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Abstract: Unauthenticated device access to a network presents substantial security risks. To address
the challenges of access and identification for a vast number of devices with diverse functions
in the era of the Internet of things (IoT), we propose an IoT device identification method based
on hardware and software fingerprint features. This approach aims to achieve comprehensive
“hardware–software–user” authentication. First, by extracting multimodal hardware fingerprint
elements, we achieve identity authentication at the device hardware level. The time-domain and
frequency-domain features of the device’s transient signals are extracted and further learned by a
feature learning network to generate device-related time-domain and frequency-domain feature
representations. These feature representations are fused using a splicing operation, and the fused
features are input into the classifier to identify the device’s hardware attribute information. Next,
based on the interaction traffic, behavioral information modeling and sequence information modeling
are performed to extract the behavioral fingerprint elements of the device, achieving authentication at
the software level. Experimental results demonstrate that the method proposed in this paper exhibits
a high detection efficacy, achieving 99% accuracy in both software and hardware level identification.

Keywords: Internet of things; hardware and software fingerprint features; device identification;
multimodal

1. Introduction

The Internet of things (IoT) is a key component of today’s digital world, profoundly
changing the way we live and conduct business. IoT applications are everywhere, ranging
from smart home devices to industrial automation, and from health monitoring to urban
infrastructure. However, with the continuous expansion of the Internet of Things (IoT),
concerns regarding IoT security are increasingly garnering attention.

In the era of IoT, the network environment is filled with a huge number of IoT devices
with different functions and types. How to accurately identify and effectively regulate
these devices in a complex and dangerous network environment is an urgent problem for
all industries in the IoT ecosystem. IoT security faces many challenges. First, the sheer
number of IoT devices, with their wide variety and different functions, makes device
security management very complex. Second, numerous IoT devices lack high security
configurations due to environmental constraints, posing challenges in achieving strong
security authentication with limited configurations. Lastly, IoT devices are usually exposed
to diverse environmental conditions and are susceptible to physical attacks.
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Traditional authentication schemes for IoT devices, whether reliant on lightweight
public key algorithms or pre-shared key authentication techniques, encounter challenges
such as key leakage and the elevated costs associated with key generation and distribution.

In contrast, emerging hardware and software fingerprint technology can be used as
potent tools for IoT device authentication, owing to their heightened security and simplicity
of deployment. However, relying only on a single hardware or software fingerprinting
technology cannot completely solve the problem. While software fingerprinting can capture
the usage behavior of a device, extracted traffic features tend to be more intricate and less
directly linked to the device. Hardware fingerprinting, on the other hand, provides a more
stable device signature, but is susceptible to variations in signal transmission environments.
Therefore, to achieve highly precise device identification within intricate IoT environments,
this paper proposes a multi-level authentication method based on the combination of
hardware and software features. In summary, our main contribution in this paper include
the following:

• In this paper, through the combination of software and hardware fingerprints, device
features can be acquired from various dimensions. This approach reduces misjudg-
ments caused by the instability of individual features and enhances the security of
authentication. In addition, the combination of hardware and software features can bet-
ter adapt to different usage scenarios and environmental changes, thereby enhancing
the security and robustness of device identification.

• A multimodal hardware fingerprint element extraction method is proposed in hardware
level authentication. In this paper, time-domain feature information and frequency-
domain feature information are integrated into a unified model, wherein a feature
learning network is utilized to delve deeper into the time-domain feature representa-
tion and frequency-domain feature representation. Subsequently, multimodal fusion
features are generated through splicing operations to achieve more reliable identifica-
tion of device hardware attributes.

• In software-level authentication, which does not strictly rely on identifying specific
fields of a packet, its applicability is broader and can be utilized for feature extrac-
tion without prior knowledge of the protocol. In addition, this paper emphasizes
the extraction of behavioral features derived from the network packet behavior. It
models the communication behavior of network packets from devices, constructs a
sequence to encapsulate device behavior, and preserves the temporal relationship
among interacting traffic. Compared to the individual packet level, this paper not only
considers the device behavior itself but also incorporates timing information regarding
interaction behavior. This approach contributes to a more precise classification of
different devices.

The rest of the paper is organized as follows. In Section 2, we review related work.
In Section 3, the methodological architecture of this paper is presented. Sections 4 and 5
describe the software level and hardware level authentication methods for IoT devices,
respectively. Section 6 is the experimental part where the experimental results are compared
and discussed. Finally, we conclude the paper in Section 7.

2. Related Works

Due to the large number and diversity of IoT devices [1], device identification has
become a significant issue in system security. Most IoT devices have limited computing
and storage resources, which makes it difficult to implement strict security measures on
these devices. However, the emerging hardware and software fingerprinting technology
has gained widespread recognition in the realm of device identification. Its high security
and ease of implementation make it a hot trend in the current network security field.

2.1. Software Fingerprint Feature Authentication Technology

Device authentication technology based on software fingerprints refers to the iden-
tification of IoT devices by capturing software traffic characteristics related to devices
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such as browsers and wireless drivers. Through the collection of network traffic and the
layered parsing of protocol information, the fundamental communication information and
behavioral attribute characteristics of network users can be obtained.

