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Abstract: In the present paper, we are merging two interesting and well-known classes, namely those
of Bazilevi¢ and close-to-convex functions associated with a new derivative operator. We derive
coefficient estimates for this broad category of analytic, univalent and bi-univalent functions and draw
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1. Introduction

The exploration of univalent functions traces its origins to the initial decades of the
twentieth century and stands as a prominent focal point within the realm of complex
analysis, commanding considerable interest among researchers. The collection of starlike
and convex functions within univalent functions, considered as the most intuitive, has seen
numerous fundamental properties established over the past century, yielding a collection
of elegant theorems, yet also revealing a substantial number of remaining unresolved
problems. Let A represent the collection of functions expressed in the following form:

h(z) =z+ i ez, (1)
k=2

where these functions are analytic within the open unit disk ¢/ := {z € C: |z| < 1}.
Additionally, define Q, (0 < 7 < 1) as the collection of functions

q(z) =1+ i 02, )
k=1

which are also analytic within ¢/ and satisfy Re(g(z)) > 7.

For any function i € A given by (1), we define the derivative operator D, ¢ : A — A
as follows:

© 4k o1\’
D h(z) =z + Z<sk 1> ez, 3)
i S \r+1
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wheres > 0,r e N:={1,2,3,---},6 e NU{0} :=Npand z € U.
Note that DY hi(z) = h(z) and

1 > r+k k
Prs Z’(H—l) k=

1—r [ e
__Z k. ktr—1
= (r+1)sz" + ) (r+k)s‘cz
(r+1)s | k;
2 +1 i k. k+ ,
= sz T4 Y sf e T
(r+1)s I =
bl
= 2 sz+ Y cxs'z
(r+1)s I =
1-r
z
= T 1)S[zrh(sz)]/.

A function h € A is called starlike in ¢/ if the image of U/ under & forms a set that
exhibits starlikeness with respect to the origin.

This set of functions is denoted as M*, and we commence by offering the widely ac-
knowledged analytic characterization of starlike functions concerning functions possessing
positive real parts, as given by Duren [1] (also referenced in Thomas et al. [2]). Leth € A.
Then, h € M* if, and only if

Re(ZZ;S)> >0, zel.

This class has been expanded by defining a subclass M*(«y) of starlike functions of
order v (0 < ¢ < 1) if

Re(ijé?) >y, z€U,

and has been shown that the coefficient bounds for functions belonging to M*(+y) are as
follows (see [2] (Section 5.3), [3]):

k
[l (n=27)
n=
|Ck|§ (k—l)' /k:2/3/4/"'-

Also, for g(z) starlike in U, a function h € A is considered close-to-convex if

Re(i?é?) >0, zel.

This class of functions has been generalized to include close-to-convex of order y
(0 <y < 1), denoted by L*(7), if

Re(ifé?) >, zelU.

Both classes of functions, £*(y) and M*(-y), consist only of univalent functions in /.

A function & of a complex variable is considered univalent in ¢/ if it never assumes the
same value twice. When & is univalent, we indicate a sub-collection of A by S. The study
of univalent functions is a longstanding and continuously evolving area of research, with
roots reaching back more than a century. A significant portion of its historical development
is intricately linked to the renowned Bieberbach conjecture [4], which postulates that for
coefficients cy, their absolute values are bounded by k for k > 2. De Branges’ [5] resolution
of the Bieberbach conjecture involved the application of sophisticated techniques from
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various branches of analysis, likely posing a significant open problem for researchers
to comprehend.

