5, m = 0.1,
τ = 0.3 in the range of −6 ≤ χ ≤ 6, 0 ≤ τ ≤ 1, and τ = 0.1, 0.2, 0.3 for 2D plots. Figure 15
illustrates the singular dark soliton for parameters u = −0.3, α = 0.9, h̄1 = −1, l = 10,
m = −0.01, τ = 4 in the range of 15 ≤ χ ≤ 20, 0 ≤ τ ≤ 4, and τ = 1, 2, 3 for 2D plots.
Figure 16 illustrates the periodic soliton for parameters u = 1.1, α = 1, h̄1 = −0.95,
l = −0.25, m = 1, τ = 3 in the range of −10 ≤ χ ≤ 10, 0 ≤ τ ≤ 5, and τ = 1, 2, 3 for 2D
plots. Figure 17 illustrates the periodic soliton for parameters u = 0.3, α = 1, h̄1 = 0.9,
l = 0.25, m = −0.75, τ = 8 in the range of −10 ≤ χ ≤ 12, 1 ≤ τ ≤ 2, and τ = 1, 3, 5 for
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2D plots. Figure 18 illustrates the gap soliton for parameters u = 1, α = 1, h̄1 = 0.85,
l = 0.25, m = −0.95, τ = 3 in the range of −10 ≤ χ ≤ 10, 0 ≤ τ ≤ 1, and τ = 1, 3, 5 for 2D
plots. It should be noted that the value of α for variation in 2D plots is α = 0.75, 0.85, 0.95
for all graphs.
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Figure 1. The analytical outcome of ℘1,2(χ, τ) by employing BSOM is bright soliton, when
α = 0.9, h̄1 = −2, ψ = −0.35, ζ = −0.95: corresponding 2D plot of variation in α is at t = 10. (a) 3D
Plot, (b) variation in τ, (c) variation in α.
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Figure 2. The analytical outcome of ℘2,2(χ, τ) by employing BSOM is anti-kink soliton, when
α = 1, h̄2 = 0.75, ψ = 0.25, ζ = 0.5: corresponding 2D plot of variation in α is at t = 10. (a) 3D Plot,
(b) variation in τ, (c) variation in α.
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Figure 3. The analytical outcome of ℘3,2(χ, τ) by employing BSOM is M-shaped soliton, when
α = 1, h̄2 = −0.08, ψ = −0.5, ζ = −0.75: corresponding 2D plot of variation in α is at t = 10. (a) 3D
Plot, (b) variation in τ, (c) variation in α.
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Figure 4. The analytical outcome of ℘5,2(χ, τ) by employing BSOM is M-shaped soliton, when
α = 1, h̄1 = −2, h̄2 = −0.25, ζ = −5: corresponding 2D plot of variation in α is at t = 20. (a) 3D
Plot, (b) variation in τ, (c) variation in α.



Symmetry 2024, 16, 824 16 of 26
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Figure 5. The analytical outcome of ℘6,2(χ, τ) by employing BSOM, when α = 0.5, h̄1 = 10,
h̄2 = −10, ζ = 1: corresponding 2D plot of variation in α is at t = 8. (a) 3D Plot, (b) variation in τ,
(c) variation in α.
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Figure 6. The analytical outcome of ℘5,2(χ, τ) by employing BSOM is M-shaped soliton, when
α = 1, h̄1 = −4, h̄2 = −5, ζ = −2: corresponding 2D plot of variation in α is at t = 5. (a) 3D Plot,
(b) variation in τ, (c) variation in α.
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Figure 7. The W-shaped profile of the CDGSK equation corresponds to the solution N1(χ, τ) for the
values of u = 0.2, α = 1, h̄1 = 1, f = 0, l = 0.25, m = 0.75: corresponding 2D plot of variation in α

is at t = 5. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 8. The bright singular profile of the CDGSK equation corresponds to the solution N2(χ, τ) for
the values of u = 0.2, α = 1, h̄1 = 1, f = 0, l = 0.25, m = 0.75: corresponding 2D plot of variation
in α is at t = 5. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 9. The multiwave profile of the CDGSK equation corresponds to the solution N3(χ, τ) for the
values of u = −0.5, α = 1, h̄1 = −1, f = 0, l = 0.1, m = −1: corresponding 2D plot of variation in
α is at t = 2. (a) 3D Plot, (b) variation in τ, (c) variation in α.