Zhang et al. [2] conducted a detailed analysis of the traffic of different hosts by
capturing a large number of packets. The hosts were identified through feature extraction at
the host level. By comparing the network traffic variations of different hosts over a day and
analyzing the trends to obtain features, statistical and differential features are incorporated
to construct the time-varying characteristics of the network flow for host identification. The
experimental results demonstrate that utilizing the time-varying characteristics of network
flow for host identification can achieve good results. Yang et al. [3] summarized a series
of statistical features by analyzing a large amount of network packets. Radhakrishnan
et al. [4] utilized packet inter-arrival time (IAT) and transmission time (TT) as device
features, employing Bayesian regularization as well as a quantified conjugate gradient
approach to generate device fingerprints. Yang et al. [5] proposed a method for device
identification to accomplish access control of suspicious devices. This method involves
setting up a whitelist, constructing characteristic fingerprints of communication traffic,
and employing the random forest method to train the device identification model. Next,
in order to manage the internal devices, an intelligent security management model is
proposed, which constructs an ontological threat model based on assets, vulnerabilities,
security mechanisms, and other factors. Finally, the effectiveness of the device recognition
model is verified through experiments, achieving a recognition accuracy exceeding 96%.
Pinheiro et al. [6] models the behavior of the network packets communicated by the devices.
It classifies devices at the individual packet level using generalizable features. In addition
to the 111 features extracted from the network packet headers, payload entropy [7], protocol
(from TCP-IP layers), source and destination port class [8] were included. Kostas et al. [9]
proposes a solution that uses packet length statistics extracted from encrypted traffic to
characterize the behavior of IoT devices and events in a smart home scenario. The solution
uses only the statistical mean, the standard deviation, and the number of bytes transmitted
over a one-second window as features to achieve device identification.

The above literature focuses on software fingerprinting using specific network traffic
characteristics or statistical features. However, these methods have certain limitations.
Firstly, they are often restricted to specific communication protocols, which limits their ap-
plicability. Secondly, these methods do not account for the temporal relationships between
packets, resulting in an inability to fully capture the dynamic behavior of devices. Finally,
the extraction and analysis of statistical features usually require significant computational
resources, making it difficult to apply these methods effectively on resource-constrained
devices. In summary, these limitations indicate that existing software fingerprint authen-
tication methods have certain challenges in practical applications and require further
optimization and improvement.

2.2. Hardware Fingerprint Feature Authentication Technology

With the popularity of wireless devices, IoT needs to manage an increasing number of
devices. Device intrusion detection is a top priority, and traditional authentication methods
struggle to meet the application requirements of distributed heterogeneous IoT. Therefore,
hardware fingerprint identification techniques based on the physical layer, which cannot
be copied and replaced, have received a lot of attention.

Knox et al. [10] extracted phase information from baseband signals transmitted by
wireless devices, utilizing it as a hardware fingerprint feature to identify the transmitter.
Carbino et al. [11] proposed cross-model discrimination (CMD) and like-model discrimi-
nation (LMD), focusing on solving the identification problem of similar devices. Carbino
employed nearest neighbor (NN) and maximum likelihood (ML) algorithms to construct
the adjudicator, achieving a recognition accuracy of 76.73% with the NN algorithm and
91.38% with the ML algorithm on the more effective CMD model. Guillem et al. [12] and
Amani et al. [13] both employ time-domain and frequency-domain features for device iden-
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tification. Shen et al. [14] utilizes radio frequency (RF) fingerprinting based on spectrograms
for device identification. Through conducting carrier frequency offset (CFO) compensation
to ensure system stability during experiments, a classification accuracy of 97.61% was
attained in distinguishing 20 LoRa devices in real wireless environments. Given that the
signal differences between different devices of the same type are caused by hardware
damage and are mainly concentrated in the high frequencies, Liao et al. [15] proposes
reconstructing the high-frequency component of the signal through Fourier transform,
attention mechanism, and inverse Fourier transform. Subsequently, features are extracted
from the time dimension based on the reconstructed high-frequency component of the
signal for device identification. Almashaqbeh et al. [16] investigate the effectiveness of
wavelet decomposition, specifically the dual-tree complex wavelet transform (DT-CWT), in
extracting robust features for radio frequency fingerprinting (RFF) of Bluetooth devices.
Abbas et al. [17] provides a comprehensive review of various radio frequency (RF) finger-
printing methods used for device identification. It also discusses the principles, techniques,
and applications of RF fingerprinting.

It can be found that methods for device authentication based on hardware fingerprints
generally suffer from the problem of feature homogeneity. Many studies solely utilize
either frequency or time domain features and neglect to sufficiently integrate multiple
features in a comprehensive analysis. However, methods that rely on a single feature may
not perform well when equipment or environment changes. For example, methods based
on frequency-domain features may be unstable when channel conditions change, methods
based on time-domain features may be unreliable when device locations change, etc.

Meanwhile, a substantial amount of current research results utilize only software
fingerprints or hardware fingerprints for device identification. However, to date, there
has been no method that combines both for device identification. Based on this, this
paper proposes a method that combines software and hardware fingerprints for device
identification. During the software-level authentication phase, device behavioral features
are extracted based on network flows. During the hardware-level authentication phase,
time domain and frequency domain features are effectively fused for identification. At
both stages, more comprehensive feature information is captured, and through multi-level
authentication, the reliability of authentication is enhanced.

3. Method Architecture

The subtle differences and inherent properties of the device can be captured through
hardware feature extraction, while the network interaction traffic of the device includes
amount of behavioral information. Moreover, there are additional temporal relationships
within the interaction traffic. Therefore, in order to precisely identify IoT devices and
improve the security and robustness of identification, this paper proposes an IoT device
identification method based on hardware and software fingerprint features. The method
consists of two steps: hardware-level authentication and software-level authentication,
achieving comprehensive “hardware–software–user” authentication. Its organizational
structure is visually presented in Figure 1.