Bazilevi¢ [6] introduced the class B(A,v, g) of functions, which is defined by the
following integral:

iAv A

) ={ i [ an - iy it ez ar )

where g € Q(= Q) and g € M*. The numbers A and v are real, where A > 0, and all
powers are to be interpreted as principal values. Aside from the known property of being
univalent, our understanding of the class of functions B(A, v, g) is limited. However, in
certain special cases, such as when v = 0 and g(z) = z, we arrive at the well-established
class B(A), which fulfills the following condition:

A—1y,/
R<h<>h<>) >0, zel.
-

Singh [7] investigated a class of univalent functions characterized by functions that
adhere to the geometric criterion below:

o zh' (z)h(z)* 1
R (g(z)/\ )>O, z€eU,

where A > 0. This particular class, denoted by 7 (A), stands as a special case within the
broadly recognized class of generally univalent Bazilevi¢ functions. For 0 < o < 1, Babalola
and Saka-Balogun [8] recently extended 7 (A) to include a broader class of functions that
satisfy the following condition:

/ _
Re(zh (z)h(z)M 1
8(2)*
Various subclasses of the well-known class of A and Bazilevi¢ functions B(A) have
been studied in the past and more recently (see, for example, [1,9-15]).
It is noteworthy that the Koebe 1/4-theorem [1] ensures that any function & belonging
to the class of univalent functions has an inverse H := h~! such that

>>'y, zelU.

H(h(z)) =z, z€D,

and

h(H(w)) = w, (|w| <ro(f); ro(f) = 1/4).

Moreover, H(w) has the Taylor-Maclaurin series of the form

o
Hw)=w+ ) A,
k=2

and for initial values of k, we have

Ay = —cy, A3=2c5—c3 and Ay =5c —5coc3 + ey (4)

The function h € A given by (1) is bi-univalent, denoted by o, if both i and H are
univalent in Y. The earliest reference of bi-univalent functions seems to have originated
in Lewin’s verbal exchange (refer to [16]), where he posed the fundamental inquiry about
the sharp upper bounds for |c¢| in the Taylor series expansion of 4. This inquiry has since
proved to be notably challenging, with relatively scant progress made even after half
a century.
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Lewin demonstrated that |c;| is less than 1.51..., while Brannan and Clunie conjectured
in [17] that |c;| < /2. However, Netanyahu proved in [18] that the best upper bound for
|c2| is 4/3, for the subclass of o consisting of all functions that are bi-univalent where their
ranges contain the unit disk ¢/. Little significant progress appears to have been made on
these early results. The recent groundbreaking work by Srivastava et al. [19], which has
been extensively cited, promoted the analysis of bi-univalent functions to a specialized
level and led to further studies about the class (see, for example, [20-30]).

Brannan and Taha [31] introduced two interesting subclasses of the function class o, in
analogy to the subclass of starlike functions of order vy of the class S. The function h(z),
defined by (1), is said to be in the class M (7y), the class of bi-starlike functions of order y
(0 < < 1) if each of the following conditions are satisfied:

zh ()
h(z)

heo and Re( >>'y, z€EeU,

and

Re(wlf(léj;» >q, wel.

Furthermore, it has been proven that for 1(z) € M () defined by (1), the following

bounds hold:
lea| <4/2(1—7)

and

les] <2(1 =)

Motivated by the aforementioned works and the significance of starlikeness and con-
vexity in geometric function theory within a complex analysis, we unify the Bazilevi¢ and
close-to-convex functions. We highlight non-sharp bounds and Fekete-Szeg6 inequalities
for analytic functions within the defined classes. The merging of mathematical classes and
the derivation operator are common practices in complex analysis and geometric function
theory, as well as in the study of special functions like Bessel functions and hypergeometric
functions. These techniques are used to analyze the properties of functions under various
transformations and operations, providing insights into their behavior and convergence
properties. Additionally, Fekete-Szego inequalities find widespread application in areas
such as potential theory, approximation theory, and numerical analysis, offering valuable
information about the distribution of zeros or critical points of analytic functions.

Now, employing the derivative operator provided in (3), we introduce the following
classes of Bazilevi¢ close-to-convex functions and bi-Bazilevi¢ close-to-convex functions.

Definition 1. For h € A defined as in (1) and g € M*(= M*(0)), we consider h to be a member
of the class

MT(r,s, 8, v)(s>0,reN,6eNy, A>1,0<y<1)
if it satisfies the following condition:

Re

A-1
D¢ h(z)) [ z(DEsh(z))’

2(Drghiz)) (2(Drgh(z) >y, zell. 5)
Dy sh(z) Ds8(2)

Remark 1. Throughout this work, all powers are defined as principal values.

