A Generalized Iterated Tikhonov Method in the Fourier Domain for Determining the Unknown Source of the Time-Fractional Diffusion Equation
Abstract
:1. Introduction
2. The Generalized Iterated Tikhonov Method with Fourier Extension Approximation
Algorithm 1: Implicit iterative Tikhonov regularization algorithm |
1. Start with initial data , , M, K, , , , . 2. Compute the matrix by the direct solver. 3. if then 4: Compute and set . 5: while do 6: , , and set . 7: end while |
3. Source Conditions and Convergence Rates
- The parameter N is introduced only for the convenience of the theoretical proof process, and it does not appear in the specific implementation of the method.
- Although the convergence results (52) look similar to those in [25], they are based on different source conditions. The source conditions in [25] are much stricter than condition (33). Compared with condition (33), the source conditions for obtaining the convergence rate in the literature [25] requires that the coefficients of the function f with respect to the eigenfunctions have decay properties, which is only true when the function f satisfies specific boundary conditions. Condition (33) is the smoothness in the sense of general Sobolev space, and there is no boundary constraint on the function f.
4. Numerical Results and Discussion
- (1)
- Case 1: Take and
- (2)
- Case 2: Take and
- (3)
- Case 3: Take and
- (4)
- Case 4: Take and
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Lazarević, M.; Obradović, A.; Vasić, V. Robust finite-time stability analysis of fractional order time delay systems: New results. In Proceedings of the 6th WSEAS International Conference on Dynamical Systems and Control, Control, Sousse, Tunisia, 3–6 May 2010; Volume 10, pp. 101–106. [Google Scholar]
- Liu, F.; Anh, V.; Turner, I. Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 2004, 166, 209–219. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Moretti, D.; Pagnini, G.; Paradisi, P. Discrete random walk models for space–Time fractional diffusion. Chem. Phys. 2002, 284, 521–541. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Luchko, Y. Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 2011, 14, 110–124. [Google Scholar] [CrossRef]
- Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 2010, 59, 1766–1772. [Google Scholar] [CrossRef]
- Agrawal, O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 2002, 29, 145–155. [Google Scholar] [CrossRef]
- Duan, J.S. Time-and space-fractional partial differential equations. J. Math. Phys. 2005, 46, 013504. [Google Scholar] [CrossRef]
- Langlands, T.; Henry, B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205, 719–736. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Li, X.; Xu, C. A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 2009, 47, 2108–2131. [Google Scholar] [CrossRef]
- Deng, W. Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 2009, 47, 204–226. [Google Scholar] [CrossRef]
- Murio, D.A. Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 2008, 56, 1138–1145. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J. Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain. J. Comput. Phys. 2016, 322, 415–428. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Zhang, J. Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrodinger equations. SIAM J. Sci. Comput. 2017, 39, A3067–A3088. [Google Scholar] [CrossRef]
- Fardi, M. A kernel-based pseudo-spectral method for multi-term and distributed order time-fractional diffusion equations. Numer. Methods Partial. Differ. Equ. 2023, 39, 2630–2651. [Google Scholar] [CrossRef]
- Kubica, A.; Ryszewska, K.; Yamamoto, M. Time-Fractional Differential Equations: A Theoretical Introduction; Springer: New York, NY, USA, 2020. [Google Scholar]
- Mohammed, P.O.; Agarwal, R.P.; Brevik, I.; Abdelwahed, M.; Kashuri, A.; Yousif, M.A. On Multiple-Type Wave Solutions for the Nonlinear Coupled Time-Fractional Schrödinger Model. Symmetry 2024, 16, 553. [Google Scholar] [CrossRef]
- Hasan, S.; Joekar-Niasar, V.; Karadimitriou, N.K.; Sahimi, M. Saturation dependence of non-Fickian transport in porous media. Water Resour. Res. 2019, 55, 1153–1166. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Inverse source problem for a fractional diffusion equation. Inverse Probl. 2011, 27, 035010. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, T. Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl. Math. Comput. 2013, 219, 5972–5983. [Google Scholar] [CrossRef]
- Wei, T.; Zhang, Z. Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng. Anal. Bound. Elem. 2013, 37, 23–31. [Google Scholar] [CrossRef]