Hardware level authentication: In this paper, we propose a multimodal hardware
fingerprint element extraction method designed to capture hardware information within
device transient signals. The main steps are as follows: multimodal feature extraction,
based on the transient signal of the device to extract the device’s feature information
from different modalities; multimodal feature fusion, in which the extracted features
from different modalities are fused to generate more comprehensive and accurate feature
representations; and hardware attribute information identification, in which, based on the
fused feature representation, the hardware attribute information of the device is identified,
thus achieving identity authentication at the hardware level.

Software-level authentication: The main steps are as follows: behavioral information
modeling, for the behavioral information contained in the device traffic, based on the packet
level to extract device-related behavioral feature information; sequence information model-
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ing, in which, considering the behavioral information contained in the device interaction
traffic, the timing features within the device interaction traffic are further extracted based
on the network flow level to construct device behavioral features; and software attribute
information identification, in which, utilizing the extracted behavioral features, the device’s
behavioral pattern is analyzed to identify its software attribute information.

Finally, the combination of hardware-level and software-level identification results
achieves multi-level device authentication and enhances the reliability of authentication.

Symmetry 2024, 16, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. The steps pursed in the study. 

Hardware level authentication: In this paper, we propose a multimodal hardware 
fingerprint element extraction method designed to capture hardware information within 
device transient signals. The main steps are as follows: multimodal feature extraction, 
based on the transient signal of the device to extract the device’s feature information from 
different modalities; multimodal feature fusion, in which the extracted features from dif-
ferent modalities are fused to generate more comprehensive and accurate feature repre-
sentations; and hardware attribute information identification, in which, based on the 
fused feature representation, the hardware attribute information of the device is identi-
fied, thus achieving identity authentication at the hardware level. 

Software-level authentication: The main steps are as follows: behavioral information 
modeling, for the behavioral information contained in the device traffic, based on the 
packet level to extract device-related behavioral feature information; sequence infor-
mation modeling, in which, considering the behavioral information contained in the de-
vice interaction traffic, the timing features within the device interaction traffic are further 
extracted based on the network flow level to construct device behavioral features; and 
software attribute information identification, in which, utilizing the extracted behavioral 
features, the device’s behavioral pattern is analyzed to identify its software attribute in-
formation. 

Finally, the combination of hardware-level and software-level identification results 
achieves multi-level device authentication and enhances the reliability of authentication. 

4. Hardware Level Authentication 
To achieve effective authentication at the device hardware level, this paper proposes 

a multimodal hardware fingerprint element extraction method. By capturing the feature 
information from different modalities, a more comprehensive feature representation is 
generated to enhance the reliability of device hardware level authentication. The method 
consists of multimodal feature extraction, multimodal feature fusion, and hardware at-
tribute information authentication. Its architecture is shown in Figure 2. The main func-
tions of each part are designed as follows: 
1. Multimodal feature extraction: extract time-domain and frequency-domain feature 

information related to the device from the device’s transient signals. Subsequently, 
employ the feature learning network to conduct in-depth feature learning, thereby 
generating time-domain and frequency-domain features of the device. 

2. Multimodal feature fusion: the extracted time-domain features and frequency-do-
main features are fused using a splicing operation to obtain multimodal fusion fea-
tures. 

3. Hardware attribute information identification: device hardware attribute infor-
mation is identified based on fusion features. The captured multimodal fusion 

Figure 1. The steps pursed in the study.

4. Hardware Level Authentication

To achieve effective authentication at the device hardware level, this paper proposes
a multimodal hardware fingerprint element extraction method. By capturing the feature
information from different modalities, a more comprehensive feature representation is
generated to enhance the reliability of device hardware level authentication. The method
consists of multimodal feature extraction, multimodal feature fusion, and hardware at-
tribute information authentication. Its architecture is shown in Figure 2. The main functions
of each part are designed as follows:

1. Multimodal feature extraction: extract time-domain and frequency-domain feature
information related to the device from the device’s transient signals. Subsequently,
employ the feature learning network to conduct in-depth feature learning, thereby
generating time-domain and frequency-domain features of the device.

2. Multimodal feature fusion: the extracted time-domain features and frequency-domain
features are fused using a splicing operation to obtain multimodal fusion features.

3. Hardware attribute information identification: device hardware attribute information
is identified based on fusion features. The captured multimodal fusion features are
used as inputs to generate classification probabilities using fully connected neural
networks and softmax activation functions, aimed to detect device identity.
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4.1. Multimodal Feature Extraction
4.1.1. Signal Collection

This paper uses the USRP N210 device for Bluetooth signal collection. Specifically,
we enable the Bluetooth device to establish a connection with the collection device and
ensure that the two can communicate properly. Next, we configure the collection device to
monitor the operating frequency band of the Bluetooth device and thus can complete the
collection of the signals. The collected raw Bluetooth signal is shown in Figure 3.
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In order to analyze and extract the hardware fingerprint information of the device, the
collected data need to be processed. For each data sample, it is first necessary to extract
the valid signals from the sampled data. Then, normalization operations are performed on
these signals. The processed signals are shown in Figure 4.
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4.1.2. Data Preprocessing

The transient segment of each signal can be identified through energy analysis, as
shown in Figure 5. We extract the transient segments of all signals to form the initial
sample dataset.
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In order to enrich the sample dataset and improve the robustness and generalization
ability of the model, we adopt the method of signal sample point interval extraction.
Specifically, we extract sample points at certain intervals from different starting points
within the transient signal segments to form new, non-repetitive samples. In this way,
the number of samples in the dataset is effectively increased, while retaining the basic
characteristics of the transient segment of the signal. Figure 6 shows the new transient
signal segments acquired after preprocessing.
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4.1.3. Time-Domain Feature Information