Remark 2. It is noteworthy that the class MT \(t,s,6; ) represents an extension of various
previously investigated classes. Here are some examples:
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1. Ifé = 0and g(z) = z, then the class MT )(r,s,6;y) reduces to the class L(A,7y) of
A-pseudo-starlike functions of order «y [32].

2. If6 =0andy =0, then the class MT )(r,s, ;) reduces to the class MT ) of A-pseudo-
close-to-convex functions [8].

3. Ifé6 =0and A =1, then the class MT ,(r,s,5; ) reduces to the well-known class M*(7y)
of starlike functions of order <y (cf. [1-3,33]).

4. If6=0,A=1andy =0, then the class MT ) (r,s,6;y) reduces to the well-known class
M* of starlike functions (cf. [1,2,34]).

Definition 2. A function h(z) given by (1) is said to be in the class

MTG(r, 8,8, 9)(s>0,reN,6eNy, A>1,0<y<1),
if it satisfies the following conditions:

he MTx(r,s, 8; v) and He MT,(r,s, 6 ), (6)
where H is the inverse function of h.
Remark 3. The class MT (r,s,J; ) extends the scope of various previously studied classes. Let
us present some examples [31]:

1.  Ifé6 =0and A =1, then the class reduces to the class of bi-starlike functions of order -y.
2. Ifé6=0=yand A =1, then the class MT (r,s,0;y) reduces to the class of bi-starlike
functions.

2. Auxiliary Lemmas

The establishment of our main findings will be enriched by the inclusion of the
following lemmas.

Lemma 1 ([1]). Let p(z) =1+ Y32, diz* € Q. Then
|dg| <2 forall keN.
Equality is attained by the Mobius function Lo(z) = (1+2z)/(1 — z).
Lemma 2 ([8]). Let p(z) = 1+ Y5>, diz" € Q. Then, we have the sharp inequality

2
a1

d
dy —¢ 5 < 2max{1,|e—1|}.

Note that, if g(z) = 1+ l1z + (2> + - - - € Q,, then

q(z) =7+ (1 - 'Y)P(Z) =1+ (1 — ’)’)d]Z + (1 — ’)/)dzzz 4+ 7)

Thus, Lemmas 1 and 2 have been rewritten by Babalola and Saka-Balogun [§], as
showcased below:

Lemma3. Let q(z) = 1+ Y32, 42F € Q.. Then

|| <2(1—7) forall keN.
Equality is attained by Lo (z) = [1+ (1 —2A)z]/(1 —z).

Lemmad. Let q(z) = 1+ Y52, lz" € Q.. Then, we have the sharp inequality
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2
ly —351 <2(1—9)max{1,|(1—7)e—1]}.

Lemma 5 ([35]). Let g(z) = z + Y30, byzk € M*. Then
bk <k
and

’bg, - ‘ub%‘ < 2max{1, |4u — 3|}.

3. Coefficient Properties of Functions in MT ,(r,s, J;7)
Theorem 1. Let the function h(z) be analytic in U and defined by (1). If h(z) € MT \(r,s,6;7),

then
2[1= A+ + (A =1)2+7)s]

o < .
leal < QA —1)(2+1)°s

and

2[(1-) [4(v+2(3) s ) 2242 (2-47-5( 322 ) 80 ) A+29+2( 32 ) 01| + ]

, Ae11+1/v2]

T
’C3‘§ 247195 y2 247105 247195
2 (1) [4(1+2(3) ) A —2(2:5(1?) ) at2(3) 01| +E] , A e[ 41/v3,00)
where
24 7\% 5

oy 2 26

E:=(A 1)[12)\ (12+2<1+r> S >A+3 , (8)

3+r o

o . 12 26

F:=03BA-1)2A—1) (1—|—r> s-°. )

Proof. For h(z) € MT,(r,s,5;), there exists q(z) = 1+ Y3, £xzF € Q, such that

. n A1
z(Dfrsh(z))/ Z<Dﬁ,sh(z))
D{sh(z) D?sg(z)

= q(z). (10)

By careful computation, the left side of (10) expands as follows:

2(Dih(z) (2(Dih(z) " 24\ 25\
Dih(z) ( Di.g(2) ) @-(i) e 0-n(T5) fn)-

34+7\% 5 247r\* 5 5 3+7\° 2
(3/\—1)(1+r> s c3+[2A(A—1)—(2A—1)]<1+,) s Cz—(A—1)<1+r) s7bs

/\2 Af2+r 2 2612 2 247 2 20
+ <1 1’) S bZ ( A 3A+ )(1 1’) s“°coby

+

Zz‘l—"'.

