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Abstract: Several types of linear and nonlinear singularly perturbed time-delay differential systems
are considered. Asymptotic stability of the linear systems and asymptotic stability of the trivial
solution of the nonlinear systems, valid for any sufficiently small value of the parameter of singular
perturbation, are analyzed. For the stability analysis in the linear case, a partial exact slow–fast
decomposition of the original system and an application of the Symmetric Matrix Riccati Equation
method are proposed. Such an analysis yields parameter-free conditions, providing the asymptotic
stability of the considered linear singularly perturbed time-delay differential systems for any suffi-
ciently small value of the parameter of singular perturbation. Using the asymptotic stability results
for the considered linear systems and the method of asymptotic stability in the first approximation,
parameter-free conditions, guaranteeing the asymptotic stability of the trivial solution to the consid-
ered nonlinear systems for any sufficiently small value of the parameter of singular perturbation, are
derived. Illustrative examples are presented.

Keywords: time-delay differential system; singularly perturbed system; asymptotic stability;
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1. Introduction

Differential systems with positive small multipliers for some of their highest-order
derivatives, called singularly perturbed ones, have been of considerable interest in the
literature for many years (see, e.g., [1–13] and references therein). The aforementioned small
multipliers are called parameters of singular perturbations. An important class of singularly
perturbed differential systems from the theoretical and practical viewpoints is the class
of singularly perturbed time-delay systems. Various issues for singularly perturbed time-
delay linear and nonlinear systems were studied in the literature. Among these issues are
the following: (1) exact slow–fast decomposition; (2) asymptotic slow–fast decomposition;
(3) solution stability; (4) stabilizability and stabilization; (5) controllability and observability;
(6) asymptotic solution; and some others. Brief surveys on the topic of singularly perturbed
time-delay systems can be found in [4,14,15].

One of the basic issues, studied in the theory of differential systems, is the stability of
their solutions (see, e.g., [2,5,6,16–23]).

In this paper, we consider several types of linear and nonlinear singularly perturbed
time-delay differential systems. We study the asymptotic stability of the linear systems and
asymptotic stability of the trivial solution of the nonlinear systems. The stability of various
types of time-delay differential systems has been extensively studied in the literature (see,
e.g., [2,24–27] and references therein). One can immediately apply the results of these
works to a singularly perturbed time-delay differential system for any specified value of
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the parameter of singular perturbation. However, a stiffness of the singularly perturbed
system, as well as its high Euclidean space dimension, complicate such an application
considerably. Also, this application depends on a pre-chosen value of the parameter
of singular perturbation, while in various real-life problems the value of the singular
perturbation’s parameter is unknown, meaning that these problems are uncertain with
respect to the parameter. Therefore, for singularly perturbed systems, another (other than in
the aforementioned works) conditions of their stability should be derived. These conditions
should be independent of the parameter of singular perturbation, while providing the
stability for any sufficiently small value. Such conditions can be derived by the application
of a slow–fast decomposition of a singularly perturbed system.

The slow–fast decomposition both, asymptotic and exact, was widely applied to the
qualitative and quantitative analysis of various singularly perturbed systems without
and with delays (see, e.g., [3,4,7,11,12,14,28–34] and references therein). In particular,
the slow–fast decomposition approach was applied for the stability analysis of singularly
perturbed differential systems. Thus, in [7,35–40], stability conditions for various singularly
perturbed differential systems without delays were derived. For the stability analysis
of singularly perturbed time-delay systems, several approaches were considered in the
literature. Thus, in [31,41,42], the asymptotic/exponential stability of different types of
singularly perturbed time-delay systems was analyzed by the block-wise estimate of
their fundamental matrices using either the asymptotic slow–fast decomposition ([41,42])
or the exact slow–fast decomposition ([31]) of the original system. In [14,29,33,43–46],
the spectrum analysis of various singularly perturbed time-delay systems was applied to
establish their asymptotic/exponential stability. In [14,29,33,46], this analysis is based on
the exact slow–fast decomposition of the considered system, while in [43–45] this analysis
is based on the asymptotic slow–fast decomposition. Exponential/asymptotic stability
analysis of some types of singularly perturbed time-delay systems using the Linear Matrix
Inequality approach was carried out in [2,45,47–52].

In the present paper, we study the asymptotic stability of some types of linear singu-
larly perturbed time-delay systems using the symmetric matrix Riccati equation method.
This method is widely applied in the literature for the stability analysis of unperturbed
time-delay systems (see, e.g., [25] and references therein). However, the extensive Google
web-search does not show any work devoted to the direct application of the matrix Riccati
equation method for the stability analysis of singularly perturbed time-delay systems. The
matrix Riccati equation method consists of the analysis of the existence of a symmetric
positive definite solution to a symmetric matrix Riccati algebraic equation associated in a
proper way with the original time-delay system.

In the present paper, we propose the partial exact slow–fast decomposition of the
considered singularly perturbed system. Namely, we decompose only either the un-delayed
or the delayed part of the system. Using such a decomposition allows us to decompose
the initially constructed Riccati equation into two much simpler and less dimensional
Riccati equations. Asymptotic analysis of each of the latter yields parameter-free conditions
guaranteeing the asymptotic stability of the original linear singularly perturbed time-delay
system for any sufficiently small value of the parameter of singular perturbation. To the best
of our knowledge, the partial slow–fast decomposition of a singularly perturbed time-delay
system and the application of such a decomposition to the stability analysis of this system
are proposed for the first time in the literature in the present paper. The application of
the matrix Riccati algebraic equation method and the partial slow–fast decomposition of
a singularly perturbed time-delay system to its stability analysis requires one to develop
a significantly new approach to the asymptotic analysis of a symmetric matrix Riccati
algebraic equation associated with the original singularly perturbed time-delay system.

Along with the linear singularly perturbed time-delay systems, we consider nonlinear
singularly perturbed time-delay systems. Based on the aforementioned results for the
considered linear systems and using the method of asymptotic stability in the first approxi-
mation, we derive parameter-free conditions guaranteeing the asymptotic stability of the
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trivial solution to the considered nonlinear singularly perturbed time-delay systems for
any sufficiently small value of the parameter of singular perturbation.

It should be noted that the stability issue is of considerable importance, not only in the
theory of differential equations but also in different real-life problems. Various examples of
differential systems (without and with delays, unperturbed and perturbed), describing real-
life problems, can be found, for instance, in [2,4,7,19,25,53]. Examples of stability analysis
for real-life problems can be found in [2,19,44,53] and in references therein. However, not
to overload the paper, we concentrate here only on the theoretical part of the stability issue.
The consideration of the applied part of this issue requires a separate paper, or even more
than one paper.

The motivations of the present, purely theoretical, paper are the following: (1) to
propose the novel partial exact slow–fast decomposition of a singularly perturbed time-
delay system and the direct application of the symmetric matrix Riccati equation method
to the system’s asymptotic stability analysis; (2) to realize this proposition for several types
of linear and nonlinear singularly perturbed time-delay systems.

The structure of the paper as follows. The next section (Section 2) is devoted to the
stability analysis of singularly perturbed systems (linear and nonlinear) with only delayed
states in their right-hand sides. The type of the delay is a single point-wise delay propor-
tional to the small parameter of singular perturbation. In Section 3, the stability analysis
is carried out for singularly perturbed systems (linear and nonlinear) having undelayed
and delayed states in their right-hand sides. The case of multiple point-wise delays is
considered in Sections 3.1–3.4, while the case of a single point-wise delay is considered in
Section 3.5. In both cases, the delays are independent of the small parameter of singular
perturbation. Section 4 is devoted to conclusions and issues for future investigation.

The following main notations are applied in the paper:

1. En denotes the linear n-dimensional real vector space.

2. For an n × m-matrix A, (n ≥ 1, m ≥ 1), its norm is defined as ∥A∥ △
= ∑n

i=1 ∑m
j=1 |aij|,

where aij, (i = 1, . . . n; j = 1, . . . , m) are the entries of A.
3. The upper index ′′T′′ denotes the transposition either of a vector x (xT) or of a matrix

A (AT).
4. In denotes the identity matrix of dimension n.
5. col(x, y), where x ∈ En, y ∈ Em, denotes the column block-vector of the dimension

n + m with the upper block x and the lower block y, i.e., col(x, y) = (xT , yT)T .
6. For a complex number λ, Re(λ) denotes its real part.
7. For a continuous vector-valued function φ(τ) : [τ1, τ2] → En, ∥φ(·)∥C denotes its

uniform norm, i.e., ∥φ(·)∥C
△
= maxτ∈[τ1,τ2]

∥φ(τ)∥.

2. First Type System
2.1. Formulation, Basic Definition, and Assertions

Consider the following differential system:

dx(t)
dt

= H1x(t − εh) + H2y(t − εh), t ≥ 0,

ε
dy(t)

dt
= H3x(t − εh) + H4y(t − εh), t ≥ 0, (1)

where x(t) ∈ En and y(t) ∈ Em; Hi, (i = 1, . . . , 4) are given constant matrices of corre-
sponding dimensions; ε > 0 is a small parameter; h > 0 is a given number independent
of ε.

System (1) is a time-delay system with a point-wise form of the delay. Being a time-
delay system, (1) is infinite-dimensional with the state variables x(t + τ), y(t + τ), τ ∈
[−εh, 0]. Moreover, this system is a singularly perturbed system with the parameter ε of
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singular perturbation. An additional feature of (1) is that the time delay is proportional to
the small multiplier ε for the derivative dy(t)/dt in the second equation.

For system (1), let us consider the initial conditions

x(τ) = φx(τ), y(τ) = φy(τ), τ ∈ [−εh, 0], (2)

where φx(τ) is a given n-dimensional vector-valued function; φy(τ) is a given m-dimensional
vector-valued function; both functions are continuous in the interval [−εh, 0].

Based on the results of [25], we introduce the definition.

Definition 1. For a given ε > 0, the system (1) is called asymptotically stable if for any aforemen-
tioned functions φx(τ) and φy(τ), τ ∈ [−εh, 0]; the solution of the initial-value problem (1)–(2)

col
(

x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))
tends to zero as t tends to +∞.

Consider the block-form matrix

H
△
=

(
H1 H2
H3 H4

)
. (3)

Also, we consider the following set of two matrix algebraic equations with respect to
m × n-matrix L and n × m-matrix M:

εLH1 − H4L − εLH2L + H3 = 0,

−M(H4 + εLH2) + ε(H1 − H2L)M + H2 = 0. (4)

In what follows in this section, we assume the following:
A1. The matrix H4 is invertible, i.e., H−1

4 exists.
By virtue of the results of [7] (see Sections 2.2 and 2.4), we have the following assertion.

Proposition 1. Let the assumption A1 be valid. Then, there exists a positive number ε1 such that,
for all ε ∈ [0, ε1], the set (4) has the solution {L(ε), M(ε)} satisfying the inequalities

∥L(ε)− H−1
4 H3∥ ≤ aε, ∥M(ε)− H2H−1

4 ∥ ≤ aε, (5)

where a > 0 is some constant independent of ε

Let us introduce into consideration the block matrix

D(ε)
△
=

(
In εM(ε)

−L(ε) Im − εL(ε)M(ε)

)
, ε ∈ [0, ε1]. (6)

This matrix is invertible and its inverse matrix is (for details, see [7], Section 2.4):

D−1(ε) =

(
In − εM(ε)L(ε) − εM(ε)
L(ε) Im

)
, ε ∈ [0, ε1]. (7)

Let us transform the state variables x(t + τ) and y(t + τ), τ ∈ [−εh, 0] of system (1) as:(
x(t + τ)
y(t + τ)

)
= D(ε)

(
u(t + τ)
v(t + τ)

)
, t ≥ 0, τ ∈ [−εh, 0], ε ∈ (0, ε1], (8)

where u(t) ∈ En, v(t) ∈ Em, u(t + τ), and v(t + τ) are new state variables.
Based on the results of [7] (see Section 2.4), as well as on Definition 1 and the existence

of the matrix in (7), we directly obtain the following assertion.
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Proposition 2. Let the assumption A1 be valid. Then, for any given ε ∈ (0, ε1], the transformation
(8) converts the initial-value problem (1)–(2) to the following equivalent initial-value problem:

du(t)
dt

=
(

H1 − H2L(ε)
)
u(t − εh),

ε
dv(t)

dt
=
(

H4 + εL(ε)H2
)
v(t − εh), (9)

u(τ) =
(

In − εM(ε)L(ε)
)

φx(τ)− εM(ε)φy(τ), τ ∈ [−εh, 0],

v(τ) = L(ε)φx(τ) + φy(τ), τ ∈ [−εh, 0]. (10)

Moreover, system (1) is asymptotically stable if and only if each of the equations in system (9)
is asymptotically stable.