In this paper, we propose to augment the number of sample points in the preprocessed
transient signal segments by up-sampling by 10 times the original number, resulting in
3000 sample points, thereby emphasizing local features in the signal. Then, the up-sampled
3000 sample points are divided into 10 segments, each segment containing 300 sample
points. The signal before and after up-sampling is shown in Figure 7.
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Time-domain feature extraction is performed separately for each segment of samples.
Instantaneous phase, frequency, and amplitude values are computed for each segment
consisting of 300 sample points using the Hilbert transform (HT). Equation (1) expresses
the HT for an original signal x(t). Instantaneous phase, instantaneous frequency, and
instantaneous amplitude are expressed by Equations (2)–(4).

h(t) = H[x(t)] =
1
π

∫ +∞

−∞

x(τ)
t − τ

dt (1)

px(t) = arctan(
h(t)
x(t)

) (2)

fx(t) =
1

2π
[
dpx(t)

dt
mod(2π)] (3)

ax(t) =
√

x(t)2 + h(t)2 (4)

The statistical metrics used in this paper and their associated calculations are shown
in Table 1. In the equations, F(N) represents the instantaneous phase, frequency or ampli-
tude of each segment, and N is the number of sample points contained in each segment.
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Standard deviation and variance are statistics used to measure the dispersion of data,
while the arithmetic mean and median are common trend metrics used to describe the
central tendency of the data distribution. The arithmetic mean assigns equal weight to each
data point. For datasets that obey a normal distribution, the arithmetic mean is a good
representation of the center of the data. Unlike the arithmetic mean, the harmonic mean
assigns greater weight to smaller values, offering a more precise estimate particularly in
situations where extreme values or biases within the dataset. The geometric mean can
indicate the relative relationship between values in a dataset. Skewness is a statistic used
to assess the asymmetry of a distribution. When the arithmetic mean and median are not
equal, skewness shows deviations from a normal distribution and measures the degree
to which individual sample values deviate from the mean. Kurtosis is a statistical feature
that provides information about the density of sample values within a distribution and can
indicate whether these values are tightly clustered around the mean or spread over a wider
range. When calculating the median, the following factors are taken into consideration:
the lower class boundary l of the median class, the size h of the median class interval, the
frequency f corresponding to the median class, the total number of observations N (the
sum of the frequencies), and the cumulative frequency c of the median class.

Table 1. Statistical indicators and their formulas.

Number Statistic Equations

1 harmonic mean () N 1
∑N

n=1
1

F(n)

2 geometric mean () (∏N
n=1 F(n))

1
N

3 arithmetic mean (µ) 1
N ∑N

n=1|F(n)|

4 standard deviation (σ)
√
(|F(n)| − µ)2

5 skewness (γ) 1
N ∑N

n=1 (
|F(n)−µ|

σ )
3

6 kurtosis (k) 1
N ∑N

n=1 (
|F(n)−µ|

σ )
4

7 variance (σ2) 1
N ∑N

n=1 (
|F(n)−µ|

σ )
2

8 median(
∼
x) l + h

f ( N
2 −c)

The instantaneous phase, instantaneous frequency, and instantaneous amplitude of
each segment are computed using the above statistics, resulting in the features shown in
Table 2. This process generates an array of features for each segment tseg = {a1, a2, · · · , a20}.
An array of features for all segments is extracted to construct the sequence time-domain
features f ′t =

{
t1seg, t2seg, · · · , t10seg

}
, representing the device-related time-domain fea-

ture information.

Table 2. Feature description.

Number Feature

1 Harmonic mean value of ax(t)
2 Geometric mean value of ax(t)
3 Arithmetic mean value of ax(t)
4 Standard deviation value of ax(t)
5 Skewness value of ax(t)
6 Kurtosis value of ax(t)
7 Variance value of ax(t)
8 Median value of ax(t)
9 Arithmetic mean value of px(t)
10 Standard deviation value of px(t)
11 Skewness value of px(t)
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Table 2. Cont.

Number Feature

12 Kurtosis value of px(t)
13 Variance value of px(t)
14 Median value of px(t)
15 Arithmetic mean value of fx(t)
16 Standard deviation value of fx(t)
17 Skewness value of fx(t)
18 Kurtosis value of fx(t)
19 Variance value of fx(t)
20 Median value of fx(t)

4.1.4. Frequency-Domain Feature Information

Performing fast Fourier transform (FFT) on a signal is a commonly used method of
feature extraction in the frequency domain. By applying FFT, the signal can be transformed
from the time domain to the frequency domain, providing a representation of the signal in
the frequency domain. In this paper, the FFT is performed on the preprocessed transient
signal segment of the device to obtain the frequency-domain feature information f ′k related
to the device. Equation (5) expresses the FFT for an input signal x(n). Here, N is the length
of the input signal, and X(k) represents the complex value of the k-th frequency component
in the frequency domain. The frequency-domain feature information f ′k is expressed by
Equation (6).