Upon comparing the coefficients of both sides of (10), we find
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202+47)°s%c = L1 (1470 + (24 1)°°cr + (A — 1) (24 7)°s°Dy,

and thus, we obtain

LA+ +A-1)2+ r)%ébz_

2= 2A —1)(2+ 1)’

(11)

Therefore, by employing Lemmas 3 and 5, we achieve the desired bound on |cp|.
Additionally, upon further comparison of coefficients, we have

26
BAB+7)°s%c3 4+ 240 (A — 1)((21::))552%% = (B3+7)°%c3+ LL(1+71)° + (24 71)°5l1cy
+(A=1)[ (B+7r)’s¥b3+ (24‘77”)2552% by + (2+7)°s2 016y + ws%bz
3 (1+7’)6 202 102 2(1+7")5 2 |

and this leads to

(BA—=1)(3+1)s%cy = Lr(1+71)° + (2 + 1)’ b1y + (A — 1) ((3 +7)°5%bs

2+1% o 5.6 (A=2)2+n% 5,5 2+1% 5
-~ b, + (2 /1b ~ 2 7 S| -2 (A —1)—r L . (12
+(1+r)55 Coby + (24 1)°s°41by + 30 +7) s“°b; ( )(1+r)‘>s 5. (12)

Substituting the value of c; from (11) in (12) and arranging the equation, we have

2 r 25
(BA=1)(3+r)s%cs = (1+7)° (ez _ W&) F(A=1) <(3 s - 5o A)‘EZJZ ()1 + r>552‘5b§>

402 50 +1

W(2 + 1) by. (13)

Noting that 402 — 50 +1 >0, hence, for A > 1, we obtain

2 26
B 5260 < 5|, 2AT—4A+1 5 _ 525,  AM2+7) 26,2
BA=1)(3+71)"s%c3| < (1471)°|2 A1) 1+ (A =1)|(3471)"s* b3 2(2)\—1)2(1—1-7)55 b3
472 —5A +1 55
S CHslalel 09

Now, applying Lemmas 3, 4, and 5 on (14), we obtain

5 4702 50 +1 4yA? 4 (4 —8y)A 427 —1
_ 526)| < A4(1 — s 04 —oA+1] 51 _
(BA—=1)(34+1)s|c3] <4(1—9)(2+7)°s o1 +2(1+1r)°(1 ’y)max{l, 2A—172 ‘}
26
1202 — (12+2(§—j;) 525)A+3
1)
+2(1+7)°A—1)maxq 1, 1) (15)

Furthermore, it is easy to see that
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max{ 1,

max{l,

1222 = (124 2(B2) )1 +3
2r—1)2

>1, A>1,

1222 - (12+2(B2)*s%) A + 3
- (21 —1)2

and

47A2+(4—87)/\+2’V—1‘} _{ OVH(E8A2 -1 ) o [1,1+1/ﬁ}

(2A-1)?
A —1)? 1, Ae1+1/v2,00

Thus, when A € {1, 1+1/ ﬁ} , Equation (15) reduces to

2 2
_ 8281 | < _ 554/\ —5A+1 5 o IAT+ (4 -87)A+2y -1
BA—=1)(3+7)"s|c3] <4(1—7)(2471)°s R +2(14+7r)°(1—1) A1)
S 1222 - (12+2(32)*s%) A + 3
2(1 ~1 .
+2(1+7r)0°(A-1) 212

Upon simplification, this results in the first part of the bound on |c3|. In addition, if
Ael1+ 1/\/§,w), then

~ ) 2
(BA—1)(347)°s%|c3] <2(1+71)°(1 =) +4(1 —7)(2+71)% ‘SW
1202 — (12 4+ 2(22)*s2) A +3
+2(1+7)°(A—1) ( (2A<_1+1)) ) :

This leads to the intended second part of the bound on |c3|. O

By letting ¢(z) = z and 6 = 0 in Theorem 1, we conclude the following consequence.

