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Abstract: In the present investigation, we introduce a new subclass of univalent functions F (u, λ)

and a subclass of bi-univalent function Fo,Σ(u, λ) with bounded boundary and bounded radius
rotation. Some examples of the functions belonging to the classes F (u, λ) are also derived. For these
new classes, the authors derive many interesting relations between these classes and the existing
familiar subclasses in the literature. Furthermore, the authors establish new coefficient estimates for
these classes. Apart from the above, the first two initial coefficient bounds for the class Fo,Σ(u, λ)

are established.
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1. Introduction, Motivations and Definitions

Let A consist of all holomorphic functions G : E −→ C normalized by G(0) = 0 and
G′(0) = 1. Let S ⊂ A be the class of all functions defined by

G(ϑ) = ϑ +
∞

∑
m=2

ξmϑm (1)

which are analytic and univalent in E = {ϑ : |ϑ| < 1}. A domain D ⊂ C is called as starlike
with respect to a point z0 ∈ D if the line segment joining z0 to every other point z ∈ D lies
entirely in D. A function G ∈ A is called starlike if G(E) is a starlike domain with respect
to the origin. The class of univalent starlike functions is denoted by S∗. A domain D ⊂ C is
called as convex if the line segment joining any two arbitrary points of D lies entirely in D,
i.e., if it is starlike with respect to each point of D. A function G ∈ A is said to be convex in
D if G(E) is a convex domain. The class of all univalent convex functions is denoted by K.
Many times the analytic criteria of the above two functions provide a useful technique in
analyzing the concepts and are as follows: a function G ∈ S is called as a starlike function
of order λ (0 ≤ λ < 1) if and only if

ℜ
(

ϑG′(ϑ)

G(ϑ)

)
> λ, ϑ ∈ E.

The family of all starlike functions of order λ is denoted by S∗(λ). It is clear that for λ = 0,
S∗(λ) ≡ S∗. Also, for λ1 ≥ λ2, S∗(λ1) ⊆ S∗(λ2). A function G ∈ S is called as a convex
function of order λ (0 ≤ λ < 1) if and only if

ℜ
(

1 +
ϑG′′(ϑ)

G′(ϑ)

)
> λ, ϑ ∈ E.
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The family of all convex functions of order λ is denoted by K(λ). It is clear that for λ = 0,
K(λ) ≡ K. A function G ∈ S of the form (1) is called as a close-to-convex function if there
exists a function ϕ ∈ K such that

ℜ
(

G′(ϑ)

ϕ′(ϑ)

)
> 0.

The family of all close-to-convex functions is denoted by C. Although the class of close-
to-convex functions was introduced by Kaplan [1] in 1952, Ozaki [2] introduced the class
F familiarly known as the Ozaki-close-to-convex function, which is defined as follows: a
function G given in the form (1) belongs to the class F if G satisfies the condition

ℜ
(

1 +
ϑG′′(ϑ)

G′(ϑ)

)
> −1

2
, ϑ ∈ E

or

ℜ
(

1 +
ϑG′′(ϑ)

G′(ϑ)

)
<

3
2

, ϑ ∈ E.

We observe that F ⊂ C follows from the original definition of Kaplan [1], while Umezawa [3]
proved that functions in F are not necessarily starlike but are convex in one direction. Singh
and Singh [4] proved that functions in F are close-to-convex and bounded in E. Let F (η)
denote the class of locally univalent normalized analytic functions f in the unit disk,
satisfying the condition

ℜ
(

1 +
ϑG′′(ϑ)

G′(ϑ)

)
>

1
2
− η

for some −1
2
< η ≤ 1. If −1

2
≤ η ≤ 1

2
; then, F (η) ⊂ K ⊂ S∗. Also, F (1/2) ≡ K. The

functions of the class F (1) are known to be univalent and close-to-convex in E. Note that
the class F (η) plays an important role in determining the univalence criteria for sense-
preserving harmonic mappings. The functions of the class F (1) are non-empty because it
is very easy to see that the function G : E −→ C, defined by

G(ϑ) =
2
3

[
1 − exp

(
−3

2
ϑ

)]
, ϑ ∈ E,

belongs to the class F (1).
The family of all Ozaki-type close-to-convex functions denoted by Fo(η) is defined as:

Definition 1. A function G ∈ S given by (1) is called Ozaki-type close-to-convex if and only if

ℜ
[

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)]
> 0,

where
1
2
≤ η ≤ 1.