Consider the following two symmetric Riccati algebraic equations with respect to
n × n-matrix P1 and m × m-matrix P2:(

H1 − H2L(ε)
)T P1 + P1

(
H1 − H2L(ε)

)
+ εhP1

(
H1 − H2L(ε)

)
R−1

1
(

H1 − H2L(ε)
)T P1

+εh
(

H1 − H2L(ε)
)T R1

(
H1 − H2L(ε)

)
= −Q1, (11)

1
ε

(
H4 + εL(ε)H2

)T P2 +
1
ε

P2
(

H4 + εL(ε)H2
)

+
1
ε

hP2
(

H4 + εL(ε)H2
)

R−1
2
(

H4 + εL(ε)H2
)T P2

+
1
ε

h
(

H4 + εL(ε)H2
)T R2

(
H4 + εL(ε)H2

)
= −Q2, (12)

where R1 and Q1 are some symmetric positive definite matrices of the dimension n × n,
while R2 and Q2 are some symmetric positive definite matrices of the dimension m × m.

By virtue of Proposition 1 and the results of [25] (see Chapter 7, Theorem 2.3), we
directly obtain the following assertions.

Proposition 3. Let the assumption A1 be valid. Let, for a given ε ∈ (0, ε1], there exist symmetric
positive definite matrices R1 and Q1 such that Equation (11) has a symmetric positive definite
solution P1 = P1(ε). Then, for this ε, the first equation in system (9) is asymptotically stable.

Proposition 4. Let the assumption A1 be valid. Let, for a given ε ∈ (0, ε1], there exist symmetric
positive definite matrices R2 and Q2 such that Equation (12) has a symmetric positive definite
solution P2 = P2(ε). Then, for this ε, the second equation in system (9) is asymptotically stable.

2.2. Asymptotic Solution with Respect to ε of the Equation (11)

We look for the zero-order asymptotic solution P10 of (11). Using Proposition 1 and
setting formally ε = 0 in Equation (11), we obtain the following equations for its zero-order
asymptotic solution:

(H1 − H2H−1
4 H3)

T P10 + P10(H1 − H2H−1
4 H3) = −Q1. (13)

In what follows of this section, we assume the following:
A2. There exists a symmetric positive definite matrix Q1 such that the symmetric matrix
Lyapunov algebraic Equation (13) has a symmetric positive definite solution P10.
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Remark 1. Due to the well known properties of the symmetric matrix Lyapunov algebraic equation
(see, e.g., [25,54]), we can conclude the following. If the assumption A2 is valid, then the matrix

H △
= H1 − H2H−1

4 H3 (14)

is a Hurwitz one, and the solution P10 is unique. Vice versa, if H is a Hurwitz matrix then, for any
symmetric positive definite matrix Q1, Equation (13) has the unique solution,

P10 =
∫ +∞

0
exp(HTσ)Q1 exp(Hσ)dσ, (15)

and this solution is a symmetric positive definite matrix.

Theorem 1. Let the assumptions A1 and A2 be valid. Then, there exists a number 0 < ε∗1 ≤ ε1 such
that, for all ε ∈ (0, ε∗1], Equation (11) has a symmetric positive definite solution P1(ε), satisfying
the inequality ∥∥P1(ε)− P10

∥∥ ≤ a1ε, ε ∈ (0, ε∗1], (16)

where a1 > 0 is some constant independent of ε.

Proof. First of all, let us note the following. Using Equation (14) and the first inequality in
(5), we can represent the matrix H1 − H2L(ε) in the form

H1 − H2L(ε) = H+ Γ1(ε), ε ∈ [0, ε1], (17)

where the n × n-matrix Γ1(ε) satisfies the inequality∥∥Γ1(ε)
∥∥ ≤ c1ε, c1 = a

∥∥H2
∥∥, ε ∈ (0, ε1]. (18)

Now, let us transform the unknown matrix in Equation (11) as:

P1 = P10 + ∆P1, (19)

where ∆P1 is a new unknown matrix.
Substituting (19) into Equation (11) and using Equations (13), (14), (17), we obtain the

following equation with respect to ∆P1:(
H+ Γ2(ε)

)T∆P1 + ∆P1
(
H+ Γ2(ε)

)
= −Γ3(ε)

−εh∆P1
(
H+ Γ1(ε)

)
R−1

1
(
H+ Γ1(ε)

)T∆P1, (20)

where

Γ2(ε) = Γ1(ε) + εh
(
H+ Γ1(ε)

)
R−1

1
(
H+ Γ1(ε)

)T P10,

Γ3(ε) = ΓT
1 (ε)P10 + P10Γ1(ε) + εhP10

(
H+ Γ1(ε)

)
R−1

1
(
H+ Γ1(ε)

)T P10

+εh
(
H+ Γ1(ε)

)T R1
(
H+ Γ1(ε)

)
. (21)

Due to inequality (18), we directly have∥∥Γ2(ε)
∥∥ ≤ c2ε,

∥∥Γ3(ε)
∥∥ ≤ c3ε, ε ∈ (0, ε1], (22)

where c2 > 0 and c3 > 0 are some constants independent of ε.
Furthermore, taking into account that H is a Hurwitz matrix (see Remark 1) and using

the first inequality in (22) and the results of [55], we obtain the existence of a number
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0 < ε2 ≤ ε1, such that, for all ε ∈ (0, ε2], the eigenvalues λi(ε), (i = 1, . . . , n) of the matrix
H+ Γ2(ε) satisfy the inequality

Re
(
λi(ε)

)
< −γ, i = 1, . . . , n, (23)

where γ > 0 is some constant independent of ε.
Due to inequality (23), we can rewrite Equation (20) in the following equivalent form

for all ε ∈ (0, ε2]:

∆P1 =
∫ +∞

0
exp

(
(H+ Γ2(ε))

Tσ
)[

Γ3(ε)

+εh∆P1
(
H+ Γ1(ε)

)
R−1

1
(
H+ Γ1(ε)

)T∆P1
]

exp
(
(H+ Γ2(ε))σ

)
dσ. (24)

Consider the linear space Θ of all symmetric n × n-matrix S. This space, endowed
with the norm

∥∥S
∥∥

Θ =
∥∥S
∥∥, is a Banach space.

For a sufficiently small number ε > 0, consider the ball in Θ,

B(cB , ε)
△
=
{

S ∈ Θ :
∥∥S
∥∥

Θ ≤ cBε
}

, (25)

where cB > 0 is some constant independent of ε.
For the aforementioned ε > 0, consider the operator, given in the space Θ,

Fε(S)
△
=
∫ +∞

0
exp

(
(H+ Γ2(ε))

Tσ
)[

Γ3(ε)

+εhS
(
H+ Γ1(ε)

)
R−1

1
(
H+ Γ1(ε)

)TS
]

exp
(
(H+ Γ2(ε))σ

)
dσ, S ∈ Θ. (26)

For any cB > 0 and any ε > 0, the operator Fε(·) maps the ball B(cB , ε) into the space
Θ. Let us show that, for a proper choice of the numbers cB > 0 and ε̃ ∈ (0, ε2], this operator
maps the ball B(cB , ε) into itself for any ε ∈ (0, ε̃].

Using inequalities (18), (22), (23), we can estimate the image of the operator Fε(S) for
any S ∈ B(cB , ε) as follows:

∥∥Fε(S)∥Θ =

∥∥∥∥ ∫ +∞

0
exp

(
(H+ Γ2(ε))

Tσ
)[

Γ3(ε)

+εhS
(
H+ Γ1(ε)

)
R−1

1
(
H+ Γ1(ε)

)TS
]

exp
(
(H+ Γ2(ε))σ

)
dσ

∥∥∥∥
Θ

≤
∫ +∞

0

∥∥ exp
(
(H+ Γ2(ε))σ

)∥∥2
Θ

[∥∥Γ3(ε)
∥∥

Θ + εh
∥∥S
∥∥2

Θ

∥∥H+ Γ2(ε)
∥∥2

Θ

∥∥R−1
1

∥∥
Θ

]
dσ

≤ 1
2γ

[
c3 + hc2

Bc4ε2]ε, (27)

where
c4

△
=
(∥∥H∥∥Θ + c1ε1

)2∥∥R−1
1

∥∥
Θ. (28)

Using the definition of the ball B(cB , ε) (see the Equation (25)) and inequality (27), we
can conclude the following. If, for some numbers cB > 0 and ε > 0,

1
2γ

[
c3 + hc2

Bc4ε2] ≤ cB , (29)

then, for these cB and ε, the operator Fε(·) maps the ball B(cB , ε) into itself.
Since limε→+0 hc2

Bc4ε2 = 0, then, for any pre-chosen ν > 1 and cB = cB(ν) = ν c3
2γ ,

there exists ε̃(ν) ∈ (0, ε2], such that inequality (29) is valid for all ε ∈ (0, ε̃(ν)]. Thus, for the
aforementioned cB = cB(ν) and ε, the operator Fε(·) maps the ball B(cB , ε) into itself.
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Now, let us show that, for all sufficiently small ε > 0, the operator Fε(·) satisfies
the Lipschitz condition in the ball B

(
cB(ν), ε

)
with a constant 0 < q < 1. For any S1 ∈

B
(
cB(ν), ε

)
and S2 ∈ B

(
cB(ν), ε

)
, using inequalities (18) and (23) and Equations (25), (26),

and (28), we obtain

∥∥Fε(S1)−Fε(S2)
∥∥

Θ ≤ hcB(ν)c4

γ
ε2∥∥S1 − S2

∥∥
Θ, ε ∈ (0, ε̃(ν)]. (30)

This inequality means that, for any pre-chosen number 0 < q < 1, there exists ε̂(q) ∈
(0, ε̃(ν)], such that the operator Fε(·) satisfies the Lipschitz condition in the ball B

(
cB(ν), ε

)
with this constant for any ε ∈ (0, ε̂(q)].

Summarizing the above presented analysis of the operator Fε(·), we have the follow-
ing: For any ε ∈ (0, ε̂(q)], the operator Fε(·) maps the ball B

(
cB(ν), ε

)
into itself and satisfies

the Lipschitz condition in this ball with the aforementioned constant 0 < q < 1. Hence,
by virtue of the results of [56,57], Equation (24) has the unique solution ∆P1 = ∆P1(ε) in the
ball B

(
cB(ν), ε

)
for all ε ∈ (0, ε̂(q)]. Furthermore, since Equation (24) is equivalent to Equa-

tion (20), then ∆P1(ε) is also the solution of this problem. Since ∆P1(ε) ∈ B
(
cB(ν), ε

)
for all

ε ∈ (0, ε̂(q)], P10 is a symmetric matrix and ∥ · ∥Θ = ∥ · ∥, then, due to (19), Equation (11)
has the symmetric solution P1 = P1(ε), ε ∈ (0, ε̂(q)], and this solution satisfies inequality
(16) with a1 = cB(ν) and ε∗1 = ε̂(q). Moreover, since P10 is a positive definite matrix, then
there exists a number ε̄ ∈ (0, ε̂(q)], such that, for all ε ∈ (0, ε̄], the matrix P1(ε) is positive
definite. Thus, the statements of the theorem are valid for ε∗1 = ε̄ and a1 = cB(ν).

As a direct consequence of Proposition 3 and Theorem 1, we obtain the following
assertion.

Corollary 1. Let the assumptions A1 and A2 be valid. Then, for any given ε ∈ (0, ε∗1], the first
equation in system (9) is asymptotically stable.

2.3. Asymptotic Solution with Respect to ε of the Equation (12)

To solve asymptotically Equation (12), we choose the matrix Q2 as follows:

Q2 = Q2(ε) =
1
ε

Q̃, ε ∈ (0, ε1], (31)

where Q̃ is some symmetric positive definite matrix independent of ε.
Substituting (31) into (12), we directly obtain, after a simple rearrangement, the

following equivalent symmetric Riccati algebraic equations with respect to the m × m-
matrix P2: (

H4 + εL(ε)H2
)T P2 + P2

(
H4 + εL(ε)H2

)
+hP2

(
H4 + εL(ε)H2

)
R−1

2
(

H4 + εL(ε)H2
)T P2

+h
(

H4 + εL(ε)H2
)T R2

(
H4 + εL(ε)H2

)
= −Q̃. (32)

We look for the zero-order asymptotic solution P20 of (32). Using Proposition 1 and
setting formally ε = 0 in Equation (32), we obtain the following equation for its zero-order
asymptotic solution:

HT
4 P20 + P20H4 + hP20H4R−1

2 HT
4 P20 + hHT

4 R2H4 = −Q̃. (33)

In what follows, we assume the following:
A3. There exist symmetric positive definite matrices R2 and Q̃, such that:
(a) the symmetric matrix Riccati algebraic Equation (33) has a symmetric positive definite
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solution P20;
(b) all eigenvalues of the matrix

G △
= H4 + hH4R−1

2 HT
4 P20 (34)

lie strictly inside either the left-hand half or the right-hand half of the complex plane.