X(k) = ∑N−1
n=0 x(n)·e−j2πkn/N , k = 0, 1, · · · , N − 1 (5)

f ′k = |X[1 : N/2 + 1]| (6)

As shown in Figure 8, (a) is the preprocessed transient signal segment, and (b) is
the corresponding one-sided spectrogram of the signal segment, i.e., the device related
frequency-domain feature information. In addition, Figure 9 shows the frequency-domain
feature information of different devices. It can be observed that the frequency-domain
feature information of different devices exhibits significant differences.
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4.1.5. Feature Generation

For the captured time-domain and frequency-domain feature information, the feature
learning network is used to further extract locally important information and capture
deeper feature representations. The feature learning network consists of GRU model and
CNN model. The input time-domain feature information and frequency-domain feature
information are learnt separately to generate the final time-domain feature representation
and frequency-domain feature representation.

1. Time-domain feature extraction based on GRU model

Considering that gated recurrent unit (GRU) is a neural network suitable for processing
and analyzing time series data, it can effectively capture the temporal dependencies in
time-domain features. Compared with the traditional RNN, GRU simplifies the network
structure and reduces the computational complexity by introducing a gating mechanism.
Therefore, this paper proposes further learning time-domain feature information through
the GRU model.

GRU is a variant of recurrent neural network. Compared with the traditional RNN
structure, GRU introduces gating mechanisms, which allow the model to adaptively choose
how much historical information should be retained at the current moment and how much
new information should be updated at the current moment. These gating mechanisms
can effectively alleviate the gradient vanishing and explosion problems of RNN model.
Additionally, they can also capture longer-term dependencies and improve the model’s
expressiveness and generalization ability.

The algorithmic procedure for further learning of time-domain feature information
using the GRU model is shown in Algorithm 1.

The specific steps are as follows:

• Initialize the GRU model and define model-related parameters.
• Input the feature matrix into the GRU model: for each time step t, the feature matrix

xt and the hidden state ht−1 of the previous time step are input into the GRU model to
obtain the output ht of the current time step.

• Obtaining the output of the GRU model: combining the output ht from all time steps
to get the final time-domain feature ft.
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Algorithm 1: Time-domain feature extraction based on GRU model

Input: The feature matrix corresponding to the time-domain feature information f ′t
Output: The obtained time-domain feature representation ft after GRU model processing
1: Wz, Wr, Wh, Uz, Ur, Uh, br, bh = init_GRU_parameters()
2: /*Defining the initial state*/

h0 = torch.zeros(batch.size, hidden.size)
3: /*Inputting the feature matrix into the GRU model*/

outputs = []
ht = h0
for t ∈ range(sequence_length) do
xt = feature_matrix[:,t,:]
zt = sigmoid (torch.matmul(xt, Wz) + torch.matmul(ht, Uz) + bz)
rt = sigmoid (torch.matmul(xt, Wr) + torch.matmul(ht, Ur) + br)
tilde_ht = tanh (torch.matmul(xt, Wh) + torch.matmul(rt × ht, Uh) + bh)
ht = zt × ht + (1 − zt) × tilde_ht
outputs.append(ht)
end for

4: /*Output of the GRU model*/
ft = outputs

End

2. Frequency-domain feature extraction based on CNN model

Since convolutional neural network (CNN) is good at processing two-dimensional
data, such as images and spectrograms, it can effectively extract local features and spatial
relationships. Therefore, in this paper, we design to further learn the frequency-domain fea-
ture information through the CNN model. The mechanism of local connectivity and weight
sharing of CNN makes it more effective in capturing local features. In the convolutional
layer, multiple convolutional kernels of different sizes can be used to capture the feature
information of multiple abstract levels, so as to obtain deeper frequency-domain features.

In the frequency-domain feature extraction task, the purpose of the convolutional layer
is to perform further learning on the input frequency-domain feature information. Each
convolution kernel can be regarded as a specific filter, and the sliding window convolution
operation on the input frequency-domain feature information can effectively extract the
local features of the input data.

The convolution kernel is convolved with the input frequency-domain feature in-
formation f ′k to obtain the feature matrix corresponding to each convolution kernel. The
convolution operation is expressed by Equation (7). Here, S represents the feature matrix
extracted after the convolutional layer operation, while the weight matrix W and bias vector
b are the parameters learned by this network.

S = β(W f ′k + b) (7)

After the convolution operation, it is necessary to perform nonlinear mapping of
the convolution results to enhance the expression ability of the feature matrix, thereby
facilitating better capture of deeper frequency-domain feature information.

Nonlinear mapping is typically achieved using activation functions, which map the
convolution result into a nonlinear space. Commonly used activation functions include
ReLU, sigmoid, and tanh. Among them, ReLU is one of the most commonly used activation
functions because it is able to maintain the nonlinearity and also the computational speed
is relatively fast. In this paper, the ReLU function is used as the activation function. It is
expressed by Equation (8).

β = max(0, x) (8)

The feature representations produced by all the convolution kernels are merged to
generate the final frequency-domain feature fk.
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4.2. Multimodal Feature Fusion and Device Hardware Attribute Information Identification

Multimodal feature fusion is performed on the final extracted device-related time-
domain features and frequency-domain features. Then, the fused features are input into
a classifier to detect device identity. The classifier consists of a fully connected neural
network layer and softmax activation function. The specific recognition method is designed
as follows:

1. Multimodal feature fusion of time-domain feature ft and frequency-domain feature
fk is performed through a splicing operation. The result f is used as an input to the
classifier. And its expression is given in Equation (9).

f = ft + fk (9)

2. Mapping captured distributed feature representations to the class labeling space of
device samples using fully connected neural network layers.

3. The classification probability of the device category is calculated using the softmax
activation function, as shown in Equation (10).

ŷi = σ(ω fi + b) (10)

Here, σ(·) denotes the softmax activation function. fi denotes the multimodal fusion
feature representation of device i. ŷi denotes the recognition probability of the classification
result of device i. ω and b denote the weights and biases, respectively.