Corollary 1. Let h(z) € L(A,7). Then

2(1—19)

<
el = 55

and

2(4A=1)(1—79)
A, de L1+1/v2)

|C3| < .
) Ael+1/v/2,0)

By setting 6 = 0 and y = 0 in Theorem 1, we conclude the following result.

Corollary 2. Let h(z) € MT),. Then

2A
20 —1

lea| <

and
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2(12A%-18A2+11A-2)
(2A—1)2(3A—1)

L Ae [1,1+1/ﬂ}

|c3] <

21(1202-141+3) '

By setting 6 = 1,7 = 1, and y = 0 in Theorem 1, we conclude the following result.

Corollary 3. Let h(z) € MT )(s,1,1;0). Then

and

2413 —3(3s% —85+16) \*+ (95> —305+38) A+65—8
les] < 252(12A3—16A2+71—1) , AE [1’1 + 1/\6]
C .
o= 2473 — (957 —245+40) A2+ (95% —305+22) A +65—4
252(12A3—16A217A—2) , AE+1/V2,0)

Theorem 2. Let the function h(z) be analytic in U and defined by (1). If h(z) € MT)(r,s,6;7)
and

(422 —5A+1)(1+7)°

LIS ) .26 .05
6(3+7)"s2A2 —8(347) 52N +2(3+71)"s2

then

(1+7)°
BA—=1)(3+7)

[(40147)° = 693 +71)°5%) A2 = (5(1+7)° = 88(3+1)s% ) A = 26(3 +1)°5% + (1 + r)fSD,

41— )2 +471)°sd
2A— 12112~

‘Cg—l%%‘ < o (2(1—7)1+(A—1)]+

where

] 2@ a2+ 1°(1 =)0 —20(1 — 1) (3A — 1) (34 7)°s% — (24 — 1)2(2 4 1)°s°
B ' 21 —1)2(2 4 1r)°s? '

and

_ ()P0 —89(A —1) (31 — 1) (322)°s% —3(24 —1)?
]—max{l, 2r ) ‘

Proof. Using Equations (11) and (13), and arranging, we find
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2 (2+r)2‘5
694 (819 + T ) A+28 ,

a2 (A1)
¢ = 963 2021 —1)2 2

“Gaoy BT

(2+7)°s°
(BA—1)(2A —1)2(341)%
2(2+71)°s9A2 — (4(2 +7)°s° —39(3 + r)5s25) A+8(B+7)°% + (2+47)°°

by — al.
? (2A — 122 + 1)) !

l1by

(4/\2 —5A+1) 1+7)° - 19(6/\2 —8A+2) B+r)°

(1+1)°
(BA —1)(3+71)%2

+

Therefore, the inequality follows by applying Lemmas 3, 4, and 5, along with the
conditionon ¢. O

Remark 4. For A = 1and § = 0, the Fekete—Szego inequalities for the special cases MT)(r,s, ;)
= M*(y) are well known.

4. Coefficient Properties of Functions in M T (r,s, ;)
Theorem 3. Ifh € o of the form (1) is in the class MT(r, s, &; 7), then

< A0 =1A=1)(A+1)? +2(1 = 7)(2A2 =3A + 1)(1 +7)°(2+7)°" + (2A% = 7A* + 7A — 2)(2 + 1)¥s¥)
[SYS ((2A3 —7A2 + 54 —1)(2+7)2 + (6A2 = 5A + 1) (1 +7)9(3 +1)?)s2 ’
and

1
(BA —1)(2A —1)3(2+7)2%(3 + )%s20

lc3] < X [2(1 YA =131 +7)° 2+ 1P +3(A=1)(2A =132+ )P (3 4 )%

(
+4(1= 121+ (612 =51 +1) (1 +1)° B +1)° = A(2A2 =31 +1) 2+ 1)¥|
+8(1—7)@2+1'8|(61° —11A2+61 = 1) (1 +1)°(3+7)° = A (2A3 =522 + 40 — 1) (2 + )|

(2+71)%
(1+7)?