For more details, one may see [5–7] and also [8,9]. Paatero [10] introduced the class
Pu of functions with bounded turning. If a function ψ ∈ Pu satisfies ψ(0) = 1, then there
exists a non-decreasing function ν with bounded variation in [0, 2π] and satisfying∫ 2π

0
dν(t) = 2 and

∫ 2π

0
|dν(t)| ≤ u

such that

ψ(ϑ) =
1
2

∫ 2π

0

1 + ϑe−it

1 − ϑe−it dν(t).
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Connection between the class Pu and the class P of functions with positive real part is
stated in the following lemma that has been established earlier by Pinchuk [11].

Lemma 1. A function ψ ∈ Pu if and only if ∃ ψ1, ψ2 ∈ P such that

ψ(ϑ) =
u + 2

4
ψ1(ϑ)−

u − 2
4

ψ2(ϑ).

A function ψ ∈ Pu(λ) if and only if there exists a function ψ3 ∈ Pu such that

ψ(ϑ) = λ + (1 − λ)ψ3(ϑ). (2)

The class Pu(λ) was introduced and investigated by Padmanabhan and Parvatham [12]. A
function that is analytic and locally univalent in a given simply connected domain is said
to be of bounded boundary rotation if its range has bounded boundary rotation, which is
defined as the total variation in the direction angle of the tangent to the boundary curve
under a complete circuit. Let Vu denote the family of functions G that map the unit disc E
conformally onto an image domain G(E) of bounded boundary rotation at most uπ.

Umarani [13] introduced class Vu(b) functions of bounded boundary rotation of
complex order b. We say a function G ∈ Vu(b), where b is a non-zero complex number if∫ 2π

0

∣∣∣∣ℜ(
1 +

ϑG′′(ϑ)

bG′(ϑ)

)∣∣∣∣dν ≤ uπ.

Umarani [13] showed that a function Gb ∈ Vu(b) if and only if there exists a function
G ∈ Vu such that

G′
b(ϑ) =

[
G′(ϑ)

]b. (3)

For the choice of b, the class Vu(b) reduces to the following important subclasses

(i) For b = 1, Vu(1) ≡ Vu, and the well-known class of functions of bounded boundary
rotation at most uπ was introduced by Paatero [10].
(ii) For b = 1 − λ, we have Vu(1 − λ) ≡ Vu(λ), introduced by Padmanabhan and Par-
vatham [12].

A function G ∈ A is said to be in the class Ru, the class Ru of functions with bounded
radius rotations (introduced by Tammi [14]), if for u ≥ 2,∫ 2π

0

∣∣∣∣ℜ(
ϑG′(ϑ)

G(ϑ)

)∣∣∣∣dν ≤ uπ.

The integral representation for functions G ∈ Ru is given by

G(ϑ) = ϑ exp
[
−

∫ 2π

0
− log(1 − ϑe−it)dν

]
,

where ν is a non-decreasing function with bounded variation in [0, 2π] and satisfying∫ 2π

0
dν(t) = 2 and

∫ 2π

0
|dν(t)| ≤ u.

Pinchuk [11] showed that an Alexander-type relation between the classes Vu and Ru exists
and is given by

G ∈ Vu if and only if ϑG′ ∈ Ru. (4)

Lehto [15] (see [16]) proved that for the function G ∈ Vu given in the form (1)

|ξ2| ≤
u
2

and |ξ3| ≤
u2 + 2

6
. (5)
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Schiffer and Tammi [17] proved that for the function G ∈ Vu given in the form (1),

|ξ4| ≤
u3 + 8u

24
. (6)

Following the work of Brannan [18], who proved that Vu is a subclass of the class

Ku(λ) of the close-to-convex functions of order λ =
u
2
− 1, Koepf [19] showed that Vu(k)

is a subclass of the class Ku(λ) of the k-fold symmetric close-to-convex functions of order

λ =
u − 2

2k
. This leads to the solution to the coefficient problem for k-fold symmetric

functions of bounded boundary rotation when u ≥ 2k. Moreover, for k ∈ N, Vu(2u + 2)
consists of close-to-convex functions and, hence, are univalent functions. Further, Leach [20]
investigated the concept of odd univalent functions with bounded boundary rotation, and
this was extended to k-fold symmetric functions by the same author a little later in the
same year, and for details, one may look at [21].