(a)

τ = 0

τ = 10

τ = 20

-4 -2 2 4
χ

-1.5

-1.0

-0.5

4(χ, τ)

(b)

α = 0.75

α = 0.85

α = 0.95

-4 -2 2 4
χ

-1.5

-1.0

-0.5

4(χ, τ)

(c)

Figure 10. The anti-bell-shaped profile of the CDGSK equation corresponds to the solution N4(χ, τ)

for the values of u = −0.3, α = 1, h̄1 = −0.3, f = 0, l = −0.35, m = −0.5: corresponding 2D plot
of variation in α is at t = 20. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 11. The W-shaped profile of the CDGSK equation corresponds to the solution N5(χ, τ) for the
values of u = −0.6, α = 1, h̄1 = 1, l = 0.25, m = 0.75: corresponding 2D plot of variation in α is at
t = 5. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 12. The smooth-bell-shaped profile of the CDGSK equation corresponds to the solution
N6(χ, τ) for the values of u = −1, α = 0.9, h̄1 = −1, l = 0.25, m = −10: corresponding 2D plot of
variation in α is at t = 0.3. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 13. The combined dark and bright profile of the CDGSK equation corresponds to the solution
N7(χ, τ) for the values of u = −0.1, α = 0.5, h̄1 = −3, l = 0.25, m = 0.75: corresponding 2D plot of
variation in α is at t = 3. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 14. The combined bright and dark profile of the CDGSK equation corresponds to the solution
N8(χ, τ) for the values of u = −0.3, α = 1, h̄1 = −2, l = −5, m = 0.1: corresponding 2D plot of
variation in α is at t = 0.3. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 15. The singular dark profile of the CDGSK equation corresponds to the solution N9(χ, τ) for
the values of u = −0.3, α = 0.9, h̄1 = −1, l = 10, m = −0.01: corresponding 2D plot of variation in
α is at t = 4. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 16. The periodic profile of the CDGSK equation corresponds to the solution N11(χ, τ) for the
values of u = 1.1, α = 1, h̄1 = −0.95, l = −0.25, m = 1: corresponding 2D plot of variation in α is
at t = 3. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 17. The periodic profile of the CDGSK equation corresponds to the solution N13(χ, τ) for the
values of u = 0.3, α = 1, h̄1 = 0.9, l = 0.25, m = −0.75: corresponding 2D plot of variation in α is at
t = 8. (a) 3D Plot, (b) variation in τ, (c) variation in α.
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Figure 18. The gap soliton of the CDGSK equation corresponds to the solution N14(χ, τ) for the
values of u = 1, α = 1, h̄1 = 0.85, l = 0.25, m = −0.95: corresponding 2D plot of variation in α is at
t = 3. (a) 3D Plot, (b) variation in τ, (c) variation in α.

7. Comparison of the Results

This section of the paper attempts to investigate a comparison between the solutions
available in previous literature and the findings of the fractional nonlinear CDGSK problem
obtained by the introduced approaches. By using the new auxiliary equation method,
Adil et al. [49] obtained dark, bright, singular, and periodic soliton using the values of
fractional parameter γ between 0.3 to 0.9, with Beta and Atangana–Baleanu fractional
derivatives. Also, Dumitru et al. [53] employed Lie symmetry analysis and sub-equation
method to find the exact solutions of the time-fractional CDGSK equation with the Riemann–
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Liouville derivative. In this study, the analytical solution pertaining to the fractional CDGSK
equation, using Jumarie’s modified RLD in conjunction with the BSOM and SSET technique,
we get gap, multiwave and periodic waves, bell, anti-bell shaped, W-shaped, M-shaped,
singular bright and singular dark waves, combined bright and dark solitons, and anti-kink
waves by taking different values of fractional parameter α such as 0.75, 0.85, 0.95.