Lemma 1. Let the assumption A1 and the item (a) of the assumption A3 be valid. Then, H4 is a
Hurwitz matrix.

Proof. Consider the Lyapunov algebraic equation with respect to the m × m-matrix P,

HT
4 P + PH4 = −hP20H4R−1

2 HT
4 P20 − hHT

4 R2H4 − Q̃.

The matrix in the right-hand side of this equation is negative definite. Moreover, due
to item (a) of assumption A3, this equation has the symmetric positive definite solution
P = P20. Hence, by the same arguments as in Remark 1, we conclude that the matrix H4 is
a Hurwitz one.

Remark 2. Based on Lemma 1 and the results of [25] (see Chapter 7, Theorem 2.3), we directly
conclude the following. The validity of the assumption A3 (item (a)) guarantees that H4 is a Hurwitz
matrix and the equation

dz(ξ)
dξ

= H4z(ξ − h), ξ ≥ 0, z(ξ) ∈ Em (35)

is asymptotically stable.
However, the only requirement that H4 is a Hurwitz matrix does not, in general, guarantee

the asymptotic stability of Equation (35) (see, e.g., Section 2.3 in [2]).

Theorem 2. Let the assumptions A1 and A3 be valid. Then, there exists a number 0 < ε∗2 ≤ ε1,
such that, for all ε ∈ (0, ε∗2], Equation (32) has a symmetric positive definite solution P2(ε) satisfying
the inequality ∥∥P2(ε)− P20

∥∥ ≤ a2ε, ε ∈ (0, ε∗2], (36)

where a2 > 0 is some constant independent of ε.

Proof. Let us transform the unknown matrix in Equation (32) as:

P2 = P20 + ∆P2, (37)

where ∆P2 is a new unknown matrix.
Substituting (37) into Equation (32) and using Equations (33) and (34), we obtain the

following equation with respect to ∆P2:(
G + Λ1(ε)

)T∆P2 + ∆P2
(
G + Λ1(ε)

)
= −Λ2(ε)

−h∆P2
(

H4 + εL(ε)H2
)

R−1
2
(

H4 + εL(ε)H2
)T∆P2, (38)

where

Λ1(ε) = ε
(

L(ε)H2 + hH4R−1
2 HT

2 LT(ε)P20 + hL(ε)H2R−1
2 HT

4 P20

+εhL(ε)H2R−1
2 HT

2 LT(ε)P20
)
,

Λ2(ε) = ε
(

HT
2 LT(ε)P20 + P20L(ε)H2 + hP20L(ε)H2R−1

2 HT
4 P20

+hP20H4R−1
2 HT

2 LT(ε)P20 + εhP20L(ε)H2R−1
2 HT

2 LT(ε)P20 + hHT
4 R2L(ε)H2

+hHT
2 LT(ε)R2H4 + εhHT

2 LT(ε)R2L(ε)H2
)
. (39)
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Due to Proposition 1, matrices Λ1(ε) and Λ2(ε) satisfy the inequalities∥∥Λ1(ε)
∥∥ ≤ b1ε,

∥∥Λ2(ε)
∥∥ ≤ b2ε, ε ∈ (0, ε1], (40)

where b1 > 0 and b2 > 0 are some constants independent of ε.
Moreover, since P20 and R2 are symmetric matrices, then, for all ε ∈ (0, ε1], matrix

Λ2(ε) is symmetric.
Furthermore, taking into account item (b) of assumption A3 and using the first in-

equality in (40) and the results of [55], we obtain the existence of a number 0 < ε̃1 ≤ ε1,
such that, for all ε ∈ (0, ε̃1], the eigenvalues µj(ε), (j = 1, . . . , m) of the matrix G + Λ1(ε)
satisfy either the inequality

Re
(
µj(ε)

)
< −χ, j = 1, . . . , m, (41)

or the inequality
Re
(
µj(ε)

)
> χ, j = 1, . . . , m, (42)

where χ > 0 is some constant independent of ε.
If inequality (41) is valid, then Equation (38) can be rewritten in the equivalent form

as:

∆P2 =
∫ +∞

0
exp

(
(G + Λ1(ε))

Tσ
)[

Λ2(ε)

+h∆P2
(

H4 + εL(ε)H2
)

R−1
2
(

H4 + εL(ε)H2
)T∆P2] exp

(
(G + Λ1(ε))σ

)
dσ. (43)

If inequality (42) is valid, then Equation (38) can be rewritten in the equivalent form
as:

∆P2 = −
∫ +∞

0
exp

(
− (G + Λ1(ε))

Tσ
)[

Λ2(ε)

+h∆P2
(

H4 + εL(ε)H2
)

R−1
2
(

H4 + εL(ε)H2
)T∆P2] exp

(
− (G + Λ1(ε))σ

)
dσ. (44)

The rest of the proof is quite similar to the corresponding part of the proof of Theorem 1.
This completes the proof of the present theorem.

The following assertion is a direct consequence of Proposition 4 and Theorem 2.

Corollary 2. Let the assumptions A1 and A3 be valid. Then, for any given ε ∈ (0, ε∗2], the second
equation in system (9) is asymptotically stable.

2.4. ε-Free Asymptotic Stability Conditions for System (1)

Let us denote

ε∗
△
= min

{
ε∗1, ε∗2

}
. (45)

Now, using Proposition 2, Corollaries 1 and 2, and Equation (45), we immediately
have the following theorem.

Theorem 3. Let the assumptions A1–A3 be valid. Then, for any given ε ∈ (0, ε∗], system (1) is
asymptotically stable.
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2.5. Nonlinear Singularly Perturbed System

Consider the following differential system:

dx(t)
dt

= f
(

x(t − εh), y(t − εh)
)
, t ≥ 0,

ε
dy(t)

dt
= g

(
x(t − εh), y(t − εh)

)
, t ≥ 0, (46)

where x(t) ∈ En and y(t) ∈ Em; f (ϕ, ψ) : En × Em → En and g(ϕ, ψ) : En × Em → Em are
given functions; f (0, 0) = 0 and g(0, 0) = 0; ε > 0 is a small parameter; h > 0 is a given
number independent of ε.

For this system (like for system (1)), we consider the initial conditions (2).
Based on the results of [25], we introduce the following definitions.

Definition 2. For a given ε > 0, the trivial solution
(

x(t) ≡ 0, y(t) ≡ 0
)

of system (46)
is called stable if for any number α > 0 there exists a number β > 0, dependent on α, such

that the solution col
(

x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))
of the initial-value problem (46), (2)

satisfies the inequality
∥∥∥col

(
x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))∥∥∥ ≤ α, t ≥ 0, for any pair(
φx(τ), φy(τ)

)
satisfying the inequality∥∥col

(
φx(τ), φy(τ)

)∥∥ ≤ β, τ ∈ [−εh, 0]. (47)

Definition 3. For a given ε > 0, the trivial solution
(
x(t) ≡ 0, y(t) ≡ 0

)
of system (46) is called

asymptotically stable if this solution is stable and there exists a number β > 0 such that, for any

pair
(

φx(τ), φy(τ)
)

satisfying (47), the solution col
(

x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))
of the

initial-value problem (46), (2) tends to zero as t tends to +∞.

In what follows of this section, we assume the following:
A4. The functions f (ϕ, ψ) and g(ϕ, ψ) are twice continuously differentiable for (ϕ, ψ) ∈
En × Em.

The linearization of system (46) in a neighborhood of its trivial solution
(

x(t) ≡
0, y(t) ≡ 0, t ≥ −εh

)
yields the following system:

dx(t)
dt

= fϕ(0, 0)x(t − εh) + fψ(0, 0)y(t − εh), t ≥ 0,

ε
dy(t)

dt
= gϕ(0, 0)x(t − εh) + gψ(0, 0)y(t − εh), t ≥ 0. (48)

As a direct consequence of Theorem 3, we have the following lemma.

Lemma 2. Let the assumption A4 be valid. Let the assumptions A1–A3 be valid for H1 = fϕ(0, 0),
H2 = fψ(0, 0), H3 = gϕ(0, 0), and H4 = gψ(0, 0). Then, there exists a number ε̃∗ > 0, such that,
for any given ε ∈ (0, ε̃∗], system (48) is asymptotically stable.

Theorem 4. Let the assumption A4 be valid. Let the assumptions A1–A3 be valid for H1 = fϕ(0, 0),
H2 = fψ(0, 0), H3 = gϕ(0, 0), and H4 = gψ(0, 0). Then, for any given ε ∈ (0, ε̃∗], the trivial
solution of system (46) is asymptotically stable.

Proof. First of all, let us note the following. Using the assumption A4 and applying the
Taylor’s formula to the functions f (ϕ, ψ) and g(ϕ, ψ), we obtain the following inequalities:∥∥ f (ϕ, ψ)− fϕ(0, 0)− fψ(0, 0)

∥∥ ≤ ω f (ϕ, ψ)
∥∥col(ϕ, ψ)

∥∥2, (ϕ, ψ) ∈ En × Em,∥∥g(ϕ, ψ)− gϕ(0, 0)− gψ(0, 0)
∥∥ ≤ ωg(ϕ, ψ)

∥∥col(ϕ, ψ)
∥∥2, (ϕ, ψ) ∈ En × Em, (49)
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where the positive functions ω f (ϕ, ψ) and ωg(ϕ, ψ), being estimates for the absolute values
of all the second-order derivatives of all the entries of f (ϕ, ψ) and g(ϕ, ψ), respectively,
at any given point (ϕ, ψ) ∈ En × Em, are bounded in any bounded and closed set of the
space En × Em.

Due to (49), we obtain the following inequalities for any given ε ∈ (0, ε̃∗] and any
vector-valued functions φx(τ), φy(τ), τ ∈ [−εh, 0], introduced in (2):

∥∥ f
(

φx(τ), φy(τ)
)
− fϕ(0, 0)− fψ(0, 0)

∥∥ ≤ ω f
(

φx(τ), φy(τ)
)(∥∥col(φx(·), φy(·))

∥∥
C

)2
,∥∥g

(
φx(τ), φy(τ)

)
− gϕ(0, 0)− gψ(0, 0)

∥∥ ≤ ωg
(

φx(τ), φy(τ)
)(∥∥col(φx(·), φy(·))

∥∥
C

)2
. (50)

Thus, for any given ε ∈ (0, ε̃∗] and τ ∈ [−εh, 0],

lim
∥col(φx(·),φy(·))∥C→0

ω f
(

φx(τ), φy(τ)
)∥∥col(φx(·), φy(·))

∥∥
C = 0, (51)

lim
∥col(φx(·),φy(·))∥C→0

1
ε

ωg
(

φx(τ), φy(τ)
)∥∥col(φx(·), φy(·))

∥∥
C = 0. (52)

Now, using the results of [2,21] on the asymptotic stability in the first approximation
of time-delay equations, as well as the inequalities in (50), the limit equalities (51) and (52),
and Lemma 2, we immediately obtain the statement of the theorem.

2.6. Examples
2.6.1. Example 1

Consider a particular case of system (1) with the following data:

n = 2, m = 2, h = 1, H1 =

(
1 2
4 − 3

)
, H2 =

(
4 − 3
1 − 1

)
,

H3 =

(
2 − 1
4 8

)
, H4 =

(
−0.5 0

0 − 0.8

)
. (53)

Due to the form of the matrix H4, assumption A1 is valid in this example.
For system (1), (53), the matrix H, given by Equation (14), is

H =

(
2 − 36
3 − 15

)
,

and the real part of both its eigenvalues equals −6.5. Thus, H is a Hurwitz matrix. Therefore,
due to Remark 1, assumption A2 is valid in this example.