The Koebe one-quarter theorem [22] ensures that the image of E under every univalent

function G ∈ S contains a disk of radius
1
4

. Thus, every univalent function G has an inverse

G−1, satisfying
ϑ = G−1(G(ϑ)), ϑ ∈ E,

and

υ = G(G−1(υ)),
(
|υ| ≤ ρ0(G); ρ0(G) ≥ 1

4

)
.

The inverse G−1 may have an analytic continuation to D, where

G−1(υ) = Φ(υ) = υ +
∞

∑
m=2

(−1)m−1Φmυm. (7)

where
Φ2 = ξ2, Φ3 = 2ξ2

2 − ξ3 and Φ4 = 5ξ3
2 − 5ξ2ξ3 + ξ4.

A function G ∈ S is called as bi-univalent in E if both G and its inverse G−1 = Ψ
belong to the class S . Indicate Σ to be the family of all bi-univalent functions in E. The

family Σ is non-empty as the functions
ϑ

1 − ϑ
,

1
2

log
(

1 + ϑ

1 − ϑ

)
and − log(1 − ϑ) are in the

family Σ. It is interesting that the famous Koebe function
ϑ

(1 − ϑ)2 does not belong to

the family Σ. The family of bi-univalent functions was investigated for the first time by
Lewin [23], who obtained a non-sharp bound |ξ2| < 1.51. This was followed by Brannan
and Clunie [18] and Brannan and Taha [24], who worked on certain subclasses of the
bi-univalent functions and obtained bounds for their initial coefficients. The study of bi-
univalent functions gained concentration as well as thrust mainly due to the investigation
of Srivastava et al. [25] and was followed by many authors.

In the current article, we introduce Ozaki-type close-to-convex functions with bounded
boundary rotation denoted by F (u, λ). Examples showing that the class F (u, λ) is non-
empty are discussed. The authors also derive many interesting connections between the
class F (u, λ) and S∗ and K. Finally, a new subclass Fo,Σ(u, λ) of bi-univalent functions
with bounded boundary and bounded radius rotation is introduced. For the class Fo,Σ(u, λ),
the authors obtain interesting first two initial non-sharp coefficient bounds.

2. Ozaki Close-to-Convex Functions with Bounded Boundary Rotation

We start this section by introducing a new class of Ozaki-type close-to-convex functions
with bounded boundary rotation and is defined as follows.
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Definition 2. Let u ≥ 2 and 1
2 ≤ η ≤ 1. A function G given in the form (1) is called as Ozaki-type

close-to-convex with bounded boundary rotation if G satisfies the following condition

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
∈ Pu.

The family of all Ozaki-type close-to-convex functions with bounded boundary rotation is denoted
by F (u, η).

Remark 1. (i) If η =
1
2

, then F (u, η) ≡ F
(

u, 1
2

)
≡ Vu, which consists of functions of bounded

boundary rotation introduced in [11].

(ii) If u = 2, then F (u, η) ≡ F (2, η) ≡ Fo(η) consists of Ozaki-type close-to-convex functions.

(iii) If u = 2 and η =
1
2

, then F (u, η) ≡ F
(

2, 1
2

)
≡ K, which consists of convex functions

introduced in [26].

Here, we show that the class F (u, η) is non-empty by providing a few examples.
Examples of functions belonging to the class F (u, η).

Example 1. The function G1 : E −→ C is defined by

G1(ϑ) =
2

2η + 1

[
exp

(
2η + 1

2
ϑ

)
− 1

]
, ϑ ∈ E.

Straightforward computations shows that

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
= 1 + ϑ.

Since ∫ 2π

0
ℜ(1 + ϑ)dt =

∫ 2π

0
(1 + r cos t)dt = 2π ≤ uπ, 0 < r < 1.

Therefore, 1 + ϑ ∈ Pu. Hence, the function G1 ∈ F (u, η).

Example 2. The function G2 : E −→ C is defined by

G2(ϑ) =
4

2η + 1

[
exp

(
2η + 1

4
ϑ

)
− 1

]
, ϑ ∈ E.

Straightforward computations shows that

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
= 1 +

ϑ

2
.

