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Abstract: Most space shuttle fuel tanks use a center column to hold the Propellant Management
Device (PMD). This paper analyzes the gas–liquid interface state in the tanks with a central column
during microgravity experiments conducted in the Chinese Space Station. It launches an extended
study to investigate the gas–liquid interface state under different gravity conditions. Using the
perturbation method and boundary layer theory, we numerically calculated the morphology of the
gas–liquid interface under varying gravity conditions based on the Young–Laplace equation. The
results were then compared to those obtained from existing commercial software and were found
to be consistent. Based on this, the study develops two types of calculation procedures. The first
procedure generates the corresponding shape of the liquid surface by inputting the height of the
liquid surface endpoints and the gravity level. The second procedure is based on the targeting
method and generates the corresponding liquid surface by inputting the volume of the liquid in the
storage tank and the gravity level. The procedures were used to analyze the variation of gas–liquid
interface properties under different gravity conditions. This study offers theoretical support for liquid
management in aerospace engineering fuel tanks.

Keywords: free surface; China Space Station; Young–Laplace equation; perturbation method; shoot-
ing method; different gravity conditions

1. Introduction

Propellant Management Devices (PMDs) have emerged as a significant area of research
in aerospace engineering in recent years. Existing studies have focused on the static
equilibrium configuration of liquid surfaces and the interface dynamics of propellants in a
microgravity environment, providing crucial scientific references for the design of PMDs
in spacecraft. With the advancement of aerospace engineering, spacecraft are tasked with
increasingly complex and diverse missions, necessitating more frequent and prolonged
attitude adjustments and in-orbit control. During periods of attitude and orbit control, the
residual gravity within the spacecraft significantly increases, rendering the propellant in the
tank no longer in a microgravity environment. This residual gravity alters the distribution
of the propellant within the tank, severely impacting propulsion efficiency and engine
safety. In a high-gravity environment, the effectiveness of surface tension is reduced, the
gas–liquid interface contracts, and the propellant may not flow along the PMD’s guidance,
potentially leading to a failure in propellant egress from the outlet. Addressing the stable
operation of tanks in various residual gravity environments presents a new challenge in
the design of propellant management devices. Therefore, it is necessary to reconsider the
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Young–Laplace equation for different gravity levels to determine the impact of gravity on
the gas–liquid distribution.

Regarding the design and research of propellant tanks and PMDs in spacecraft, the
current focus primarily revolves around the static equilibrium configuration of liquid
surfaces, interface dynamics, and their influence on the design of devices. In the realm of
static configuration of liquid surface and fluid stability, Jenson et al. conducted hand-held
capillary flow contact line experiments on the International Space Station, quantifying the
uncertain impact of contact line boundary conditions, which is crucial for understanding
and controlling capillary phenomena in multiphase fluid systems aboard spacecraft [1].
Zimmerli et al. explored the theoretical equilibrium of liquid–gas interfaces in propellant
tanks using the Surface Evolver algorithm, laying a theoretical foundation for the design
of propellant tanks in NASA’s next-generation exploratory spacecraft [2]. Pylypenko
et al. proposed a method for calculating the motion parameters of gas–liquid systems in
space stage propellant tanks under microgravity, utilizing the latest finite element analysis
tools to theoretically support the design of liquid propulsion systems [3]. Chen et al.
studied fluid flow in blade-type tanks through numerical simulations and microgravity
experiments, finding that the PMD in blade-type tanks effectively achieves liquid–gas
interface separation and provides gas-free liquids under microgravity, which significantly
impacts the design of propellant management systems whose function is fulfilled efficiently
under microgravity [4]. Plaza et al. conducted numerical analyses on free surfaces with
thermal capillary flows and vibrations under microgravity, demonstrating that thermal
capillary flow and added vibration effectively control the direction and stability of fluid
interfaces, which offers new control strategies for fluid management under microgravity [5].
Govindan and Dreyer examined the stability of liquid interfaces during filling processes
under microgravity through experiments in the Bremen Drop Tower, discovering that liquid
interfaces exhibit stable but non-constant characteristics at different volumetric flow rates,
with interface stability related to critical flow rates [6]. Chen investigated the phenomenon
of liquid rising between plates through capillary action under microgravity, showing that
the rising height of the liquid between plates is related to the angle between plates, the
dynamic contact angle between the liquid and the plate walls, and the viscous resistance of
the fluid [7].