Proceed to the analysis and solution of the Riccati Equation (33) in this example. Let
us choose the symmetric positive definite matrices R2 and Q̃ as:

R2 =

(
R21 0
0 R22

)
, Q̃ =

(
Q̃1 0
0 Q̃2

)
. (54)

Due to the diagonal form of R2, Q̃, and H4, we look for the symmetric positive definite
solution P20 of Equation (33) in the diagonal form, i.e.,

P20 =

(
P20,1 0
0 P20,2

)
. (55)

Substitution of the value h and the matrices H4, R2, Q̃, P20 (see Equations (53), (54),
and (55)) into Equation (33) yields, after a routine rearrangement, the following system of
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two disconnected scalar algebraic quadratic equations, the first of which is with respect to
P20,1, while the second is with respect to P20,2:

1
4R21

P2
20,1 − P20,1 + 0.25R21 + Q̃1 = 0,

16
25R22

P2
20,2 − 1.6P20,2 + 0.64R22 + Q̃2 = 0. (56)

Let us start with the analysis of the first equation in (56). This equation yields two
solutions:

P+
20,1 = 2R21

(
1 +

√
0.75 − Q̃1/R21

)
,

P−
20,1 = 2R21

(
1 −

√
0.75 − Q̃1/R21

)
. (57)

Each of these solutions is positive if and only if

0 < Q̃1 ≤ 0.75R21. (58)

Moreover, the expression

G+
1

△
= H4 + hH2

4 R−1
21 P+

20,1 = 0.5
√

0.75 − Q̃1/R21 > 0, (59)

while
G−

1
△
= H4 + hH2

4 R−1
21 P−

20,1 = −0.5
√

0.75 − Q̃1/R21 < 0, (60)

if and only if inequality (58) with the strict right-hand side is valid, i.e.,

0 < Q̃1 < 0.75R21. (61)

Proceed to the analysis of the second equation in (56). This equation yields two
solutions:

P+
20,2 = 1.25R22

(
1 +

√
0.36 − Q̃2/R22

)
,

P−
20,2 = 1.25R22

(
1 −

√
0.36 − Q̃2/R22

)
. (62)

Each of these solutions is positive if and only if

0 < Q̃2 ≤ 0.36R22. (63)

Moreover, the expression

G+
2

△
= H4 + hH2

4 R−1
22 P+

20,2 = 0.8
√

0.36 − Q̃2/R22 > 0, (64)

while
G−

2
△
= H4 + hH2

4 R−1
22 P−

20,2 = −0.8
√

0.36 − Q̃2/R22 < 0, (65)

if and only if inequality (63) with the strict right-hand side is valid, i.e.,

0 < Q̃2 < 0.36R22. (66)



Symmetry 2024, 16, 838 14 of 35

In this example, for P20,1 = P+
20,1 and P20,2 = P+

20,2 the matrix G, given by Equation (34),
has the form

G = G+ =

 0.5
√

0.75 − Q̃1/R21 0

0 0.8
√

0.36 − Q̃2/R22

. (67)

For P20,1 = P−
20,1, and P20,2 = P−

20,2, the matrix G, given by Equation (34), has the form

G = G− =

 −0.5
√

0.75 − Q̃1/R21 0

0 − 0.8
√

0.36 − Q̃2/R22

. (68)

Taking into account Equations (54) and (55) and summarizing the above presented
analysis of the system (56), we can conclude the following. For any values R21, Q̃1 and
R22, Q̃2, satisfying inequalities (61) and (66), respectively, the assumption A3 is valid in
this example.

Thus, all assumptions A1,A2, and A3 are valid in this example. Therefore, due to
Theorem 3, there exists a number ε∗ > 0, such that, for any given ε ∈ (0, ε∗], system (1), (53)
is asymptotically stable.

2.6.2. Example 2

In this example, we are going to show that the time delay in system (1) of the order of
the small parameter ε, i.e., of the form εh, is considerable.

Let us consider the scalar differential equation

ε
dy(t)

dt
= Hy

(
t − h(ε)

)
, t ≥ 0, (69)

where H is a given number; ε > 0 is a small parameter; h(ε) > 0 is a given function of ε,
such that h(ε)/ε → +∞ for ε → +0. As a particular case, h(ε) can be a positive constant.

Consider the scalar quadratic equation with respect to unknown P,

h(ε)
ε2

H2

R
P2 +

2
ε

HP +
h(ε)
ε2 H2R + Q = 0, (70)

where R > 0 and Q > 0 are some numbers.
Due to the results of [25] (see Chapter 7, Theorem 2.3), if for a given ε > 0 there exist

positive numbers R and Q, such that Equation (70) has a real positive solution, then the
differential Equation (69) is asymptotically stable.

Let us show that Equation (70) does not have a positive solution for any sufficiently
small ε > 0 and any positive numbers R and Q. Indeed, since h(ε)

ε2
H2

R > 0 and h(ε)
ε2 H2R +

Q > 0, then, due to the Vieta formulas, the necessary condition for the existence of the
aforementioned solution to (70) is the fulfilment of the inequality H < 0. Using this
inequality and solving Equation (70), we obtain two of its solutions:

P1 =
1 +

√
1 −

(
h(ε)/ε

)2H2 −
(
h(ε)/R

)
Q(

h(ε)/ε
)(
|H|/R

) ,

P1 =
1 −

√
1 −

(
h(ε)/ε

)2H2 −
(
h(ε)/R

)
Q(

h(ε)/ε
)(
|H|/R

) .

Since h(ε)/ε → +∞ for ε → +0, then the expression 1 −
(
h(ε)/ε

)2H2 −
(
h(ε)/R

)
Q is

negative for all sufficiently small ε > 0 and any positive numbers R and Q. The latter means
that, for such ε, R and Q, both solutions of Equation (70) are not real. Hence, the aforemen-
tioned asymptotic stability condition is not applicable to differential Equation (69) for any
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constant coefficient H and all sufficiently small ε > 0. Moreover, due to the results of [2]
(see Section 2.3), differential Equation (69) is not asymptotically stable for any constant
coefficient H and all sufficiently small ε > 0.

2.6.3. Example 3

Consider a particular case of system (46) with the following data:

n = 1, m = 1, h = 1,

f
(
x(t − εh), y(t − εh)

)
= sin

(
y(t − εh)− 4x(t − εh)

)
,

g
(

x(t − εh), y(t − εh)
)
=
(
x(t − εh)− 0.4y(t − εh) + 1

)2 − 1. (71)

It is seen that f (0, 0) = 0, g(0, 0) = 0. Moreover, assumption A4 is valid in this exam-
ple.

The linearization of the system (46), (71) in a neighborhood of its trivial solution(
x(t) ≡ 0, y(t) ≡ 0, t ≥ −εh

)
, yields the system

dx(t)
dt

= −4x(t − εh) + y(t − εh), t ≥ 0,

ε
dy(t)

dt
= 2x(t − εh)− 0.8y(t − εh), t ≥ 0. (72)

System (72) is a particular case of system (1) with the scalar coefficients

H1 = −4, H2 = 1, H3 = 2, H4 = −0.8. (73)

Thus, assumption A1 is valid for (72). Moreover, since H, given by (14), is negative
(H = −1.5) then, due to Remark 1, assumption A2 is also valid.

Equation (33) for system (72) has the form

16
25R2

P2
20 − 1.6P20 + 0.64R2 + Q̃ = 0,

i.e., it is the same as the second equation in (56). Therefore, for any scalars R2 and Q̃,
satisfying the inequality 0 < Q̃ < 0.36R2, assumption A3 is valid for system (72). Hence,
by virtue of Lemma 2, this system is asymptotically stable for any given sufficiently small
ε > 0, and by virtue of Theorem 4, the trivial solution of the nonlinear system (46), (71) is
asymptotically stable for such ε.

3. Second Type System
3.1. Formulation, Basic Definition, and Assertions

Consider the following differential system:

dx(t)
dt

= A1x(t) + A2y(t) +
N

∑
j=1

[
H1jx(t − hj) + H2jy(t − hj)

]
, t ≥ 0,

ε
dy(t)

dt
= A3x(t) + A4y(t) +

N

∑
j=1

[
H3jx(t − hj) + H4jy(t − hj)

]
, t ≥ 0, (74)

where x(t) ∈ En and y(t) ∈ Em; Ai and Hij, (i = 1, . . . , 4; j = 1, . . . , N) are given constant
matrices of corresponding dimensions; ε > 0 is a small parameter; 0 < h1 < ... < hN are
given time delays.

Like system (1), system (74) is a time-delay system. However, in contrast with (1), sys-
tem (74) has in its right-hand side both delayed and undelayed, x(·) and y(·). Moreover,
the delayed x(·) and y(·) are with multiple point-wise delays. Being a time-delay system,
(74) is infinite-dimensional with the state variables x(t + τ), y(t + τ), τ ∈ [−hN , 0].
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Like (1), system (74) is a singularly perturbed system with the parameter ε of singular
perturbation. However, in contrast with (1), the time delays in (74) are independent of ε.

For system (74), we consider the initial conditions

x(τ) = φx(τ), y(τ) = φy(τ), τ ∈ [−hN , 0], (75)

where φx(τ) is a given n-dimensional vector-valued function; φy(τ) is a given m-dimensional
vector-valued function; and both functions are continuous in the interval [−hN , 0].

Similarly to Definition 1, we introduce the following definition.

Definition 4. For a given ε > 0, system (74) is called asymptotically stable if, for any aforemen-
tioned functions φx(τ) and φy(τ), τ ∈ [−hN , 0], the solution of the initial-value problem (74)–(75)

col
(

x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))
tends to zero as t tends to +∞.

Consider the block-form matrix

A
△
=

(
A1 A2
A3 A4

)
. (76)

Also, we consider the following set of two matrix algebraic equations with respect to
m × n-matrix L and n × m-matrix M:

εLA1 − A4L− εLA2L+ A3 = 0,

−M(A4 + εLA2) + ε(A1 − A2L)M+ A2 = 0. (77)

In what follows of this section, we assume the following:
A5. Matrix A4 is invertible, i.e., A−1

4 exists.
Similarly to Proposition 1, we have the following assertion.

Proposition 5. Let assumption A5 be valid. Then, there exists a positive number ε̄1, such that,
for all ε ∈ [0, ε̄1], the set (77) has the solution {L(ε),M(ε)} satisfying the inequalities

∥L(ε)− A−1
4 A3∥ ≤ āε, ∥M(ε)− A2 A−1

4 ∥ ≤ āε, (78)

where ā > 0 is some constant independent of ε.

Consider the following block matrix:

D(ε)
△
=

(
In εM(ε)

−L(ε) Im − εL(ε)M(ε)

)
, ε ∈ [0, ε̄1]. (79)

Similarly to the matrix D(ε), D(ε) is an invertible matrix and its inverse matrix is:

D−1(ε) =

(
In − εM(ε)L(ε) − εM(ε)
L(ε) Im

)
, ε ∈ [0, ε̄1]. (80)

Let us transform the state variables x(t + τ) and y(t + τ), τ ∈ [−hN , 0] of the system
(74) as: (

x(t + τ)
y(t + τ)

)
= D(ε)

(
u(t + τ)
v(t + τ)

)
, t ≥ 0, τ ∈ [−hN , 0], ε ∈ (0, ε̄1], (81)

where u(t) ∈ En, v(t) ∈ Em; u(t + τ); and v(t + τ) are new state variables.
Similarly to Proposition 2, we directly have the following assertion:
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Proposition 6. Let assumption A5 be valid. Then, for any given ε ∈ (0, ε̄1], transformation (81)
converts the initial-value problem (74)–(75) to the following equivalent initial-value problem:

du(t)
dt

=
(

A1 − A2L(ε)
)
u(t) +

N

∑
j=1

[
H1j(ε)u(t − hj) +H2j(ε)v(t − hj)

]
,

ε
dv(t)

dt
=
(

A4 + εL(ε)A2
)
v(t) +

N

∑
j=1

[
H3j(ε)u(t − hj) +H4j(ε)v(t − hj)

]
, (82)

u(τ) =
(

In − εM(ε)L(ε)
)

φx(τ)− εM(ε)φy(τ), τ ∈ [−hN , 0],

v(τ) = L(ε)φx(τ) + φy(τ), τ ∈ [−hN , 0], (83)

where

Hj(ε)
△
=

(
H1j(ε) H2j(ε)
H3j(ε) H4j(ε)

)
= D−1(ε)

(
H1j H2j
H3j H4j

)
D(ε), j = 1, . . . , N. (84)

Moreover, system (74) is asymptotically stable if and only if system (82) is asymptotically
stable.

Consider the following symmetric Riccati algebraic equation with respect to (n + m)×
(n + m)-matrix P:

AT(ε)E−1(ε)P + PE−1(ε)A(ε) +
N

∑
j=1

[
PE−1(ε)Hj(ε)R−1

j HT
j (ε)E−1(ε)P + Rj] = −Q, (85)

where Rj, (j = 1, . . . , N) and Q are some symmetric positive definite matrices of the
dimension (n + m)× (n + m);

E(ε) △
=

(
In 0
0 εIm

)
, A(ε)

△
=

(
A1 − A2L(ε) 0
0 A4 + εL(ε)A2

)
. (86)

By virtue of Proposition 5 and the results of [25] (see Chapter 7, Theorem 3.1), we
directly obtain the following assertion.

Proposition 7. Let assumption A5 be valid. Let, for a given ε ∈ (0, ε̄1], there exist symmetric
positive definite matrices Rj, (j = 1, . . . , N) and Q such that the Equation (85) has a symmetric
positive definite solution P = P(ε). Then, for this ε, system (82) is asymptotically stable.