Since ∫ 2π

0
ℜ
(

1 +
ϑ

2

)
dt =

∫ 2π

0

(
1 +

r cos t
2

)
dt = 2π ≤ uπ, 0 < r < 1.

Therefore, 1 +
ϑ

2
∈ Pu. Hence, the function G2 ∈ F (u, η).

Example 3. The function G3 : E −→ C is defined by

G3(ϑ) =
4

u(2η + 1)

[
exp

(
u(2η + 1)

4
ϑ

)
− 1

]
∈ F (u, η).
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Example 4. The function G4 : E −→ C is defined by

G4(ϑ) =
8

u(2η + 1)

[
exp

(
u(2η + 1)

8
ϑ

)
− 1

]
∈ F (u, η).

The images of the function G1 and G2 under unit disk E are shown as below in Figure 1.

Figure 1. Image of G1 under E for η = 0.5 is shown in the left picture and Image of G2 under E for
η = 0.7 is shown in the right picture.

Similarly, the images of the function G3 and G4 under unit disk E are shown as below
in Figure 2.

Figure 2. Image of G3 under E for η = 0.7, u = 0.3 is shown in the left picture and Image of G4 under
E for η = 0.7, u = 0.3 is shown in the right picture.

Next, we prove new interesting properties of the class F(u, η), stated as Theorems 1–10.
We start with proving an integral representation theorem.

2.1. Integral Representation of F (u, η)

Theorem 1. If G ∈ F (u, η), then

G′(s) = exp
[
−2η + 1

2

∫ 2π

0
log(1 − seit)dν(t)

]
, (8)
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where ν is a non-decreasing function with bounded variation in [0, 2π] and satisfying∫ 2π

0
dν(t) = 2 and

∫ 2π

0
|dν(t)| ≤ u.

Proof. Since G ∈ F (u, η), there exists an analytic function ψ(ϑ) belonging to the class Pu
such that

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
= ψ(ϑ). (9)

Equation (9) can be written as

G′′(ϑ)

G′(ϑ)
=

2η + 1
2

(
ψ(ϑ)− 1

ϑ

)
. (10)

Since ψ ∈ Pu by the representation theorem given by Paatero [10], there exists a non-
decreasing function ν with bounded variation in [0, 2π] and satisfying∫ 2π

0
dν(t) = 2 and

∫ 2π

0
|dν(t)| ≤ u

such that

ψ(ϑ) =
1
2

∫ 2π

0

1 + ϑe−it

1 − ϑe−it dν(t).

Therefore, ∫ ϑ

0

ψ(z)− 1
z

dz = −
∫ 2π

0
log(1 − ϑe−it)dν(t). (11)

From (10) and (11), we obtain (8). The proof of Theorem 1 is hence completed.

2.2. Relation between F (u, η) and Vu

Theorem 2. Let u ≥ 2 and 1
2 ≤ η ≤ 1. A function G ∈ F (u, η) if ∃ a function g ∈ Vu such that

G′(ϑ) = [g′(ϑ)]
2η + 1

2 . (12)

Proof. Since G ∈ F (u, η), there exists an analytic function ψ(ϑ) belonging to the class Pu
such that

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
= ψ(ϑ). (13)

Since, ψ ∈ Pu, there exists g ∈ Vu such that

ψ(ϑ) = 1 +
ϑg′′(ϑ)
g′(ϑ)

. (14)

From (13) and (14), we obtain

ϑG′′(ϑ)

G′(ϑ)
=

2η + 1
2

g′′(ϑ)
g′(ϑ)

. (15)

Upon integrating (15), we obtain (12). The proof of Theorem 2 is thus completed.

We know that a function g ∈ Vu if and only if ϑg′ ∈ Ru. Hence, g ∈ Ru if and only if

h(ϑ) =
∫ ϑ

0

g(z)
z

dz ∈ Vu ⇐⇒ h′(ϑ) =
g(ϑ)

ϑ
∈ Vu. (16)

From Theorem 2 and (16), we obtain the following result.
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2.3. Relation between F (u, η) and Ru

Theorem 3. Let u ≥ 2 and 1
2 ≤ η ≤ 1. A function G ∈ F (u, η) if ∃ a function g ∈ Ru such that

G′(ϑ) =

[
g(ϑ)

ϑ

]2η + 1
2 . (17)