42 4 1) (6/\4 —25)03 —5\2 — 131 + 2) (B+r)°— A(2A4 —7A3 4922 — 50 + 1)

Proof. It follows from (6) that there exists
q(z) =1+ bz +0H2*+- - € Qy

and

Q(w) =1+ pw+ pw’ +--- € Q,
such that

q1(z) =1+ {(2)&—1)(?1:) s°cyp — (A—l)(iii)ﬁséb]z

3+T 525 2+T 2 25 2 3+7’ 525

A2_A/247\% 2+7\%
+ <1+r) 525b§—(2A2—3A+1) <1+r> 525c2b2}22+~~~, (16)

and
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q(w) =1+ [(/\ -1) <2+r>5s5b2 —-(2A-1) (ij_:)és&cz} w

1+7r
347\° 5 347\ 55 AZ—A 247\
_ 2 26 () _ 2 26 2572
+[(3/\ 1)(2c2 C3>(1+r>5 (A 1)(2b2 b3)<1+r)s +— <1+r> 5202
2 241\* 5 241\* 25 2] 2
—(2}\ —3A+1) ) Pab-@ - ) Pdete. q7)
Comparing coefficients in (16) and (17) yields
[2A = 1)ca — (A — 1)ba] (24 7)°s° = (1 +7)°4y, (18)

A A2 —A
(BA=1)(141)° (341253 + (2/\2 —4A 4+ 1) 247222 — (A =1)(141)°(341)°sb3 + ——(2+ r)20s20p3

— QA2 =3A+1)(2+ 1) X% 0yby = (1+1) %4y, (19)

[(A—=1)by — (@A —1)ca] (24 7)%s° = (1 + 7))y, (20)

and

(GA=1)(23 —c3) B+7)° = (A= 1) (203 — b3 ) (34 1)° | (1 + 1)’

2 _
+ [A > A _ <2A2—3/\+1)c2b2— QA —1)E| 2+ 1P = (1+7r)%). (1)

From (18) and (20), we obtain

and

2024 — 122+ 1)2s¥32 = (1+1)% (é% + ]%) + [4 (2/\2 30+ 1) by — 2(A — 1)2175] 2+ 1) (23)

Adding (19) to (21) and substituting the value of ﬁ% + ]% from (23), we obtain

(2 +1)s°

(1412l +12) + 1

lz (2)8 —3A+ 1) (1+ 7)1y + (2A3 —7A2 47N — 2) 2+ r)‘ss‘fbg]
- [2 (AZ — 3+ 1) 2+ +2BA-1)(1+7r)°G+ r)b‘] s2c2. (24)

Further computations using (24) yield

s (L+7)2A=1) 1+ 7% +2(2A%2 =3A + 1) (1 +7)°(2 4 1)°s%01by + (2A% — 7A% + 7A — 2) (2 4 1)25%°D3
2[(2A3 =7A2 4+ 54 = 1)(247)2 + (6A2 —=5A + 1) (1 + 1) (3 + 1)?]s%

Taking the absolute value of (25) and applying Lemmas 3 and 4 for the unknown
coefficients, we deduce the desired bound on |c;|.
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Next, in order to determine the bound on |c3|, we subtract (21) from (19) and
utilize (22), deducing

230 — 1) (34 r)°s¥cs + 2}\()\1)%1?? —2(3A—1)(3+ 1) | ¥

— (1476 — 12) +2(A = 1)(3+1)°s¥by — 2(A — 1) (3 +1)’s¥B3.  (26)

Now, substituting the value of C% from (23), we obtain

2BA =1)(B+7)s%c3 = (1+71)° (s — o) +2(A = 1)(3 4 1)°s%Db3
1
20 —1)3(2+1)2

1

(B+72)a+n((6A2=5A+1) (1 +1)°(G+7r)°
- /\(2)\2 — 3+ 1) 2+ r)”) 40y (2 + r)5s‘5((6)\3 —11A% 464 — 1) 1+7)°3+7)
- /\(2)\3 —5A2 440 — 1) 2+ r)”) +2b3(2 + 1) 252 ( (6A4 — 25703 52— 134 + 2) (B+r)°

A (224 - 74 4022 —5A+1)W5)].