We choose the matrices Rj, (j = 1, . . . , N) and Q in the block form as:

Rj =

(
R1j 0
0 R2j

)
, j = 1, . . . , N;

Q = Q(ε) =

(
Q1 Q2(ε)
QT

2 (ε) Q3

)
, (87)

where the matrices R1j, (j = 1, . . . , N) and Q1 are of the dimension n × n; the matrices R2j,
(j = 1, . . . , N), and Q3 are of the dimension m × m.

Based on the block form of the matrices E(ε), A(ε), and Rj, (j = 1, . . . , N), we look for
the symmetric positive definite solution P = P(ε) of Riccati Equation (85) in the block form

P =

(
P1 0
0 εP2

)
, (88)

where the matrices P1 and P2 are of the dimensions n × n and m × m, respectively.
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Substituting the block-form representations of the matrices Hj(ε), (j = 1, . . . , N),
E(ε), A(ε), Rj, (j = 1, . . . , N), Q(ε) and P (see Equations (84), (86), (87), and (88)) into
Equation (85) yields, after a routine matrix algebra, the following equivalent set of three
matrix equations with respect to P1 and P2:(

A1 − A2L(ε)
)T

(ε)P1 + P1
(

A1 − A2L(ε)
)
(ε)

+
N

∑
j=1

[
P1
(
H1j(ε)R−1

1j H
T
1j(ε) +H2j(ε)R−1

2j H
T
2j(ε)

)
P1 + R1j] = −Q1, (89)

(
A4 + εL(ε)A2

)T
(ε)P2 + P2

(
A4 + εL(ε)A2

)
+

N

∑
j=1

[
P2
(
H3j(ε)R−1

1j H
T
3j(ε) +H4j(ε)R−1

2j H
T
4j(ε)

)
P2 + R2j] = −Q3, (90)

P1

( N

∑
j

(
H1j(ε)R−1

1j H
T
3j(ε) +H2j(ε)R−1

2j H
T
4j(ε)

))
P2 = −Q2(ε). (91)

Corollary 3. Let assumption A5 be valid. Let, for a given ε ∈ (0, ε̄1], there exist symmetric
positive definite matrices R1j, R2j, (j = 1, . . . , N), Q1, Q3 such that Equations (89) and (90) have
symmetric positive definite solutions P1 = P1(ε) and P2 = P2(ε). Moreover, let the matrix Q(ε),
given in (87) with

Q2(ε) = −P1(ε)
( N

∑
j=1

(
H1j(ε)R−1

1j H
T
3j(ε) +H2j(ε)R−1

2j H
T
4j(ε)

))
P2(ε), (92)

be positive definite. Then, for this ε, system (82) is asymptotically stable.

Proof. Due to the assumptions of the corollary, we obtain the following. For any given
ε ∈ (0, ε̄1] and for the matrices Rj and Q, given by (87), Equation (85) has the symmetric
positive definite solution P = P(ε) of the form (88), where P1 = P1(ε) and P2 = P2(ε) are
the symmetric positive definite solutions of Equations (89) and (90). Therefore, by virtue of
Proposition 7, system (82) is asymptotically stable for any given ε ∈ (0, ε̄1].

3.2. Asymptotic Solution with Respect to ε of Equations (89) and (90)

We look for the zero-order asymptotic solutions P10 and P20 of (89) and (90), respec-
tively. Setting formally ε = 0 in Equations (89) and (90), and using Proposition 5 and
Equation (84), we obtain the following equations for their zero-order asymptotic solutions:

(A1 − A2 A−1
4 A3)

T P10 + P10(A1 − A2 A−1
4 A3)

+
N

∑
j=1

[
P10
(
H1j(0)R−1

1j H
T
1j(0) +H2j(0)R−1

2j H
T
2j(0)

)
P10 + R1j] = −Q1, (93)

AT
4 P20 + P20 A4

+
N

∑
j=1

[
P20
(
H3j(0)R−1

1j H
T
3j(0) +H4j(0)R−1

2j H
T
4j(0)

)
P20 + R2j] = −Q3, (94)
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where

H1j(0) = H1j − H2j A−1
4 A3, H2j(0) = H2j,

H3j(0) = A−1
4 A3H1j + H3j − A−1

4 A3H2j A−1
4 A3 − H4j A−1

4 A3,

H4j(0) = A−1
4 A3H2j + H4j. (95)

In what follows, we assume the following:
A6. There exist symmetric positive definite matrices R1j, R2j, (j = 1, . . . , N), Q1, Q3,
such that:
(a) Equations (93) and (94) have symmetric positive definite solutions P10 and P20, respec-
tively;
(b) all eigenvalues of each of the matrices

G10
△
= A1 − A2 A−1

4 A3 +
N

∑
j=1

[
H1j(0)R−1

1j H
T
1j(0) +H2j(0)R−1

2j H
T
2j(0)

]
P10,

G20
△
= A4 +

N

∑
j=1

[
H3j(0)R−1

1j H
T
3j(0) +H4j(0)R−1

2j H
T
4j(0)

]
P20 (96)

lie strictly inside either the left-hand half or the right-hand half of the complex plane;
(c) the matrix

Q0 =

(
Q1 Q20
QT

20 Q3

)
, (97)

with

Q20 = −P10

( N

∑
j=1

(
H1j(0)R−1

1j H
T
3j(0) +H2j(0)R−1

2j H
T
4j(0)

))
P20, (98)

is positive definite.

Remark 3. Based on the results of [25] (see Chapter 7, Theorem 3.1), we obtain (similarly to
Lemma 1 and Remark 2) the following conclusions. The validity of assumption A6 (items (a) and
(b)) guarantees that A1 − A2 A−1

4 A3 and A4 are Hurwitz matrices. Moreover, the equations

dz1(t)
dt

= (A1 − A2 A−1
4 A3)z1(t) +

N

∑
j=1

H1j(0)z1(t − hj), t ≥ 0, z1(t) ∈ En (99)

and
dz2(t)

dt
= A4z2(t) +

N

∑
j=1

H4j(0)z2(t − hj), t ≥ 0, z2(t) ∈ Em (100)

are asymptotically stable.
However, the only requirement that A1 − A2 A−1

4 A3 is a Hurwitz matrix does not, in general,
guarantee the asymptotic stability of Equation (99) (see, e.g., Section 2.3 in [2]). Similarly, the only
requirement that A4 is a Hurwitz matrix does not, in general, guarantee the asymptotic stability of
Equation (100).

Theorem 5. Let assumptions A5 and A6 be valid. Then, there exists a number 0 < ε̄2 ≤ ε̄1,
such that, for all ε ∈ (0, ε̄2], Equations (89) and (90) have symmetric positive definite solutions
P1 = P1(ε) and P2 = P2(ε), satisfying the inequalities∥∥P1(ε)− P10

∥∥ ≤ ā1ε,
∥∥P2(ε)− P20

∥∥ ≤ ā2ε, ε ∈ (0, ε̄2], (101)

where ā1 > 0 and ā2 > 0 are some constants independent of ε.
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Moreover, there exists a number 0 < ε̄3 ≤ ε̄2, such that, for all ε ∈ (0, ε̄3], the matrix Q(ε),
given in (87) with the block Q2(ε) given by (92), is positive definite.

Proof. The first statement of the theorem is proven quite similarly to Theorems 1 and 2.
Proceed to the proof of the second statement of the theorem. Using Proposition 5; Equa-
tions (79), (80), (84), (92), and (98); and the inequalities in (101), we directly obtain the
inequality

∥∥Q2(ε)− Q20
∥∥ ≤ ā3ε ∀ε ∈ (0, ε̄2], where ā3 > 0 is some constant independent

of ε. This inequality and item (c) of assumption A6 directly yield the validity of the second
statement of the theorem.

3.3. ε-Free Asymptotic Stability Conditions for System (74)

Let us denote ε̄∗
△
= ε̄3.

Now, using Proposition 6, Corollary 3, and Theorem 5, we obtain the following asser-
tion.

Theorem 6. Let assumptions A5 and A6 be valid. Then, for any given ε ∈ (0, ε̄∗], system (74) is
asymptotically stable.

3.4. Nonlinear Singularly Perturbed System

Consider the following differential system:

dx(t)
dt

= f
(

x(t), y(t), x(t − h1), . . . , x(t − hN), y(t − h1), . . . , y(t − hN)
)
, t ≥ 0,

ε
dy(t)

dt
= g

(
x(t), y(t), x(t − h1), . . . , x(t − hN), y(t − h1), . . . , y(t − hN)

)
, t ≥ 0, (102)

where x(t) ∈ En and y(t) ∈ Em; f (ϕ, ψ, ϕ1, . . . , ϕN , ψ1, . . . , ψN) : En × Em × En · · · × En ×
Em · · · × Em → En and g(ϕ, ψ, ϕ1, . . . , ϕN , ψ1, . . . , ψN) : En × Em × En · · · × En × Em · · · ×
Em → Em are given functions; f (0, 0, 0, . . . , 0) = 0 and g(0, 0, 0, . . . , 0) = 0; 0 < h1 < · · · <
hN are given time delays.

For this system (like for system (74)), we consider the initial conditions (75).
Similarly to Definitions 2–3, we introduce the following definitions.

Definition 5. For a given ε > 0, the trivial solution
(
x(t) ≡ 0, y(t) ≡ 0

)
of system (102) is called

stable if for any number α > 0 there exists a number β > 0, dependent on α, such that the solution

col
(

x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))
of the initial-value problem (102), (75) satisfies the

inequality
∥∥∥col

(
x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))∥∥∥ ≤ α, t ≥ 0, for any pair
(

φx(τ), φy(τ)
)

satisfying the inequality ∥∥col
(

φx(τ), φy(τ)
)∥∥ ≤ β, τ ∈ [−hN , 0]. (103)

Definition 6. For a given ε > 0, the trivial solution
(
x(t) ≡ 0, y(t) ≡ 0

)
of system (102) is called

asymptotically stable if this solution is stable and there exists a number β > 0, such that, for any

pair
(

φx(τ), φy(τ)
)

satisfying (103), the solution col
(

x
(
t; φx(·), φy(·)

)
, y
(
t; φx(·), φy(·)

))
of

the initial-value problem (102), (75) tends to zero as t tends to +∞.

In what follows of this section, we assume the following:
A7. The functions f (ϕ, ψ, ϕ1, . . . , ϕN , ψ1, . . . , ψN) and g(ϕ, ψ, ϕ1, . . . , ϕN , ψ1, . . . , ψN) are
twice continuously differentiable for (ϕ, ψ, ϕ1, . . . , ϕN , ψ1, . . . , ψN) ∈ En × Em × En · · · ×
En × Em · · · × Em.
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The linearization of system (102) in a neighborhood of its trivial solution
(

x(t) ≡
0, y(t) ≡ 0, t ≥ −hN

)
yields the system

dx(t)
dt

= fϕ(0, 0, 0, . . . , 0)x(t) + fψ(0, 0, 0, . . . , 0)y(t)

+
N

∑
J=1

[
fϕj(0, 0, 0, . . . , 0)x(t − hj) + fψj(0, 0, 0, . . . , 0)y(t − hj)

]
, t ≥ 0,

ε
dy(t)

dt
= gϕ(0, 0, 0, . . . , 0)x(t) + gψ(0, 0, 0, . . . , 0)y(t)

+
N

∑
J=1

[
gϕj(0, 0, 0, . . . , 0)x(t − hj) + gψj(0, 0, 0, . . . , 0)y(t − hj)

]
, t ≥ 0. (104)

The following lemma is a direct consequence of Theorem 6.

Lemma 3. Let assumption A7 be valid. Let assumptions A5 and A6 be valid for
A1 = fϕ(0, 0, 0, . . . , 0), A2 = fψ(0, 0, 0, . . . , 0), A3 = gϕ(0, 0, 0, . . . , 0), A4 = gψ(0, 0, 0, . . . , 0),
H1j = fϕj(0, 0, 0, . . . , 0), H2j = fψj(0, 0, 0, . . . , 0), H3j = gϕj(0, 0, 0, . . . , 0) and
H4j = gψj(0, 0, 0, . . . , 0), (j = 1, . . . , N). Then, there exists a number ε̂∗ > 0, such that,
for any given ε ∈ (0, ε̂∗], system (104) is asymptotically stable.