2.4. Relation between F (u, η) and K

Theorem 4. Let u ≥ 2 and 1
2 ≤ η ≤ 1. A function G ∈ F (u, η) if ∃ functions g, h ∈ K such that

G′(ϑ) =

{
[g′(ϑ)]

u+2
4

[h′(ϑ)]
u−2

4

}2η + 1
2

. (18)

Proof. Since G ∈ F (u, η),∃ is an analytic function ψ(ϑ) that belongs to the class Pu
such that

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
= ψ(ϑ). (19)

Since ψ ∈ Pu, from Lemma 1, then ∃ ψ1, ψ2 ∈ P such that

ψ(ϑ) =
u + 2

4
ψ1(ϑ)−

u − 2
4

ψ2(ϑ). (20)

Since ψ1, ψ2 ∈ P , there exist functions g, h ∈ K such that

ψ1(ϑ) = 1 +
ϑg′′(ϑ)
g′(ϑ)

and ψ2(ϑ) = 1 +
ϑh′′(ϑ)
h′(ϑ)

. (21)

Hence, from (19)–(21), we obtain

G′′(ϑ)

G′(ϑ)
=

2η + 1
2

[
u + 2

4
g′′(ϑ)
g′(ϑ)

− u − 2
4

h′′(ϑ)
h′(ϑ)

]
. (22)

Upon Integrating (22), we obtain (18). This completes the proof of Theorem 4.

Since we know that a function h ∈ K if and only if ϑh′ ∈ S∗ and h ∈ S∗ ⇔ g =
h(ϑ)

ϑ
∈ K, using Theorem 4, we have the following result.

2.5. Relation between F (u, η) and S∗

Theorem 5. For u ≥ 2 and 1
2 ≤ η ≤ 1. A function G ∈ F (u, η) if ∃ functions g, h ∈ S∗

such that

G′(ϑ) = ϑ
2η+1

2

{
[g(ϑ)]

u+2
4

[h(ϑ)]
u−2

4

}2η + 1
2

. (23)

Based on Equations (2)–(4), we have the following results, and they are stated by
omitting the proof.

Theorem 6. Let u ≥ 2, b ≥ 1 and 1
2 ≤ η ≤ 1. A function G ∈ F (u, η) if

(i) ∃ a function h ∈ Vu(λ) such that

G′(ϑ) =
[
h′(ϑ)

] 2η + 1
2(1 − λ) .
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(ii) ∃ a function g ∈ Ru(λ) such that

G′(ϑ) =

[
g(ϑ)

ϑ

] 2η + 1
2(1 − λ) .

(iii) ∃ a function gb ∈ Vu(b) such that

G′(ϑ) =
[
g′b(ϑ)

]2η + 1
2b .

Theorem 7. Let u ≥ 2 and 1
2 ≤ η ≤ 1. If a function G ∈ F (u, η), then for |ϑ| = ρ < 1

[
(1 − ρ)

u−2
2

(1 + ρ)
u+2

2

]2η + 1
2

≤ |G′(ϑ)| ≤
[
(1 + ρ)

u−2
2

(1 − ρ)
u+2

2

]2η + 1
2

. (24)

Proof. Since G ∈ F (u, η), then from Theorem 1, we have

G′(ϑ) = exp
[
−2η + 1

2

∫ 2π

0
log(1 − ϑe−it)dν(t)

]
where ν is a non-decreasing function with bounded variation in [0, 2π] and satisfying∫ 2π

0
dν(t) = 2 and

∫ 2π

0
|dν(t)| ≤ u.

Let us take ϑ = ρeit. Then,

|G′(ρeit)| ≤ exp
[
−2η + 1

2

∫ 2π

0
log |1 − ϑe−it|dν(t)

]
.

Since ν(t) is a non-decreasing functions with bounded variation in [0, 2π], we can write
ν(t) = ν1(t)− ν2(t), where both ν1(t) and ν2(t) are non-decreasing functions with bounded
variation in [0, 2π] and satisfying∫ 2π

0
dν1(t) ≤

u + 2
2

and
∫ 2π

0
dν2(t) ≤

u − 2
2

.

Here, we can write

−2η + 1
2

∫ 2π

0
log |1 − ϑe−it|dν(t)

=
2η + 1

2

[∫ 2π

0
log |1 − ϑe−it|dν2(t)−

∫ 2π

0
log |1 − ϑe−it|dν1(t)

]
≤ u − 2

2
log(1 + ρ)

2η+1
2 − u + 2

2
log(1 − ρ)

2η+1
2

= log

[
(1 + ρ)

u−2
2

(1 − ρ)
u+2

2

]2η + 1
2

.