In terms of advancements and innovations in fluid management devices, J. Hartwig
provided a detailed historical review of PMDs used for propellant acquisition under low
gravity conditions, covering the design concepts, basic fluid physics, and operating princi-
ples of PMDs, which offers valuable references for the future PMD designs [8]. Chung stud-
ied the effects of using coating and pulse-flow techniques for cryogenic spray quenching on
simulated propellant tank walls under microgravity, showing significant improvements in
cooling efficiency and reduced propellant consumption [9]. Minai and Kuzmich explored
the optimal design of lateral PMDs through Computational Fluid Dynamics (CFD) methods
to enhance the energy characteristics of launch vehicles and reduce propellant residuals [10].
Chato conducted ground tests on the reflux capabilities of Low-temperature Propellant Liq-
uid Acquisition Devices (LADs), aiding in understanding the working principles of LADs
under microgravity and their sensitivity to the flow rate and the tank internal pressure [11].
Alipour proposed a design method for PMD systems under zero gravity conditions, laying
a new theoretical foundation for the design of PMDs, especially in handling liquid and gas
separations and ensuring the propellant supply [12]. Motooka explored the application
of porous metals in the gas–liquid equilibrium propulsion systems of small spacecraft,
demonstrating through experiments that porous metals can effectively manage liquid
propellants [13].

Ensuring continuous supply to propulsion systems will enhance the performance and
reliability of small spacecraft. Baeten established a coupled membrane–liquid dynamics
model, providing a new design and analysis tool for liquid storage and management
systems on spacecraft, with a particular focus on simulating liquid behavior under micro-
gravity and laying a theoretical foundation for the future designs of fluid management
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systems on spacecraft [14]. Shukla investigated the phase separation performance of Screen
Channel Liquid Acquisition Devices (LADs) under microgravity, offering significant the-
oretical and experimental evidence for designing efficient liquid supply systems that are
used in the microgravity environment [15].

Recent research has also begun to focus on the issues of interface sloshing under the
influence of minor disturbances. Bourdelle proposed a new design of a model-oriented
controller for addressing the issues of propellant sloshing on spacecraft and enhancing
spacecraft stability and precision during attitude adjustments and other operations, which is
crucial for increasing the success rate of space missions [16]. Liu used the Smoothed Particle
Hydrodynamics (SPH) method to simulate liquid sloshing in spacecraft tanks and its impact
on spacecraft separation, offering a new perspective for understanding and controlling
liquid sloshing [17]. Hou studied the impact of longitudinal excitation on the sloshing
behavior of liquid hydrogen in spacecraft tanks under microgravity, providing important
reference information for the design of spacecraft thermal management systems, especially
in handling the storage and transmission of liquid hydrogen under microgravity [18].
Hu et al. analyzed the fluid sloshing motion in blade-type PMDs with and without
anti-slosh baffles under microgravity through numerical simulations and microgravity
experiments, finding that anti-slosh baffles significantly improve fluid stability [19]. Liu
et al. conducted experimental research on the liquid sloshing behavior in blade-type
surface tension tanks used in high-orbit satellites, offering important guidance for the
designs of spacecraft structures and control systems [20]. Khoshnood et al. proposed a
mechanical model to simulate the fuel slosh dynamics and its impact on the stability and
control of spacecraft, aiming to simplify the analysis process and reduce computational
workload [21]. Fries et al. explored the modeling of fluid motion in spacecraft propellant
tanks, particularly focusing on how fluid sloshing affects the rigid body motion of spacecraft
and how it can be controlled through reaction control systems [22]. Dumitrache and
Deleanu conducted ANSYS CFX simulations of the behavior of two fluids (seawater and air)
inside a spherical cabin, performed fluid–structure interaction analysis, and emphasized the
importance of evaluating liquid sloshing effects [23]. Yu proposed a numerical method for
the linear sloshing problem of inviscid incompressible liquids considering surface tension
effects, particularly relevant in low gravity environments [24]. Leiter et al. discussed the
challenges of spacecraft dynamics during orbital correction maneuvers under the effects
of liquid sloshing and proposed a robust control methodology to ensure the stability and
performance of spacecraft under multi-tank sloshing disturbances [25].