5. Software Level Authentication

In order to achieve multi-level authentication of IoT devices and enhance the reliability
of device identification, we intend to extract the behavioral features of the device by
behavioral information modeling and sequence information modeling, thereby identifying
the device’s software attribute information. The method architecture diagram is shown in
Figure 10.
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Thus, on the basis of hardware-level authentication, through the software-level au-
thentication, we can further realize the device “hardware–software–user” authentication.

5.1. Behavioral Feature Extraction

On the one hand, individual packets are unambiguous and may match the behavior
of multiple devices. Therefore, the success rate of device identification based on individual
packets is limited. On the other hand, interaction traffic is a sequence of packets with
the same source/destination IP addresses in both directions of the communication flow.
Compared to the unidirectional traffic, interaction traffic contains timing information about
the interaction behavior between devices. Therefore, this paper performs device behavioral
feature extraction based on the interaction traffic of the target device.

Currently, most of the device fingerprinting based on network traffic focuses on the
specific field information in the packet. However, considering the diversity of protocols
used by IoT devices, this paper directly performs packet feature information extraction
based on message hexadecimal byte streams. This method does not require parsing of
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packet contents and can perform feature extraction without knowing the priori protocol
information, which has wider applicability, even if packet encryption is not affected.

The device behavioral feature extraction method proposed in this paper consists of
two main steps: behavioral information modeling and sequence information modeling.
Behavioral information modeling is based on the individual packet level, while sequence
information modeling is based on the network flow level.

5.1.1. Behavioral Information Modeling

Different IoT devices may use different protocols, but both public and proprietary
protocols consist of a series of fields whose values are either relatively fixed or relatively
random. Therefore, this paper proposes to analyze packet byte streams in device interaction
traffic based on information entropy. The goal is to distinguish the importance of different
fields, observe and analyze key-blocks that may serve as behavioral feature information
and ultimately generate feature information for each packet.

As shown in Figure 11, the specific process of identifying key-blocks is designed
as follows:

1. Packet stacking: stack multiple packets from device interaction traffic together. Ensure
that these packets cover multiple patterns of device behavior so that specific patterns
or regularities in packet content can be captured across the entire dataset.

2. Left alignment: left-aligned different packets starting from the first byte. The purpose
of this step is to make it possible to identify byte changes at the same position by
entropy calculations and thus find possible key-blocks.

3. Entropy calculation: local information entropy is calculated for the data in the stacked
region according to byte positions. This process helps to determine relatively stable
byte positions. Specifically, all bytes appearing at a byte position are considered as
a sequence {t1, t2, · · · , tn} containing n distinct bytes, and the information entropy
at this particular position is defined by Equation (11). Here, mi is the number of
occurrences of byte ti and m is the length of the sequence at that particular location.

Entropy = −∑n
i=1

mi
m

logn
mi
m

(11)

4. Key-block identification: based on the results of entropy calculation, the locations that
can be identified as key-blocks are analyzed and determined. Specifically, Figure 12
shows the entropy distribution of packet byte streams in interaction traffic from
different IoT devices at different locations. Some byte locations exhibit very low
entropy, indicating that the content of these location is relatively stable and can be
selected as key-blocks. In particular, for events with equal probability, each mi

m is equal
to 1

n and the value of information entropy approaches 1. Given that IoT devices often
exhibit more periodic information during normal operation, there are instances of
equal probability for specific locations. In other words, these locations may represent
variable fields with a limited number of byte-value types. Therefore, we also identify
locations with information entropy approaching 1 as key-blocks.
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In order to describe the specific process of behavioral information modeling, we
make the following problem definition. We define the packet content data = f1 f2 · · · fm,
which consists of the splicing of the different fields of the message, corresponding to
the hexadecimal byte stream data as data → b1b2 · · · bn . Based on the entropy values of
different byte positions, the key-blocks are analyzed and determined. All the key-blocks
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form a key-block set Skey, which can be used as the behavioral feature information of the
current packet as shown in Figure 13.
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As shown in Figure 12, the distribution location of key-blocks is mainly concentrated
in the front and back of the packet. Therefore, in the behavioral information modeling
stage, it is designed to intercept m bytes from the forward and reverse direction of each
packet byte stream, respectively, to constitute the behavioral feature information S of the
packet. The length of the feature field is L = 2m.

5.1.2. Sequence Information Modeling

The process of sequence information modeling is shown in Figure 14. Based on the interac-
tion traffic of the target IoT device, the behavioral feature information is extracted from g consec-
utive packets to construct the behavioral feature sequence Fbehavior =

{
S1, S2, · · · , Sg

}
. Fbehavior

represents the behavioral feature of the device.
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5.2. Feature Dimensionality Reduction and Device Software Attribute Information Identification

Considering the high dimensionality of the extracted device behavioral feature se-
quences in this paper, this paper proposes to use the linear discriminant analysis (LDA)
algorithm to reduce the dimensionality of the extracted behavioral features and use it for
the identification of the device’s software attribute information.

The principle of LDA is based on maximizing the ratio of the interclass scatter matrix
to the intraclass scatter matrix to select the optimal projection direction for data dimen-
sionality reduction and classification. During the process of dimensionality reduction,
LDA tries to project the samples into a low-dimensional subspace. This projection aims to
maximize the separation between samples from different classes while retaining as much
class information as possible. This process is achieved by optimizing an objective function
that improves the interclass scatter matrix while minimizing the intraclass scatter matrix to
achieve effective feature extraction and maximize classification performance.