To prove the lower bound, it is sufficient to show that

−2η + 1
2

∫ 2π

0
log |1 − seit|dν(t) ≥ log

[
(1 − ρ)

u−2
2

(1 + ρ)
u+2

2

]2η + 1
2

.
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If
∫ 2π

0 |dν(t)| = u, then
∫ 2π

0 |dν1(t)| ≤ u+2
2 and

∫ 2π
0 |dν2(t)| ≤ u−2

2 . Therefore, we have

−2η + 1
2

∫ 2π

0
log |1 − ϑe−it|dν(t) ≥ u − 2

2
log(1 − ρ)

2η+1
2 − u + 2

2
log(1 + ρ)

2η+1
2

= log

[
(1 − ρ)

u−2
2

(1 + ρ)
u+2

2

]2η + 1
2

.

Hence, we obtain

|G′(ρeit)| ≥ log

[
(1 − ρ)

u−2
2

(1 + ρ)
u+2

2

]2η + 1
2

.

The proof of Theorem 7 is thus finished.

Theorem 8. If a function G(ϑ) given in the form (1) belongs to the class F (u, η), then

|ξ2| ≤
u(2η + 1)

4
, (25)

|ξ3| ≤
(2η + 1)[u2(2η + 1) + 4]

24
(26)

and

|ξ4| ≤
(2η + 1)[u3(4η2 + 16η + 7) + u(48η + 104)]

768
. (27)

Proof. Since G ∈ F (u, η), then from Theorem 2 ∃ g ∈ Vu such that

G′(ϑ) = [g′(ϑ)]
2η + 1

2 (28)

where
g(ϑ) = ϑ + a2ϑ2 + a3ϑ3 + a4ϑ4 + · · · . (29)

Hence, from (28) and (29), we obtain

2ξ2 = (2η + 1)a2, (30)

3ξ3 =
3(2η + 1)

2
a3 +

(4η2 − 1)
2

a2
2 (31)

and

4ξ4 = 2(2η + 1)a4 +
3(4η2 − 1)

4
a2a3 +

(8η3 − 12η2 − 2η + 3)
6

a3
2. (32)

Using (5) in (30), (31) and (6) in (32), we obtain (25)–(27), respectively, which essentially
completes the proof of Theorem 8.

Remark 2. (i) For η =
1
2

, Theorem 8 verifies the bounds of |ξ2| and |ξ3| obtained by Letho [15].

(ii) For η =
1
2

, Theorem 8 verifies the bound of |ξ4| obtained by Schiffer and Tammi [17].
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Theorem 9. If G ∈ F (u, η) then the function Gd(ϑ) defined by

G′
β(ϑ) =

G′
(

ϑ + d
1 + d̄ϑ

)
[G′(d)]

2η+1
2 (1 + d̄s)2η+1

(33)

also belongs to F (u, η).

Proof. Since G ∈ F (u, η), then from Theorem 2, ∃ h ∈ Vu such that

G′(ϑ) = [h′(ϑ)]
2η + 1

2 . (34)

Robertson [27] showed that if h ∈ Vu, then H(ϑ), defined by

H(ϑ) =

h
(

ϑ + d
1 + d̄ϑ

)
− h(d)

h′(d)(1 − |d|2) , d ∈ E

which also belongs to Vu. Therefore, we obtain

G′
d(ϑ) =

[
h
(

ϑ + d
1 + d̄ϑ

)] 2η+1
2

[h′(d)]
2η+1

2 (1 + d̄ϑ)2η+1
. (35)

The proof of Theorem 9 is thus completed.

Theorem 10. If G ∈ F (u, η) and
u(2η + 1)

2
< 1, then G is univalent in E and

∣∣∣∣ϑG′′(ϑ)

G′(ϑ)
− |ϑ|2(2η + 1)

1 − |ϑ|2

∣∣∣∣ ≤ u(2η + 1)|ϑ|
2(1 − |ϑ|2) . (36)

Proof. If G ∈ F (u, η), then Gd(ϑ) given in (33) belongs to F (u, η). By differentiating (33)
with respect to ϑ and substituting ϑ = 0, we obtain

G′′
d (0) =

G′′(d)
G′(d)

(1 − |d|2)− d̄(2η + 1).