- Cheng, W.; Ma, Y.J.; Fu, C.L. Identifying an unknown source term in radial heat conduction. Inverse Probl. Sci. Eng. 2012, 20, 335–349. [Google Scholar] [CrossRef]
- Yang, F.; Liu, X.; Li, X.X.; Ma, C.Y. Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation. Adv. Differ. Equ. 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Ma, Y.K.; Prakash, P.; Deiveegan, A. Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation. Chaos Solitons Fractals 2018, 108, 39–48. [Google Scholar] [CrossRef]
- Djennadi, S.; Shawagfeh, N.; Osman, M.; Gómez-Aguilar, J.; Arqub, O.A. The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 2021, 96, 094006. [Google Scholar] [CrossRef]
- Zhao, Z. Boundary condition limitation in an inverse source problem and its overcoming. Comput. Math. Appl. 2022, 111, 124–133. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, Z.; Li, Z.; Meng, Z. Numerical differentiation by a Fourier extension method with super-order regularization. Appl. Math. Comput. 2018, 334, 1–10. [Google Scholar]
- Hanke, M.; Groetsch, C.W. Nonstationary iterated Tikhonov regularization. J. Optim. Theory Appl. 1998, 98, 37–53. [Google Scholar] [CrossRef]
- Buccini, A.; Donatelli, M.; Reichel, L. Iterated Tikhonov regularization with a general penalty term. Numer. Linear Algebra Appl. 2017, 24, e2089. [Google Scholar] [CrossRef]
- Jin, Q.; Tautenhahn, U. Implicit iteration methods in Hilbert scales under general smoothness conditions. Inverse Probl. 2011, 27, 045012. [Google Scholar] [CrossRef]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. 2011, 382, 426–447. [Google Scholar] [CrossRef]
- Nair, S.; Pereverzev, S.; Tautenhahn, U. Regularization in Hilbert scales under general smoothing conditions. Inverse Probl. 2005, 21, 1851–1869. [Google Scholar] [CrossRef]
- Gong, B.; Zhao, Z.; Bian, T.; Wang, Y. Numerical differentiation for two-dimensional scattered data on arbitrary domain base on Hermite extension with an implicit iteration process. AIMS Math. 2022, 7, 5991–6015. [Google Scholar] [CrossRef]
- Adams, R.A. Sobolev Spaces; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Shen, J.; Tang, T.; Wang, L.L. Spectral Methods: Algorithms, Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
M1 | M2 | M1 | M2 | M1 | M2 | |
---|---|---|---|---|---|---|
1 × | 1.02 × | 4.10 × | 1.28 × | 4.82 × | 1.33 × | 4.94 × |
1 × | 1.45 × | 2.92 × | 2.78 × | 3.05 × | 2.94 × | 3.22 × |
1 × | 4.30 × | 2.25× | 7.07 × | 2.53 × | 8.13 × | 2.71 × |
1 × | 6.54 × | 1.98× | 1.59× | 2.13 × | 2.11× | 2.20 × |
M1 | M2 | M1 | M2 | M1 | M2 | |
---|---|---|---|---|---|---|
1 × | 1.20 × | 3.25 × | 1.84 × | 3.67 × | 1.73 × | 3.83 × |
1 × | 2.06 × | 2.41 × | 3.18 × | 2.81 × | 3.30 × | 3.08 × |
1 × | 1.35 × | 1.87 × | 1.35 × | 2.19 × | 2.13 × | 2.77 × |
1 × | 9.04 × | 1.45 × | 1.09 × | 1.74 × | 1.41 × | 2.01 × |
M1 | M2 | M1 | M2 | M1 | M2 | |
---|---|---|---|---|---|---|
1 × | 1.13 × | 3.81 × | 1.13 × | 4.01 × | 1.13 × | 4.21 × |
1 × | 1.53 × | 2.79 × | 1.83 × | 2.82 × | 1.84 × | 3.05 × |
1 × | 2.77 × | 2.05 × | 3.82 × | 2.14 × | 6.92 × | 2.37 × |
1 × | 1.95 × | 1.79 × | 2.45 × | 1.86 × | 2.51 × | 1.97 × |
M1 | M2 | M1 | M2 | M1 | M2 | |
---|---|---|---|---|---|---|
1 × | 1.92 × | 3.05 × | 2.12 × | 3.12 × | 2.32 × | 3.25 × |
1 × | 2.21 × | 2.67 × | 2.30 × | 2.75 × | 2.32 × | 2.88 × |
1 × | 1.84 × | 2.02 × | 1.81 × | 2.23 × | 2.17 × | 2.53 × |
1 × | 4.35 × | 1.81 × | 7.38 × | 1.99 × | 8.23 × | 2.34 × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Liu, J.; Zhao, Z.; Dou, Z.; Gong, B. A Generalized Iterated Tikhonov Method in the Fourier Domain for Determining the Unknown Source of the Time-Fractional Diffusion Equation. Symmetry 2024, 16, 864. https://doi.org/10.3390/sym16070864
Zheng B, Liu J, Zhao Z, Dou Z, Gong B. A Generalized Iterated Tikhonov Method in the Fourier Domain for Determining the Unknown Source of the Time-Fractional Diffusion Equation. Symmetry. 2024; 16(7):864. https://doi.org/10.3390/sym16070864
Chicago/Turabian StyleZheng, Bin, Junfeng Liu, Zhenyu Zhao, Zhihong Dou, and Benxue Gong. 2024. "A Generalized Iterated Tikhonov Method in the Fourier Domain for Determining the Unknown Source of the Time-Fractional Diffusion Equation" Symmetry 16, no. 7: 864. https://doi.org/10.3390/sym16070864
APA StyleZheng, B., Liu, J., Zhao, Z., Dou, Z., & Gong, B. (2024). A Generalized Iterated Tikhonov Method in the Fourier Domain for Determining the Unknown Source of the Time-Fractional Diffusion Equation. Symmetry, 16(7), 864. https://doi.org/10.3390/sym16070864