Theorem 7. Let assumption A7 be valid. Let assumptions A5 and A6 be valid for A1 =
fϕ(0, 0, 0, . . . , 0), A2 = fψ(0, 0, 0, . . . , 0), A3 = gϕ(0, 0, 0, . . . , 0), A4 = gψ(0, 0, 0, . . . , 0),
H1j = fϕj(0, 0, 0, . . . , 0), H2j = fψj(0, 0, 0, . . . , 0), H3j = gϕj(0, 0, 0, . . . , 0) and
H4j = gψj(0, 0, 0, . . . , 0), (j = 1, . . . , N). Then, for any given ε ∈ (0, ε̂∗], the trivial solution of
system (102) is asymptotically stable.

Proof. Using Lemma 3, the theorem is proven quite similarly to Theorem 4.

3.5. Case of a Single Delay in System (74): Alternative Approach to Asymptotic Stability Analysis

Consider the following differential system:

dx(t)
dt

= A1x(t) + A2y(t) + H1x(t − h) + H2y(t − h), t ≥ 0,

ε
dy(t)

dt
= A3x(t) + A4y(t) + H3x(t − h) + H4y(t − h), t ≥ 0, (105)

where x(t) ∈ En and y(t) ∈ Em; Ai and Hi, (i = 1, . . . , 4) are given constant matrices of
corresponding dimensions; ε > 0 is a small parameter; h > 0 is a given time delay.

System (105) is a particular case of system (74), with a single point-wise time delay.
For system (105), we consider the initial conditions

x(τ) = φx(τ), y(τ) = φy(τ), τ ∈ [−h, 0], (106)

where φx(τ) is a given n-dimensional vector-valued function; φy(τ) is a given m-dimensional
vector-valued function; both functions are continuous in the interval [−h, 0].

The asymptotic stability of system (105) is defined quite similarly to the asymptotic
stability of system (74) (see Definition 4).

3.5.1. ε-Dependent Asymptotic Stability Conditions

Let assumption A1 be valid. Based on this assumption, let us transform the state
variables x(t + τ) and y(t + τ), τ ∈ [−h, 0] of the system (105) as:(

x(t + τ)
y(t + τ)

)
= D(ε)

(
u(t + τ)
v(t + τ)

)
, t ≥ 0, τ ∈ [−h, 0], ε ∈ (0, ε1], (107)
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where u(t) ∈ En, v(t) ∈ Em; u(t + τ), and v(t + τ) are new state variables; the positive
number ε1 is defined in Proposition 1; the (n + m)× (n + m)-matrix D(ε) is defined by
Equation (6) and its inverse matrix D−1(ε) is defined by Equation (7).

Similarly to Propositions 2 and 6, we directly obtain the following assertion.

Proposition 8. Let assumption A1 be valid. Then, for any given ε ∈ (0, ε1], transformation (107)
converts the initial-value problem (105)–(106) to the following equivalent initial-value problem:

du(t)
dt

= Ã1(ε)u(t) + Ã2(ε)v(t) +
(

H1 − H2L(ε)
)
u(t − h),

ε
dv(t)

dt
= Ã3(ε)u(t) + Ã4(ε)v(t) +

(
H4 + εL(ε)H2

)
v(t − h), (108)

u(τ) =
(

In − εM(ε)L(ε)
)

φx(τ)− εM(ε)φy(τ), τ ∈ [−h, 0],

v(τ) = L(ε)φx(τ) + φy(τ), τ ∈ [−h, 0]. (109)

where

Ã(ε)
△
=

(
Ã1(ε) Ã2(ε)

Ã3(ε) Ã4(ε)

)
= D−1(ε)

(
A1 A2
A3 A4

)
D(ε). (110)

Moreover, system (105) is asymptotically stable if and only if system (108) is asymptotically
stable.

Consider the following symmetric Riccati algebraic equation with respect to (n + m)×
(n + m)-matrix P̃:

ÃT(ε)E−1(ε)P̃ + P̃E−1(ε)Ã(ε) + P̃E−1(ε)H(ε)R̃−1HT(ε)E−1(ε)P̃ + R̃ = −Q̃, (111)

where R̃ and Q̃ are some symmetric positive definite matrices of the dimension (n + m)×
(n + m); the (n + m)× (n + m)-matrix E(ε) is given in (86);

H̃(ε)
△
=

(
H1 − H2L(ε) 0
0 H4 + εL(ε)H2

)
. (112)

Based on Proposition 1 and the results of [25] (see Chapter 7, Theorem 3.1), we directly
obtain the following assertion.

Proposition 9. Let assumption A1 be valid. Let, for a given ε ∈ (0, ε1], there exist symmetric
positive definite matrices R̃ and Q̃, such that Equation (111) has a symmetric positive definite
solution P̃ = P̃(ε). Then, for this ε, system (108) is asymptotically stable.

We choose the matrices R̃ and Q̃ in the block form as:

R̃ =

(
R̃1 0
0 R̃2

)
, Q̃ = Q̃(ε) =

(
Q̃1 Q̃2(ε)

Q̃T
2 (ε) Q̃3

)
, (113)

where the matrices R̃1 and Q̃1 are of the dimension n × n; the matrices R̃2 and Q̃3 are of the
dimension m × m.

Due to the block form of the matrices E(ε), H̃(ε), and R̃, we look for the symmetric
positive definite solution P̃ = P̃(ε) of the Riccati Equation (111) in the block form

P̃ =

(
P̃1 0
0 εP̃2

)
, (114)

where the matrices P̃1 and P̃2 are of the dimensions n × n and m × m, respectively.
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Substituting the block-form representations of the matrices E(ε), Ã(ε), H̃(ε), R̃, Q̃(ε),
and P̃ (see Equations (86), (110), (112), (113), and (114)) into the Equation (111), we obtain,
after a routine matrix algebra, the following equivalent set of three matrix equations with
respect to P̃1 and P̃2:

ÃT
1 (ε)P̃1 + P̃1Ã1(ε) + P̃1

(
H1 − H2L(ε)

)
R̃1

−1(
H1 − H2L(ε)

)T P̃1 + R̃1 = −Q̃1, (115)

ÃT
4 (ε)P̃2 + P̃2Ã4(ε) + P̃2

(
H4 + εL(ε)H2

)
R̃2

−1(
H4 + εL(ε)H2

)T P̃2 + R̃2 = −Q̃3 (116)

ÃT
3 (ε)P̃2 + P̃1Ã2(ε) = −Q2(ε). (117)

From Proposition 9, we directly obtain the following assertion.

Corollary 4. Let assumption A1 be valid. Let, for a given ε ∈ (0, ε1], there exist symmetric positive
definite matrices R̃1, R̃2, Q̃1, Q̃3, such that Equations (115) and (116) have symmetric positive
definite solutions P̃1 = P̃1(ε) and P̃2 = P̃2(ε). Moreover, let the matrix Q(ε), given in (113) with

Q̃2(ε) = −
(
ÃT

3 (ε)P̃2(ε) + P̃1(ε)Ã2(ε)
)
, (118)

be positive definite. Then, for this ε, system (108) is asymptotically stable.

3.5.2. Asymptotic Solution with Respect to ε of Equations (115) and (116)

We look for the zero-order asymptotic solutions P̃10 and P̃20 of (115) and (116), respec-
tively. Setting formally ε = 0 in Equations (115) and (116), and using Proposition 1 and
Equation (110), we obtain the following equations for their zero-order asymptotic solutions:

ÃT
1 (0)P̃10 + P̃10Ã1(0)

+P̃10(H1 − H2H−1
4 H3)R̃1

−1
(H1 − H2H−1

4 H3)
T P̃10 + R̃1 = −Q̃1, (119)

ÃT
4 (0)P̃20 + P̃20Ã4(0) + P̃20H4R̃2

−1
HT

4 P̃20 + R̃2 = −Q̃3, (120)

where

Ã1(0) = A1 − A2H−1
4 H3, Ã4(0) = H−1

4 H3 A2 + A4. (121)

In what follows, we assume the following:
A8. There exist symmetric positive definite matrices R̃1, R̃2, Q̃1, Q̃3, such that:
(a) Equations (119) and (120) have symmetric positive definite solutions P̃10 and P̃20, respec-
tively;
(b) all eigenvalues of each of the matrices

G̃10
△
= Ã1(0) + (H1 − H2H−1

4 H3)R̃−1
1 (H1 − H2H−1

4 H3)
T P̃10,

G̃20
△
= Ã4(0) + H4R̃−1

2 HT
4 P̃20 (122)

lie strictly inside either the left-hand half or the right-hand half of the complex plane;
(c) the matrix

Q̃0 =

(
Q̃1 Q̃20
Q̃T

20 Q̃3

)
, (123)

with
Q̃20 = −

(
ÃT

3 (0)P̃20 + P̃10Ã2(0)
)

(124)
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and

Ã2(0) = A2, Ã3(0) = H−1
4 H3 A1 + A3 − H−1

4 H3 A2H−1
4 H3 − A4H−1

4 H3, (125)

is positive definite.

Remark 4. Using the same arguments as in Remark 3, we can conclude the following. The validity
of assumption A8 (items (a) and (b)) guarantees that Ã1(0) and Ã4(0) are Hurwitz matrices.
Moreover, the equations

dz̃1(t)
dt

= Ã1(0)z̃1(t) + (H1 − H2H−1
4 H3)z̃1(t − h), t ≥ 0, z̃1(t) ∈ En (126)

and
dz̃2(t)

dt
= Ã4(0)z̃2(t) + H4z̃2(t − h), t ≥ 0, z̃2(t) ∈ Em (127)

are asymptotically stable.
However, the only requirement that Ã1(0) is a Hurwitz matrix does not, in general, guarantee

the asymptotic stability of Equation (126) (see, e.g., Section 2.3 in [2]). Similarly, the only require-
ment that Ã4(0) is a Hurwitz matrix does not, in general, guarantee the asymptotic stability of
Equation (127).

Quite similarly to Theorem 5, we obtain the following assertion.

Theorem 8. Let assumptions A1 and A8 be valid. Then, there exists a number 0 < ε̃1 ≤ ε1,
such that, for all ε ∈ (0, ε̃1], Equations (119) and (120) have symmetric positive definite solutions
P̃1 = P̃1(ε) and P̃2 = P̃2(ε), satisfying the inequalities∥∥P̃1(ε)− P̃10

∥∥ ≤ ã1ε,
∥∥P̃2(ε)− P̃20

∥∥ ≤ ã2ε, ε ∈ (0, ε̃1], (128)

where ã1 > 0 and ã2 > 0 are some constants independent of ε.
Moreover, there exists a number 0 < ε̃2 ≤ ε̃1, such that, for all ε ∈ (0, ε̃2], the matrix Q̃(ε),

given in (113) with the block Q̃2(ε) given by (118), is positive definite.

3.5.3. ε-Free Asymptotic Stability Conditions for System (105)

Denoting ε̃∗
△
= ε̃2 and using Proposition 8, Corollary 4, and Theorem 8, we obtain the

following assertion.

Theorem 9. Let assumptions A1 and A8 be valid. Then, for any given ε ∈ (0, ε̃∗], the system (105)
is asymptotically stable.

3.5.4. Particular Case of the Nonlinear Singularly Perturbed System (102)

Consider the following differential system:

dx(t)
dt

= f
(

x(t), y(t), x(t − h), y(t − h)
)
, t ≥ 0,

ε
dy(t)

dt
= g

(
x(t), y(t), x(t − h), y(t − h)

)
, t ≥ 0, (129)

where x(t) ∈ En and y(t) ∈ Em; f (ϕ, ψ, ϕ1, ψ1) : En × Em × En × Em → En and
g(ϕ, ψ, ϕ1, ψ1) : En × Em × En × Em → Em are given functions; f (0, 0, 0, 0) = 0 and
g(0, 0, 0, 0) = 0; h > 0 is a given time delay.

System (129) is a particular case of system (102), with a single point-wise time delay.
For this system (like for system (105)), we consider the initial conditions (106). The sta-

bility and asymptotic stability of the trivial solution
(
x(t) ≡ 0, y(t) ≡ 0

)
to system (129)
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are defined quite similarly to the stability and asymptotic stability of the trivial solution(
x(t) ≡ 0, y(t) ≡ 0

)
to system (102) (see Definitions 5 and 6).

In what follows, we assume the following:
A9. The functions f (ϕ, ψ, ϕ1, ψ1) and g(ϕ, ψ, ϕ1, ψ1) are twice continuously differentiable
for (ϕ, ψ, ϕ1, ψ1) ∈ En × Em × En × Em.

The linearization of system (129) in a neighborhood of its trivial solution
(

x(t) ≡
0, y(t) ≡ 0, t ≥ −h

)
yields the system

dx(t)
dt

= fϕ(0, 0, 0, 0)x(t) + fψ(0, 0, 0, 0)y(t)

+ fϕ1(0, 0, 0, 0)x(t − h) + fψ1(0, 0, 0, 0)y(t − h), t ≥ 0,

ε
dy(t)

dt
= gϕ(0, 0, 0, 0)x(t) + gψ(0, 0, 0, 0)y(t)

+gϕ1(0, 0, 0, 0)x(t − h) + gψ1(0, 0, 0, 0)y(t − h), t ≥ 0. (130)

Using Theorem 9 and the results of [2,21] on the asymptotic stability in the first approx-
imation of time-delay equations, we obtain (quite similarly to Lemma 3 and Theorem 7)
the following assertion.