Therefore,

ξ2 =
G′′

d (0)
2

=
1
2

[
G′′(d)
G′(d)

(1 − |d|2)− d̄(2η + 1)
]

.

By using the bound of ξ2 given in (25) and replacing d by ϑ, we have∣∣∣∣G′′(ϑ)

G′(ϑ)
(1 − |ϑ|2)− ϑ̄(2η + 1)

∣∣∣∣ ≤ |ξ2| ≤
u(2η + 1)

2
. (37)

Equation (37) can be rewritten as∣∣∣∣ϑG′′(ϑ)

G′(ϑ)
(1 − |ϑ|2)− |ϑ|2(2η + 1)

∣∣∣∣ ≤ u|ϑ|(2η + 1)
2

. (38)

If
u(2η + 1)

2
< 1, then according to Ahlfors [28] univalence criterion, G is univalent in E.

Equation (38) gives (36). The proof of Theorem 10 is hence finished.
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Theorem 11. If G ∈ F (u, η), then for 0 ≤ ν1 < ν2 ≤ 2π, ϑ = ρeit we have

∫ ν2

ν1

ℜ
(

1 +
ϑG′′(ϑ)

G′(ϑ)

)
dν > −2η + 1

2

(u
2
− 1

)
π. (39)

Proof. Since G ∈ F (u, η), then from Theorem 2, ∃ h ∈ Vu such that

G′(ϑ) = [h′(ϑ)]
2η + 1

2 . (40)

Brannan [29] showed that a function if h ∈ Vu and 0 ≤ ν1 < ν2 ≤ 2π, then∫ ν2

ν1

ℜ
(

1 +
ϑh′′(ϑ)
h′(ϑ)

)
dν > −

(u
2
− 1

)
π. (41)

Equations (40) and (41) gives (39).

3. Ozaki-Type Bi-Close-to-Convex Functions with Bounded Boundary Rotation

Definition 3. Suppose 0 ≤ λ < 1,
1
2
≤ η ≤ 1, and u ≥ 2. A function G given by (1) is called as

Ozaki-type bi-close-to-convex functions with bounded boundary rotation of order λ if the conditions

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
∈ Pu(λ)

and

2η − 1
2η + 1

+
2

2η + 1

(
1 +

υΦ′′(υ)

Φ′(υ)

)
∈ Pu(λ)

are satisfied. The family of all Ozaki-type bi-close-to-convex functions with bounded boundary
rotation of order λ is denoted by Fλ

Σ (u, η).

To prove the main results of this section, we need the following lemma.

Lemma 2. [30] Let 0 ≤ λ < 1. If a function ψ(ϑ) = 1 + ∑∞
m=1 ψmϑm belongs to the class Pu,

then
|ψm| ≤ u(1 − λ).

Theorem 12. Suppose 0 ≤ λ < 1,
1
2
≤ η ≤ 1, and u ≥ 2. If a function G given by (1) is in the

class Fλ
Σ (u, η), then

|ξ2| ≤
√

u(1 − λ)(2η + 1)
4

, (42)

|ξ3| ≤
u(1 − λ)(2η + 1)

4
(43)

and

|ξ3 − Λξ2
2| ≤



u(1 − λ)(2η + 1)(1 − Λ)

4
for Λ <

2
3

,

u(1 − λ)(2η + 1)
12

for
2
3
≤ µ ≤ 4

3
,

u(1 − λ)(2η + 1)(Λ − 1)
4

for Λ >
4
3

(44)

where Λ is a real number.
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Proof. Let the function G ∈ Fλ
Σ (u, η). Then, there exist y(ϑ) and x(υ) in Pu(λ) such that

2η − 1
2η + 1

+
2

2η + 1

(
1 +

ϑG′′(ϑ)

G′(ϑ)

)
= y(ϑ) (45)

and
2η − 1
2η + 1

+
2

2η + 1

(
1 +

υΦ′′(υ)

Φ′(υ)

)
= x(υ) (46)

where
y(ϑ) = 1 + y1ϑ + y2ϑ2 + y3ϑ3 + · · · (47)

and
x(υ) = 1 + x1υ + x2υ2 + x3υ3 + · · · . (48)