(1+7r)? @7)
With further computation of (27), we deduce that
B 1
BT 2BA-1) (24 — 132+ 1) (3 + r)is?
X | (1+7)°QA =122+ 712 (ly — 1p) +2(A = 1)(2A = 1)3(2 +7)2°(3 +7)°s°b3
+(B+2) 1+ (612 =5A+1) A +1)Y(3+7)° = A(222 =32 +1) 2+ 1))
+4lby (2 + r)‘ss‘s((6)\3 —11A2 + 67 — 1) A+r)°3+r)°— /\(2/\3 —5A2 440 — 1) 2+ r)25)
+2b2(2 + 1) 2s® ((6}\4 ~25)% = 5A2 = 130+ 2) (3 +71)°
~A(22* = 72% +922 50 + 1)(2”)2;)] (28)
(1+47)

Taking the absolute value of (28) and applying Lemmas 3 and 5, we obtain the desired
estimate on |c3|. O

By setting 6 = 0 in Theorem 3, we conclude the following result.

Corollary 4. Let h(z) € MT5(v)(= MT4(r, s, 0; v)). Then,

220 — 1) (7 — A —29A + A2+ 1)
leo| <
22A 1)

and

1 5 4 3 3
< + + +
|cs| GA-1)2A 1) |:4(2)L 13A% +34A° + 147 2) (2A —=1)°(BA =29 —1)

+4(1 - 7)2’2)\3 —9AZ 4+ 6A — 1‘ +8(1— 7)(2/\4 —11A% + 1502 — 7A + 1)]
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Next, we determine the bounds for the first two terms of the function H(w). Given
that A, = —cy (by Equation (4)), any upper bound obtained for |c;| also applies to
|A,|. Additionally, to derive the upper bound for |As| = |2c3 — c3|, we need to per-
form calculations based on the equation provided in (4), which we elaborate on in the
subsequent theorem.

Theorem 4. Ifh € o of the form (1) is in the class MTS(r, s, &; 7), then

2 41-7A-1)(1+n)* 2 2(1—7)(N3 + [Ny — N5|) + N + N7 + Ng
’2C2 — C3’ < 55 +
Nos BA—-1)(2A — 1)3(3—0—1’)5 N,
N 2(1—9)2A =131 +7)° +3(A —1)(2A — 1)3(3 +7)%s% +4(1 — 7)?|Ny|
20 ’
where
No:= (2/\3 A2 450 — 1) Q4%+ (6A2 —BA+ 1) (1+1)°(3+7);
5 14r\%
. 2 o _ 2 0.
N ._A(Z/\ 3A+1)(1+r) (6)L 5A+1)(2+r> (B+1)°;
Ny = (2/\3 —7A2 450 — 1) 2+1%+ <6A2 Y 1) (1+1)°(3+1);
N3 =24 (24A5 — 69A* + 74A% — 3912 4 58) — 1) G+r)(2+1)%;
,_ 3 52 _ 3 z2 NP
Ny = A<2A 7A2 £ 50 1) (2A 502 447 1)7(1 g
N5 := (6/\2 —5A+ 1) (6)\3 —11A2 + 67 — 1) 1473+ 1)
Ng := (48)\7 — 216A° +432)\° — 474)\* + 49073 — 66A% 4 3\ — 2) (B+1r)°(2+1)%;
o 3 5y2 - 4 5y3 2 2+7)*.
Ny i=A(24% =742 450 — 1) (22% = 7A% +- 922 — 51 +-1) T
Ng := (6/\2 —5A+ 1) <6A4 —25)% —5A2 — 13\ + 2) (1+1)°(3 + 7).
Proof. By using Equations (25) and (28) , we can find
_ 26
23— oy = (l2+2)2A =1)(A +7)