Theorem 10. Let assumption A9 be valid. Let assumptions A1 and A8 be valid for A1 =
fϕ(0, 0, 0, 0), A2 = fψ(0, 0, 0, 0), A3 = gϕ(0, 0, 0, 0), A4 = gψ(0, 0, 0, 0), H1 = fϕ1(0, 0, 0, 0),
H2 = fψ1(0, 0, 0, 0), H3 = gϕ1(0, 0, 0, 0), and H4 = gψ1(0, 0, 0, 0). Then, there exists a number
ε̌∗ > 0 such that, for any given ε ∈ (0, ε̌∗], system (130) is asymptotically stable. Moreover, for such
ε, the trivial solution of system (129) is asymptotically stable.

3.6. Examples
3.6.1. Example 1

Consider a particular case of system (74) with the following data:

n = 1, m = 1, N = 2, 0 < h1 < h2,

A1 = 1, A2 = −7, A3 = 9, A4 = −9,

H11 = −1, H12 = −1.5, H21 = 2, H22 = −0.5,

H31 = 0.5, H32 = −1.5, H41 = 2.5, H42 = 0.5. (131)

To analyze the asymptotic stability of system (74), (131), we use Theorem 6.
Since A4 ̸= 0, assumption A5 is valid in this example.
Using Equation (95) and the data (131) of this example, we obtain

H11(0) = 1, H12(0) = −2, H21(0) = 2, H22(0) = −0.5,

H31(0) = 2, H32(0) = 1, H41(0) = 0.5, H42(0) = 1. (132)

Furthermore, using Equations (93), (94), (131), and (132) and choosing

R11 = R12 = R21 = R22 = R > 0,

we can write down the scalar quadratic equations with respect to the unknown P10 and P20
as:

9.25R−1P2
10 − 12P10 + 2R + Q1 = 0,

6.25R−1P2
20 − 18P20 + 2R + Q3 = 0, (133)

where Q1 > 0 and Q3 > 0.
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Solving the first equation in (133), we obtain two its solutions:

P+
10 =

R
(

6 +
√

36 − 9.25
(
2 + Q1/R

))
9.25

,

P−
10 =

R
(

6 −
√

36 − 9.25
(
2 + Q1/R

))
9.25

. (134)

Each of these solutions is positive if and only if

0 < Q1 ≤ 17.5
9.25

R ≈ 1.89189R. (135)

Moreover, the particular case of G10 in (96) for P10 = P+
10 satisfies the inequality

G+
10 =

√
36 − 9.25

(
2 + Q1/R

)
> 0, (136)

while the particular case of G10 in (96) for P10 = P−
10 satisfies the inequality

G−
10 = −

√
36 − 9.25

(
2 + Q1/R

)
< 0, (137)

if and only if

0 < Q1 <
17.5
9.25

R. (138)

Similarly, the second equation in (133) has two solutions:

P+
20 =

R
(

9 +
√

81 − 6.25
(
2 + Q3/R

))
6.25

,

P−
20 =

R
(

9 −
√

81 − 6.25
(
2 + Q3/R

))
6.25

. (139)

Each of these solutions is positive if and only if

0 < Q3 ≤ 10.96R. (140)

Moreover, similarly to (136) and (137), the particular case of G20 in (96) for P20 = P+
20

satisfies the inequality

G+
20 =

√
81 − 6.25

(
2 + Q3/R

)
> 0, (141)

while the particular case of G20 in (96) for P20 = P−
20 satisfies the inequality

G10 = −
√

81 − 6.25
(
2 + Q3/R

)
< 0, (142)

if and only if
0 < Q3 < 10.96R. (143)

Thus, items (a) and (b) of assumption A6 are valid. Let us show the validity of item (c)
of this assumption.

Using Equations (98) and (132), we obtain Q20 as:

Q20 = −0.5P10P20

R
. (144)
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Let us choose
Q1 = 1.8R, Q3 = 10R. (145)

Such chosen Q1 and Q3 satisfy inequalities (138) and (143), respectively. For these Q1
and Q3, due to Equations (134) and (139), we have

P+
10 = 0.74832R, P−

10 = 0.54898R, P+
20 = 1.83192R, P−

20 = 1.04808R,

which, along with (144), yields

Q++
20 = −

0.5P+
10P+

20
R

= −0.68543R, Q+−
20 = −

0.5P+
10P−

20
R

= −0.39215R,

Q−+
20 = −

0.5P−
10P+

20
R

= −0.50284R, Q−−
20 = −

0.5P−
10P−

20
R

= −0.28769R. (146)

Now, using Equations (97), (145), and (146), we can construct the following matrices:

Q++
0 =

(
1.8R − 0.68543R

−0.68543R 10R

)
, Q+−

0 =

(
1.8R − 0.39215R

−0.39215R 10R

)
,

Q−+
0 =

(
1.8R − 0.50284R

−0.50284R 10R

)
, Q−−

0 =

(
1.8R − 0.28769R

−0.28769R 10R

)
.

All these matrices are positive definite, meaning that item (c) of assumption A6 is
valid for all the pairs

(
P+

10, P+
20
)
,
(

P+
10, P−

20
)
,
(

P−
10, P+

20
)
,
(

P−
10, P−

20
)
. Thus, assumptions A5 and

A6 are valid for system (74), (131). Therefore, by virtue of Theorem 6, there exists a positive
number ε̄∗, such that, for any given ε ∈ (0, ε̄∗], system (74), (131) is asymptotically stable.

3.6.2. Example 2

Consider a particular case of system (102) with the following data:

n = 1, m = 1, N = 1, h1 > 0,

f
(

x(t), y(t), x(t − h1), y(t − h1)
)
= exp

(
x(t)− 4y(t)− x(t − h1) + y(t − h1)

)
− 1,

g
(

x(t), y(t), x(t − h1), y(t − h1)
)
= sin(5x(t)− 5y(t) + 2x(t − h1)

)
+1 − cos

(
y(t − h1)

)
. (147)

It is seen that f (0, 0, 0, 0) = 0 and g(0, 0, 0, 0) = 0. Moreover, it is seen that system
(102), (147) is also a particular case of system (129), and both assumptions A7 and A9 are
valid for this system.

Let us find out which theorem (either Theorem 7 or Theorem 10) is applicable for the
asymptotic stability analysis of system (102), (147). For this purpose, we linearize (102),
(147) in a neighborhood of its trivial solution

(
x(t) ≡ 0, y(t) ≡ 0, t ≥ −h1

)
, which yields

the system

dx(t)
dt

= x(t)− 4y(t)− x(t − h1) + y(t − h1), t ≥ 0,

ε
dy(t)

dt
= 5x(t)− 5y(t) + 2x(t − h1), t ≥ 0. (148)

This system can be considered as a particular case of each of the systems (74) and (105)
with n = 1, m = 1, N = 1 and

A1 = 1, A2 = −4, A3 = 5, A4 = −5,

H11 = H1 = −1, H21 = H2 = 1, H31 = H3 = 2, H41 = H4 = 0. (149)

Since H4 = 0, then assumption A1 is not valid for (148). Consequently, Theorem 10 is
not applicable for the asymptotic stability analysis of system (102), (147). Let us try to apply
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Theorem 7 for such an analysis. We start with the verification of the validity of assumptions
A5 and A6 for system (148). Since A4 ̸= 0, assumption A5 is valid.

Using Equations (95) and (149), we obtain

H11(0) = 0, H21(0) = 1, H31(0) = 2, H41(0) = −1. (150)

Furthermore, using Equations (93), (94), (150) and choosing

R11 = R21 = R > 0,

we obtain the scalar quadratic equations with respect to the unknown P10 and P20 as:

R−1P2
10 − 6P10 + R + Q1 = 0,

5R−1P2
20 − 10P20 + R + Q3 = 0, (151)

where Q1 > 0 and Q3 > 0.
Solving the first equation in (151), we obtain its two solutions:

P+
10 = R

(
3 +

√
9 −

(
1 + Q1/R

))
,

P−
10 = R

(
3 −

√
9 −

(
1 + Q1/R

))
. (152)

Each of these solutions is positive if and only if

0 < Q1 ≤ 8R. (153)

The particular case of G10 in (96) for P10 = P+
10 satisfies the inequality

G+
10 =

√
9 −

(
1 + Q1/R

)
> 0, (154)

while the particular case of G10 in (96) for P10 = P−
10 satisfies the inequality

G−
10 = −

√
9 −

(
1 + Q1/R

)
< 0, (155)

if and only if
0 < Q1 < 8R. (156)

Similarly, we obtain two solutions of the second equation in (151):

P+
20 =

R
(

5 +
√

25 − 5
(
1 + Q3/R

))
5

,

P−
20 =

R
(

5 −
√

25 − 5
(
1 + Q3/R

))
5

, (157)

and each of these solutions is positive if and only if

0 < Q3 ≤ 4R. (158)

Moreover, similarly to (154) and (155), the particular case of G20 in (96) for P20 = P+
20

satisfies the inequality

G+
20 =

√
25 − 5

(
1 + Q3/R

)
> 0, (159)
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while the particular case of G20 in (96) for P20 = P−
20 satisfies the inequality

G10 = −
√

25 − 5
(
1 + Q3/R

)
< 0, (160)

if and only if
0 < Q3 < 4R. (161)

Hence, items (a) and (b) of assumption A6 are valid. Let us show that item (c) of this
assumption is also valid.

Using Equations (98) and (150), we obtain Q20 as:

Q20 =
P10P20

R
. (162)

Let us choose
Q1 = 7R, Q3 = 3R. (163)

These Q1 and Q3 satisfy inequalities (156) and (161), respectively. For Q1 and Q3 from
(163), due to Equations (152) and (157), we have

P+
10 = 4R, P−

10 = 2R, P+
20 = 1.44721R, P−

20 = 0.55279R,

which, along with (162), yields

Q++
20 =

P+
10P+

20
R

= 5.78884R, Q+−
20 =

P+
10P−

20
R

= 2.21116R,

Q−+
20 =

P−
10P+

20
R

= 2.89442R, Q−−
20 =

P−
10P−

20
R

= 1.10558R. (164)

Now, based on Equations (97), (163), and (164), we can construct the following matri-
ces:

Q++
0 =

(
7R 5.78884R
5.78884R 3R

)
, Q+−

0 =

(
7R 2.21116R
2.21116R 3R

)
,

Q−+
0 =

(
7R 2.89442R
2.89442R 3R

)
, Q−−

0 =

(
7R 1.10558R
1.10558R 3R

)
.

It is verified directly that the matrix Q++
0 is not positive definite, while the other

matrices Q+−
0 , Q−+

0 , and Q−−
0 are positive definite. This means that item (c) of assumption

A6 is valid for the pairs
(

P+
10, P−

20
)
,
(

P−
10, P+

20
)
, and

(
P−

10, P−
20
)
. Thus, assumptions A5 and A6

are valid for system (148). Therefore, by virtue of Lemma 3, there exists a positive number
ε̂∗ such that, for any given ε ∈ (0, ε̂∗], system (148) is asymptotically stable. Moreover, due
to Theorem 7, the trivial solution of system (102), (147) is asymptotically stable for any
given ε ∈ (0, ε̂∗].