From Equations (45)–(48), we obtain

4ξ2

2η + 1
= y1, (49)

12ξ3

2η + 1
−

8ξ2
2

2η + 1
= y2, (50)

− 4ξ2

2η + 1
= x1, (51)

and
16ξ2

2
2η + 1

− 12ξ3

2η + 1
= x2. (52)

Hence from (49) and (51), we obtain y1 + x1 = 0. Again, from (50) and (52), we obtain

8ξ2
2

2η + 1
= y2 + x2. (53)

An application of Lemma 2 in (53) gives

|ξ2|2 ≤ u(1 − λ)(2η + 1)
4

. (54)

Hence, (54) gives (42). Here, again from (50) and (52) and by applying (53), we obtain

12ξ3

2η + 1
= 2y2 + x2. (55)

An application of Lemma 2 in (55) gives (43). Hence, for any Λ ∈ R and by using (53)
and (55), we have

ξ3 − λξ2
2 =

2η + 1
24

[(4 − 3Λ)y2 + (2 − 3Λ)x2]. (56)

Here, using triangle inequality and an application of Lemma 2 in (56) implies

|ξ3 − Λξ2
2| ≤

u(1 − λ)(2η + 1)
24

[|4 − 3Λ|+ |2 − 3Λ|]. (57)

Hence, (57) gives (44). The proof of Theorem 12 is thus finished.

For the choice u = 2, the class Fλ
Σ (2, η) reduces to the class F η

o,Σ(λ). Hence, we obtain
the following result for the functions belonging to the class F η

o,Σ(λ), which verifies the
bound of |ξ2| and |ξ3| obtained by Tezelcı and Sümer Eker [6].
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Corollary 1. Suppose 0 ≤ λ < 1 and
1
2
≤ η ≤ 1. If a function G given by (1) is in the class

F η
o,Σ(λ), then

|ξ2| ≤
√

(1 − λ)(2η + 1)
2

, (58)

|ξ3| ≤
(1 − λ)(2η + 1)

2
(59)

and

|ξ3 − Λξ2
2| ≤



(1 − λ)(2η + 1)(1 − Λ)

2
for Λ <

2
3

,

(1 − λ)(2η + 1)
6

for
2
3
≤ Λ ≤ 4

3
,

(1 − λ)(2η + 1)(Λ − 1)
2

for Λ >
4
3

.

(60)

Let η =
1
2

. Then, the class Fλ
Σ

(
u,

1
2

)
reduces to the class CΣ[u, λ], which denotes the

class of all bi-convex functions with the bounded boundary rotation of order λ. Hence, we
obtain the following result for the functions belonging to the class CΣ[u, λ], which verifies
the bound obtained by (Li et al. [31], Corollary 3.2).

Corollary 2. Suppose 0 ≤ λ < 1 and u ≥ 2. If a function G given by (1) belongs to the class
CΣ[u, λ], then

|ξ2| ≤
√

u(1 − λ)

2
, (61)

|ξ3| ≤
u(1 − λ)

2
(62)

and

|ξ3 − Λξ2
2| ≤



u(1 − λ)(1 − Λ)

2
for Λ <

2
3

,

u(1 − λ)

6
for

2
3
≤ Λ ≤ 4

3
,

u(1 − λ)(Λ − 1)
2

for Λ >
4
3

.

(63)

Remark 3. Corollary 2 verifies the results obtained by (Sharma et al. [32] Corollary 7).

4. Concluding Remarks and Observations

In the current article, we introduced a new subclass of univalent functions F (u, η)
with bounded boundary rotation. Many interesting examples are constructed for the
class F (u, η). Interesting connections between the class F (u, η) and the familiar classes of
starlike, convex and convex functions of bounded boundary rotation and starlike functions
of bounded radius rotation are obtained. Following the interesting connection, the first
three coefficient bounds for the new subclass F (u, η) were derived. Furthermore, the
authors also introduced a new subclass of bi-univalent functions Fo,Σ(u, λ) associated
with bounded boundary rotation. For the new class Fo,Σ(u, λ), the authors obtained new
initial two coefficient estimates. Apart from the new interesting coefficient estimates, the
established coefficient estimates also generalize the earlier existing results.

Finally, the study considered in this article can be extended by taking different types
of convolution operators existing in the literature. Also, similar types of results can be
investigated for interesting special functions.
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