6. Experiment
6.1. Experimental Purpose

In this paper, the multi-level identity attribute information of IoT devices is captured
through the multimodal hardware fingerprint elements extracted based on transient sig-
nals and the behavioral fingerprint elements extracted based on the interaction traffic for
device identification.

In order to verify the effectiveness of the proposed method and to evaluate the clas-
sification performance of the software and hardware level authentication, the following
experiments are designed in this paper:

The effect of noise on the multimodal hardware fingerprint element extraction method
proposed in this paper is evaluated by performing device hardware-level authentication at
different SNR levels.
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The effectiveness of the multimodal hardware fingerprint element extraction method
proposed in this paper is verified by designing experiments to remove time-domain feature
information, frequency-domain feature information, and feature learning network ablation.

By conducting experiments under different settings of feature field lengths in behavior
information modeling and sequence lengths in sequence information modeling, the optimal
parameter values are verified and determined. Through this process, the features are
optimized to achieve the best classification effect.

The classification performance of the method in this paper is evaluated by comparing
the soft and hardware recognition methods proposed in this paper with the existing soft
and hardware recognition methods, respectively.

6.2. Experimental Dataset

In this paper, we plan for the 6 IoT devices shown in Table 3 to collect device Bluetooth
signals and network interaction traffic, so that we can perform device hardware level
authentication by collecting the transient portion of the signals and device software level
authentication based on the collected network interaction traffic.

Table 3. Introduction of device types.

Category Brand Model Number Number

smart speaker Xiaodu Xiaodu Smart Speaker Flagship Version 1
Xiaodu Xiaodu Smart Speaker Flagship Version 2

smart socket
Xiaomi Mijia smart socket 3
Xiaomi Mijia mesh mobile socket 4

smart door lock Xiaomi Xiaomi Smart Door Lock E20 Cat’s Eye Version 5

smart camera Chuancheng ST-8296 6

Specifically, data collection was conducted separately for each device, including
100 Bluetooth signals and 20,000 interactive traffic packets. Subsequently, we prepro-
cessed 100 Bluetooth signals corresponding to each device and acquired 1000 preprocessed
transient signal segments. Therefore, the experimental dataset in this paper consists of
1000 transient signal segments and 20,000 interactive traffic packets for each device.

6.3. Evaluation Metrics

For the classification task of device identification, the accuracy rate is used as the eval-
uation index. Meanwhile, to comprehensively evaluate the classification performance, in
addition to the accuracy rate (Accuracy), the true positive rate (TPR), and false positive rate
(FPR) are included as supplementary evaluation metrics for the device identification task. The
accuracy, true positive rate, and false negative rate are expressed by Equations (12)–(14).

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

TPR =
TP + TN

TP + TN + FP + FN
(13)

FPR =
FN

TP + FN
(14)

Here, true positive (TP) denotes the number of samples correctly categorized as
Category A and actually belonging to Category A, true negative (TN) denotes the number
of samples correctly categorized as Non-Category A and actually not belonging to Category
A, false positive (FP) denotes the number of samples incorrectly categorized as Category A
but actually not belonging to Category A, and false negative (FN) denotes the number of
samples incorrectly categorized as Non-Category A but actually belonging to Category A.
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6.4. Noise Impact Analysis

Additive white Gaussian noise (AWGN) is a prevalent noise model in communication
systems, characterized by a uniform power spectral density and Gaussian-distributed
amplitude. Introducing AWGN to a signal is often used to simulate a noisy environment
in a communication system to evaluate the performance of the system. In this paper, by
adding AWGN to the preprocessed transient signal segments (as shown in Figure 6), we
conduct device hardware-level authentication experiments at different SNR levels to assess
the impact of noise on the proposed multimodal hardware fingerprint element extraction
method. The following is a step-by-step description of adding AWGN to a signal:

1. Determining the signal and noise power: First, the power of the original signal and
the desired SNR must be determined. The signal power can typically be obtained
by calculating the average power of the signal. The signal power is expressed by
Equation (15). Here, N is the number of sampling points of the signal, and x[n] is
the amplitude value of the signal. The signal-to-noise ratio is typically measured in
decibels (dB) and can be converted to a linear ratio using Equation (16).

Psignal =
1
N

N−1

∑
n=0

|x[n]|2 (15)

SNRlinear = 10
SNRdB

10 (16)

2. Calculating the noise power: The required noise power is calculated based on the
signal-to-noise ratio and the signal power, as shown in Equation (17).

Pnoise =
Psignal

SNRlinear
(17)

3. The standard Gaussian noise is adjusted according to the desired noise power, resulting
in Gaussian noise with zero mean and variance Pnoise. The generated Gaussian noise
is expressed by Equation (18).

noise =
√

Pnoise·standard_gaussian_noise (18)

4. The generated noise is added to the original signal to obtain the signal with noise, as
shown in Equation (19).

noise_signal = signal + noises (19)

The accuracy rate is used as an evaluation metric to measure the recognition perfor-
mance under different values of SNR. The experimental results are shown in Figure 15.
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By comparing the recognition accuracies under different SNR conditions, it is evident
that accuracy exceeds 80% even under extreme SNR conditions. In addition, the accuracy
peaks at SNR = 30 dB.

Therefore, in this study, the SNR value is set to 30 dB, based on which hardware level
identification can achieve better classification performance.

6.5. Ablation Experiments and Analysis of Results

Since the multimodal hardware fingerprint element extraction method contains sev-
eral key components, several variants are designed in the experiments to validate the
effectiveness of each part of the method.