3.6.3. Example 3

Consider a particular case of system (105) with the following data:

n = 1, m = 1, A1 = −7, A2 = 3, A3 = −6, A4 = 0,

H1 = 1, H2 = −3, H3 = 2, H4 = −2. (165)

It should be noted that system (105), (165) is also a particular case of system (74).
However, since A4 = 0, Theorem 6 is not applicable for the asymptotic stability analysis of
(105), (165). Taking into account that H4 ̸= 0, i.e., assumption A1 is valid, we try to apply
Theorem 9 for the asymptotic stability analysis of this system.
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Using Equations (121) and (125) and the data (165) of this example, we obtain

Ã1(0) = −4, Ã2(0) = 3, Ã3(0) = −2, Ã4(0) = −3. (166)

Now, using Equations (119), (120), (165), (166) and choosing

R̃1 = 2R̃, R̃2 = 4R̃, R̃ > 0,

we can write down the scalar quadratic equations with respect to the unknown P̃10 and P̃20
as:

2R̃−1P̃2
10 − 8P̃10 + 2R̃ + Q̃1 = 0,

R̃−1P̃2
20 − 6P̃20 + 4R̃ + Q̃3 = 0, (167)

where Q̃1 > 0 and Q̃3 > 0.
The first equation in (167) yields the following two solutions:

P̃+
10 =

R̃
2

(
4 +

√
16 − 2

(
2 + Q̃1/R̃

))
,

P̃−
10 =

R̃
2

(
4 −

√
16 − 2

(
2 + Q̃1/R̃

))
. (168)

Each of these solutions is positive if and only if

0 < Q̃1 ≤ 6R̃. (169)

The particular case of G̃10 in (122) for P̃10 = P̃+
10 satisfies the inequality

G̃+
10 =

√
16 − 2

(
2 + Q̃1/R̃

)
> 0, (170)

while the particular case of G̃10 in (122) for P̃10 = P̃−
10 satisfies the inequality

G̃−
10 = −

√
16 − 2

(
2 + Q̃1/R̃

)
< 0, (171)

if and only if
0 < Q1 < 6R̃. (172)

The second equation in (167) has the following two solutions:

P̃+
20 = R̃

(
3 +

√
9 −

(
4 + Q̃3/R̃

))
,

P̃−
20 = R̃

(
3 −

√
9 −

(
4 + Q̃3/R̃

))
, (173)

and each of these solutions is positive if and only if

0 < Q̃3 ≤ 5R̃. (174)

Moreover, similarly to (170) and (171), the particular case of G̃20 in (122) for P̃20 = P̃+
20

satisfies the inequality

G̃+
20 =

√
9 −

(
4 + Q̃3/R̃

)
> 0, (175)

while the particular case of G̃20 in (122) for P̃20 = P̃−
20 satisfies the inequality

G̃−
20 = −

√
9 −

(
4 + Q̃3/R̃

)
< 0, (176)
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if and only if
0 < Q̃3 < 5R̃. (177)

Thus, items (a) and (b) of assumption A8 are valid. Let us show that item (c) of this
assumption is also valid.

Using Equations (124) and (166), we obtain Q̃20 as:

Q̃20 = 2P̃20 − 3P̃10. (178)

We choose Q̃1 and Q̃3 as:

Q̃1 = 5R̃, Q̃3 = 4R̃. (179)

These Q̃1 and Q̃3 satisfy inequalities (172) and (177), respectively. For Q̃1 and Q̃3
chosen in (179), due to Equations (168) and (173), we have

P̃+
10 = 2.70711R̃, P̃−

10 = 1.29289R̃, P̃+
20 = 4R̃, P̃−

20 = 2R̃,

which, along with (178), yields

Q̃++
20 = 2P̃+

20 − 3P̃+
10 = −0.12133R̃, Q̃+−

20 = 2P̃−
20 − 3P̃+

10 = −4.12133R̃,

Q̃−+
20 = 2P̃+

20 − 3P̃−
10 = 4.12133R̃, Q̃−−

20 = 2P̃−
20 − 3P̃−

10 = 0.12133R̃. (180)

Now, using Equations (123), (179), and (180), we can construct the following matrices:

Q̃++
0 =

(
5R̃ − 0.12133R̃

−0.12133R̃ 4R̃

)
, Q̃+−

0 =

(
5R̃ − 4.12133R̃

−4.12133R̃ 4R̃

)
,

Q̃−+
0 =

(
5R̃ 4.12133R̃
4.12133R̃ 4R̃

)
, Q̃−−

0 =

(
5R̃ 0.12133R̃
0.12133R̃ 4R̃

)
.

It is verified directly that all the matrices Q̃++
0 , Q̃+−

0 , Q̃−+
0 , and Q̃−−

0 are positive
definite. This means that item (c) of assumption A8 is valid for all the pairs

(
P̃+

10, P̃+
20),(

P̃+
10, P̃−

20
)
,
(

P̃−
10, P̃+

20
)
, and

(
P̃−

10, P̃−
20
)
. Thus, assumptions A1 and A8 are valid for system

(105), (165). Therefore, by virtue of Theorem 9, there exists a positive number ε̃∗ such that,
for any given ε ∈ (0, ε̃∗], system (105), (165) is asymptotically stable.

3.6.4. Example 4

Consider a particular case of system (129) with the following data:

n = 1, m = 1, h > 0,

f
(

x(t), y(t), x(t − h), y(t − h)
)
= sin

(
− 6x(t) + 2y(t) + 2x(t − h)− y(t − h)

)
,

g
(

x(t), y(t), x(t − h), y(t − h)
)
= exp

(
− 3x(t)− x(t − h) + y(t − h)

)
− cos

(
y(t)

)
. (181)

It is seen that f (0, 0, 0, 0) = 0 and g(0, 0, 0, 0) = 0. Moreover, it is seen that system
(129), (181) is also a particular case of system (102) with N = 1, and both assumptions A7
and A9 are valid for this system. As in Example 2 (Section 3.6.2), let us find out which
theorem (either Theorem 10 or Theorem 7) is applicable for the asymptotic stability analysis
of system (129), (181). For this purpose, we carry out the linearization of this system in a
neighborhood of its trivial solution

(
x(t) ≡ 0, y(t) ≡ 0, t ≥ −h

)
. This linearization yields

the system

dx(t)
dt

= −6x(t) + 2y(t) + 2x(t − h)− y(t − h), t ≥ 0,

ε
dy(t)

dt
= −3x(t)− x(t − h) + y(t − h), t ≥ 0. (182)
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This system can be considered as a particular case of each of the systems (105) and (74)
with n = 1, m = 1, N = 1 and

A1 = −6, A2 = 2, A3 = −3, A4 = 0,

H1 = H11 = 2, H2 = H21 = −1, H3 = H31 = −1, H4 = H41 = 1. (183)

Since A4 = 0, then assumption A5 is not valid for (182). Consequently, Theorem 7
is not applicable for the asymptotic stability analysis of system (129), (181). Let us try to
apply Theorem 10 for such an analysis. We start with the verification of the validity of
assumptions A1 and A8 for system (182). Since H4 ̸= 0, assumption A1 is valid.

Using Equations (121) and (125) and the coefficients (183) of system (182), we obtain

Ã1(0) = −4, Ã2(0) = 2, Ã3(0) = 1, Ã4(0) = −2. (184)

Now, using Equations (119), (120), (183), and (184) and choosing

R̃1 = R̃2 = R̃ > 0, Q̃1 = 6R̃, Q̃3 = 2R̃, (185)

we can write down the scalar quadratic equations with respect to the unknown P̃10 and P̃20
as:

R̃−1P̃2
10 − 8P̃10 + 7R̃ = 0,

R̃−1P̃2
20 − 4P̃20 + 3R̃ = 0. (186)

The first equation in (186) yields the following two solutions:

P̃+
10 = 7R̃ > 0, P̃−

10 = R̃ > 0, (187)

while the second equation in (186) yields the following two solutions:

P̃+
20 = 3R̃ > 0, P̃−

20 = R̃ > 0. (188)

The particular cases of G̃10 in (122) for P̃10 = P̃+
10 and P̃10 = P̃−

10 are G̃+
10 = 3 > 0 and

G̃+
10 = −3 < 0, respectively. The particular cases of G̃20 in (122) for P̃20 = P̃+

20 and P̃20 = P̃−
20

are G̃+
20 = 1 > 0 and G̃+

10 = −1 < 0, respectively.
Thus, items (a) and (b) of assumption A8 are valid for system (182). Let us show that

item (c) of this assumption is also valid for (182).
Using Equations (124) and (184), we obtain Q̃20 as:

Q̃20 = −(2P̃10 + P̃20), (189)

which, along with (187) and (188), yields

Q̃++
20 = −(2P̃+

10 + P̃+
20) = −17R̃, Q̃+−

20 = −(2P̃+
10 + P̃−

20) = −15R̃,

Q̃−+
20 = −(2P̃−

10 + P̃+
20) = −5R̃, Q̃−−

20 = −(2P̃−
10 + P̃−

20) = −3R̃. (190)

Now, using Equations (123), (185), and (190), we can construct the following matrices:

Q̃++
0 =

(
6R̃ − 17R̃

−17R̃ 2R̃

)
, Q̃+−

0 =

(
6R̃ − 15R̃

−15R̃ 2R̃

)
,

Q̃−+
0 =

(
6R̃ − 5R̃

−5R̃ 2R̃

)
, Q̃−−

0 =

(
6R̃ − 3R̃

−3R̃ 2R̃

)
.

It is verified directly that the matrices Q̃++
0 , Q̃+−

0 , and Q̃−+
0 are not positive definite,

while the matrix Q̃−−
0 is positive definite. This means that item (c) of assumption A8 is
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valid only for the pair
(

P̃−
10, P̃−

20
)
. However, along with the validity of items (a) and (b) for(

P̃−
10, P̃−

20
)
, it is enough for the validity of assumption A8 for system (182).

Thus, assumptions A1 and A8 are valid for system (182), meaning, by virtue of The-
orem 10, the existence of a positive number ε̌∗ such that, for any given ε ∈ (0, ε̌∗], linear
system (182) and the trivial solution of nonlinear system (129), (181) are asymptotically sta-
ble.

4. Conclusions

In this paper, three types of linear singularly perturbed time-delay differential systems
were considered. The first type presents the system right-hand side, which depends
only on the delayed unknown functions. The delay is a single point-wise one, and it is
proportional to the small parameter ε > 0 of the singular perturbation. The second type of
the considered systems is the system containing in its right-hand side both, un-delayed
and delayed, unknown functions. The delays are multiple point-wise ones, and they are
independent of ε. The third type is the particular case of the second type with the single
delay. For each of these systems, its asymptotic stability was studied. To carry out this
study, the partial exact slow–fast decomposition of the original system and the application
of the symmetric matrix Riccati equation method were proposed and realized. For the first
type system, the partial slow–fast decomposition becomes the complete decomposition
because this system contains in its right-hand side only the delayed terms with the single
delay. This decomposition essentially depends on the assumption that the matrix-valued
coefficient for the “fast” state in the “fast” equation of the original singularly perturbed
system is an invertible matrix. The slow–fast decompositions of the second and third
types systems are partial. Namely, in the second type system only the undelayed part is
decomposed, while in the third type system only the delayed part is decomposed. Similarly
to the decomposition of the first type of system, the decompositions of the second and third
types of system essentially depend on the invertibility of the corresponding matrix-valued
coefficients for the “fast” state (undelayed or delayed) in the “fast” equation. It should
be noted that the aforementioned assumptions on the invertibility of the corresponding
matrices are unavoidable in the exact slow–fast partial/complete decomposition. Using
the aforementioned decomposition allowed us to decompose the matrix Riccati algebraic
equation, associated with the original linear singularly perturbed time-delay differential
system, into two much simpler and less dimensional Riccati equations, which are not
connected with each other. Then, the asymptotic analysis of each of these equations was
carried out separately, yielding the ε-free conditions guaranteeing the asymptotic stability
of the original linear singularly perturbed time-delay system for any sufficiently small
value of ε. Based on the obtained results for the considered linear systems and using the
method of asymptotic stability in the first approximation, the ε-free conditions guaranteeing
the asymptotic stability of the trivial solution to the corresponding nonlinear singularly
perturbed time-delay systems for any sufficiently small value of the parameter of singular
perturbation were derived.

In the completion of this section, we would like to mention several issues connected
with the topic of the paper, which are interesting ones for future investigations. These
issues are the following: (a) to establish (maybe subject to some additional conditions) the
uniformity with respect to ε of the asymptotic stability for the considered systems; (b) to
establish (maybe subject to some additional conditions) the exponential stability, uniform
in ε, for the considered systems; (c) to obtain an estimate of the small positive number
ε∗ appearing in Theorem 3, as well as estimates of the numbers ε̄∗ and ε̃∗ appearing in
Theorems 6 and 9, using either an analytical approach or an extensive computer simulation;
(d) to extend the approach proposed in this paper to the asymptotic stability analysis of
another types of singularly perturbed time-delay systems, for instance: (1) the systems
with undelayed states, point-wise delayed states, and distributed delayed states; for such
systems, the partial exact slow–fast decomposition can be applied separately, either for
the undelayed part in the right-hand side, or for the point-wise delayed part, or for the
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distributed delayed part; in the latter case, the corresponding matrix-valued coefficients
should be constant; (2) the systems having simultaneously small (of order of ε) and non-
small (of order of 1) time delays; (e) to compare by an extensive computer simulation the
method proposed in this paper with existing literature methods of stability analysis for
singularly perturbed time-delay systems; (f) based on the theoretical results of this paper
and their possible extensions (see item (d)), to carry out the stability analysis of various
real-life problems modeled by singularly perturbed systems with delays.

In order not to overload the present paper (thus keeping its readability), the aforementioned
issues are not considered here. They will be investigated in separate forthcoming papers.
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