8. Painlevé Analysis

For evaluating the integrability of nonlinear PDEs, Painlevé analysis [56,61] is a popu-
lar analytical technique. The methods that are most frequently used to prove the Painlevé
property are Weiss–Tabor–Carnevale (WTC) and Kruskal’s simplification approach. There
are three primary steps involved in applying the WTC–Kruskal algorithm:

1. Investigating the leading-order analysis;
2. Finding resonances;
3. Figuring out the requirements for compatibility.

If there are single-valued solutions to the time fractional CDGSK equation about
movable singularity manifolds that are arbitrary and non-characteristic, then the equa-
tion is said to have the Painlevé property. For this, consider the generalized fifth-order
CDGSK equation:

℘t + ℘χχχχχ + (a1℘
3 + a2℘℘χχ + a3℘

2
χ)χ = 0, (50)

where a1, a2, a3 are arbitrary constants. Equation (50) may be reduced into Equation (1) for
a1 = 60, a2 = 30 and a3 = 0, respectively. In this study, we aim to find a Laurent series
expansion about a singular manifold η(χ, τ) as a solution of Equation (50).

℘(χ, τ) =
∞

∑
r=0

℘r(χ, τ)ηr−y, where r = 0, 1, 2, . . . (51)

where y is a non-negative integer, and ℘r(χ, τ) are the functions of χ and τ. Equating the
terms that are most prevalent after plugging Equation (51) into Equation (50) yields r = 2,
and the related resonances r of leading order behaviors are

℘0(χ, τ) = −
3a2η2

χ + 2a3η2
χ ±

√(
−120a1 + 9a2

2 + 12a2a3 + 4a2
3
)
η4

χ

a
; r = −1, 6, ∆, (52)

where the set of resonances denoted by ∆ depends on the constants a1, a2, a3. It is studied
as follows, for CDGSK equation with a1 = 60, a2 = 30, a3 = 0

℘0 = −2η2
χ; r = −1, 5, 6, 12,

℘0 = −η2
χ; r = −1, 2, 3, 6, 10.

The resonance −1 in the aforementioned expressions is in accordance with the irra-
tional choice of the singular manifold η(χ, τ) = 0, and we found explicit formulations for
℘j; j = 1, 2, . . . , where some of the ℘j are arbitrary functions. Equation (50) satisfies the
Painlevé test for complete integrability with the constraint on the parameters a1, a2, and a3,
and hence depends on the parameters. Additionally, compatibility conditions are satisfied
similarly for the resonances r. The Painlevé test is said to be satisfied if the constants of
integration ℘r at the resonances r become arbitrary constants.

9. Conclusions

This study addresses the analytical solution pertaining to the fractional CDGSK equa-
tion. Using Jumarie’s modified RLD in conjunction with the BSOM and SSET techniques,
analytical solutions for the suggested equation have been produced. It is challenging to
provide an integrated analytical approach for every kind of NLPDE. These recommended
procedures are standard and computational approaches that enable us to carry out laborious
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and complex algebraic computations. Both approaches work effectively and are frequently
employed to deal with differential equations. The results show that, in comparison to
the other approach, the SSET is more accurate and uses less computational power. It is
capable of generating more solutions. Rational, hyperbolic, and trigonometric functions
are the forms that the acquired results embrace. As a result, precise types of solitary waves
such as gap, multiwave and periodic waves, bell, anti-bell shaped, W-shaped, M-shaped,
singular bright and singular dark waves, combined bright and dark solitons, and anti-kink
waves have been established. With the aid of Mathematica tools, Figures 1–18 have been
generated to illustrate how the parametric variables, in particular α for different values,
influence the shape of the soliton.
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