Method 1: Time-domain feature information is removed on the basis of multimodal
hardware fingerprint element extraction method. The frequency-domain feature informa-
tion is learned using the CNN model to generate the frequency-domain feature represen-
tation. Subsequently, device identification is conducted using a fully connected neural
network and softmax function.

Method 2: Frequency-domain feature information is removed on the basis of mul-
timodal hardware fingerprint element extraction method. The time-domain feature in-
formation is learned by GRU model to generate the time-domain feature representation.
Subsequently, device identification is conducted using a fully connected neural network
and softmax function.

Method 3: The feature learning network is deleted based on the multimodal hardware
fingerprint element extraction method. The multimodal fusion features of this variant
consist of directly splicing of the original frequency-domain feature information and time-
domain feature information. This comparison method is used to verify the effectiveness of
the feature learning network.

The accuracy results for the ablation experiment are shown in Figure 16, from which
the following can be seen:

1. By comparing the identification results of Method 1, Method 2 and our study, it can
be seen that the identification performance of the method proposed in this paper is
better than that of Method 1 and Method 2. It is demonstrated that the combination
of the time-domain information and the frequency-domain information can provide
more comprehensive information about the attributes of the device hardware, thereby
improving the accuracy of the authentication at the device hardware level.

2. Comparing the experimental results of Method 3 and our study, it is observed that
the identification accuracy of the method proposed in this paper is better than that of
Method 3. This suggests that the feature learning network can capture deeper feature
representations, which can improve the identification performance.
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6.6. Parameter Setting and Analysis

In the device’s software level authentication phase, device-related software attribute
information is extracted through behavioral information modeling and sequence informa-
tion modeling. In order to analyze the influence of feature field length L in behavioral
information modeling and sequence length g in sequence information modeling on the
classification performance, different values of feature field length L and sequence length
g are set to conduct experiments, respectively. The accuracy rate is used as an evaluation
index to measure the performance under the influence of different values. The experimental
results are shown in Figure 17.
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The identification performance for different parameter values is shown in Figure 17,
from which the following can be seen:

1. The effect of feature field length in the behavioral information modeling stage: as the
feature field length increases, the classification accuracy keeps changing, reaching its
peak and subsequently leveling off when the feature field length value L is 72.

2. The effect of sequence length in the sequence information modeling stage: with the
change of the value of the sequence length, the classification accuracy tends to increase
and then plateau. When the sequence length g is 20, the classification accuracy is
the highest.

In summary, in this study, the feature field length value is set to 72, and the sequence
length in the sequence information modeling stage is set to 20. Based on these settings, the
software level identification can achieve better classification performance.

6.7. Comparative Experiments and Analysis of Results

A multitude of research methods have been proposed in the field of device identifi-
cation. Among them, most of the hardware fingerprint feature authentication techniques
are based on either the time-domain feature or the frequency-domain feature, while the
software fingerprint feature authentication relies more on statistical features. However, this
paper proposes combining software and hardware fingerprint feature authentication tech-
nology to achieve multi-level device authentication. In order to validate the effectiveness of
the method in this paper, several representative software and hardware fingerprint feature
authentication methods are selected for comparison with the software and hardware level
authentication methods proposed in this paper. The performance of these methods is
shown in Tables 4 and 5.
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Table 4. Performance comparison of hardware fingerprint feature authentication methods.

Ref. Devices Feature Accuracy Rate

[12] Base stations on the
POWER platform Time-domain RF signal 92.97%

[13] NI N210 and NI X310 Time-domain RF signal 92.5%

[14] LoRa DUT RF signal spectrum 97.61%

Our study IoT devices Time-domain feature and
frequency-domin feature 99%

Table 5. Performance comparison of software fingerprint feature authentication methods.

Ref. Feature Accuracy Rate

[6] Statistical features of individual packet level 94.3%

[9] Statistical features of network flow level 96%

Our Study Behavioral feature of network flow level 99%

The following can be seen from Tables 4 and 5:

1. The hardware level authentication method proposed in this paper exhibits higher
identification accuracy compared to the hardware fingerprint feature authentication
method solely utilizing either time-domain features or frequency-domain features. It
shows that combining time-domain and frequency-domain features can capture more
comprehensive feature information, thereby improving the identification accuracy at
the hardware level of the device.

2. The performance of the software fingerprint feature authentication method based on
statistical features is inferior to the software level authentication method proposed in
this paper. This indicates that behavioral features are better at capturing the behavioral
patterns and dynamic changes of the device compared to statistical features, thereby
resulting in higher accuracy in device identification. Additionally, it can be clearly
observed that extracting features based on network flow for device identification
yields a higher accuracy rate. This suggests that extracting features at the network
flow level can provide a global perspective and contain richer feature information.

7. Conclusions

To address the access security problem of IoT devices, this paper proposes an IoT
device identification method based on hardware and software fingerprint features. In
the hardware level authentication stage, more comprehensive device hardware attribute
information is captured by combining the time-domain and frequency-domain feature
information with the multimodal hardware fingerprint element extraction method pro-
posed in this paper. In addition, the feature learning network is used to further acquire
deeper feature representations. At the software level authentication stage, the behavioral
features related to the device are extracted through the behavioral information modeling
and sequence information modeling proposed in this paper. This approach can be used
for feature extraction without knowing a priori protocol information, which effectively
improves the scope of application of the method.

The experimental results demonstrate that the method proposed in this paper achieves
high recognition accuracy in both the software and hardware level authentication stages. It
effectively improves the security of device identification through multi-level authentication.
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