(2A3 —7A2 450 —1)(247)20620 4 (6A2 —5A + 1) (1 +7)%(3 + r)9s2°

: (2 —712)(2A — 1)3(1 + r)‘s +2(A—1)(2A — 1)3(3 + r)552‘5b3

2BA —1)(2A —1)3(3 + r)s¥

+(&+7) ((6/\2 ~51+1) (;1:)25(3“)5 - (227 3/\+1)(1+r)‘s)]

1

T A 15 D)2+ )P 1 (A2 A+ (1 £ P31 1)0)(BA — 1) (24 — 133 + 1)
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x [2@1192 (2}\ (24A5 — 69A% 4+ 74A% — 3912 4 58) — 1) G+r)lQ2+r¥

(2+7)%

+A(2A% =722 +50 —1) (243 = 5A2 + 42 — 1) 177

— (642 =52 +1)(6A° —11A2+-61 — 1) (1 +7)°(3 + r)25>

+ b3 ((48/\7 — 216A° +4321° — 474A% + 49013 — 6642 + 3\ — 2) (B+r)°2+r%

(2+471)%

+A<2A3 —7/\2+5A—1) (2/\4—7/\3+9/\2—5A+1>m

+ (602 =57 +1)(64* = 2503 =502 — 130 +2) (1+ 1) (3 + r)”)] :

Finally, by applying Lemmas 3 and 5, we achieve the desired estimate for ‘2C% —c3 ‘ O

By setting 6 = 0 in Theorem 4, we conclude the following result.

Corollary 5. Let h(z) € MTG (). Then,

(20— 1)%3(A-) —2(1 - 1) (A~ 1) +4Ni|(y — 1)* | 2(Na+2(1— 1) (N2 + [ Ns])) _ 4(1—7)
(24 -1’31 —1) 2210 —1)*(3A — 1) A2

‘2C% — C3‘ <

where

Ny :=2A% —9A2 4+ 6A — 1;
Ny := 2A(24A° — 69A% 4 74703 — 3902 + 581 — 1);
N3 := (24 —1)2(A° —=5A% — A3 +10A2 — 61 +1);
Ny = A (4/\7 12076 — 10375 + 142A% — 28473 + 37172 + 16 — 21).
Finally, we provide nontrivial examples of Definitions 1 and 2 for 6 = 0, A = 2, and
v =0.
Example 1. If we take

2 1 2 2 2
h(z) =z — §Z3/2 i §Z2 4 gz5/2 _ EZ3 _ iz7/2 Foen,

and

g(z)=z—22+28 -4+,
then, by a simple computation, the left side of (5) is as follows:

1-z+22-234+...€Q,

which has a positive real part. So,h € MT ,(r, s, 5; 7).

Example 2. If we consider
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and

gz)=z+22+2+24 -,
it becomes easy to see that h € MT (v, s, &; 7), as defined in Definition 2.

5. Conclusions

In this paper, we have integrated two significant and established classes, namely
those introduced by Bazilevi¢ and close-to-convex functions, under a novel derivative
operator. Our analysis has yielded coefficient estimates for these extensive subclasses of
analytic, univalent, and bi-univalent functions, shedding light on the pertinent Fekete—
Szego inequalities within the open unit disk. Furthermore, by parameter specialization, we
have identified several noteworthy special cases within our findings.

As an open problem, we aim for this study to inspire researchers to explore additional
coefficient inequalities using various polynomials and the subordination method within
these specified subclasses. Also, we recommend researchers to define and study strongly
bi-Bazilevi¢ close-to-convex functions and to find coefficient estimates, Fekete-Szegd in-
equalities, and the distortion and growth theorems of this effective class. Furthermore, we
encourage researchers to find the second and third Hankel and Teoplitz determinants of
logarithmic coefficients for functions in the Bazilevi¢ close-to-convex class defined in the
Introductory section.
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