Previous research has primarily focused on the behavior of fluids and vibration
mechanisms in microgravity environments. However, during spacecraft maneuvers such
as orbit changes, braking, and docking, maintaining high levels of microgravity is not
feasible. These maneuvers cause significant changes in liquid distribution and center of
mass, which can severely affect the success rate of orbit changes and docking control. Past
research does not address these conditions, leaving a scientific gap in understanding liquid
distribution and center of mass changes under varying gravity environments. Furthermore,
the issue of interface reconstruction in tanks with central columns under these varying
gravity conditions has not been comprehensively studied. In this study, an Experimental
Unit (EU) is designed, and experiments under microgravity conditions are conducted in the
Chinese Space Station (CSS), and the formation of a gas–liquid interface during the filling
process is observed. Based on these observations, the distribution of the gas–liquid interface
around the central column under different gravity conditions is theoretically derived. To
accurately and quickly predict the interface, a numerical calculation program based on the
shooting method is developed, which allows the calculation of interface contour through
the input volume. The results by the Volume of Fluid (VoF) method are compared with the
experiment results in space, and the derived bubble distribution through the VoF method
is used to verify the accuracy of theoretical derivations. Based on this, a detailed analysis
of the changes in liquid properties within the tank under different gravity conditions
is conducted.
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2. Filling Experiment for the Tank with a Central Column on CSS

Surface tension tanks are the most extensively utilized satellite propellant tanks world-
wide, leveraging surface tension to manage liquid transport and gas–liquid separation,
thereby supplying non-gaseous propellant to engines or thrusters. Plate-type tanks, as
the predominant variant of surface tension tanks globally, cater to a variety of flow re-
quirements and are adaptable to different microgravity conditions, which are particularly
favorable for large satellite platforms with relatively low microgravity environments. They
represent the current trajectory of surface tension tank development. To investigate the
positioning and static-dynamic characteristics of liquids in microgravity environments and
the filling performance of plate-type tanks under such conditions, experiments involving
the filling of plate-type tanks with a central column were conducted aboard the Chinese
Space Station.

The filling of a tank with a central column (TA) is conducted in space. The designed
cross-section of the tank in the space station, depicted in Figure 1, features a spherical shell
with a central column and four baffles. The tank’s solvent volume is approximately 108 mL.
Its configurations are detailed in Table 1, where the wall material is transparent plastic, and
the PMD is made of titanium alloy. The tank is filled with dyed 10 CST silicone oil, whose
properties are provided in Table 2.
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Figure 1. A 3D view of the tank model.

Table 1. Description of TA.

TA Information

Shape Spherical
Size Inner radius 30 mm
Components of PMD 4 guide vanes and 4 small liquid-storage vanes
Type of management Fully managed
Width of gaps between the guide vanes and the
model wall

Gradually reduced from 1.4 mm at the gas port
to 0.8 mm at the liquid port.

Table 2. Fluid properties (25 ◦C).

Fluid µ
(kg/(m*s))

ρ
(kg/m3)

σ
(N/m)

ν
(10−6 m2/s)

Air 1.789 × 10−5 1.225 / 1.460 × 10−5

SF10 0.00935 935 0.0201 10
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During the space experiment, the TA is placed within a comprehensive experimental
system. It is initially filled with gas, then the filling liquid is slowly pumped into the TA
from the bottom inlet, and the liquid will be expelled through the top outlet. When the
filling volume of the liquid is small, it accumulates at the inlet. As the volume of liquid
gradually increases due to the small contact angle of the silicone oil, it rapidly ascends
along the wall baffle to the outlet and eventually closes off to form a spherical shell-like
liquid layer. Figure 2 shows the liquid surfaces at 8 s and 40 s during the filling process.
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Through programming, the grayscale values of images from the tank without liquid
are subtracted from those of the processed images to obtain pixel information of the liquid
interface. Subsequently, the liquid interface is marked in red and denoised to a certain
extent. The bubble shapes obtained by the program are shown in Figure 2, where the
internal red curve represents the liquid–gas interface, and the external red curve represents
the solid-liquid interface. Due to the contact angle of silicone oil on PMMA walls being
0–10◦, a noticeable high-curvature bending occurs when the bubble contour approaches
the central column.

3. Small Bond Number Theory

In the tank experiments on CSS, we have observed the formation of annular bubbles
during the filling process, a phenomenon not previously seen in earlier experiments. Once
the acceleration due to gravity surpasses a certain level, the annular bubbles rise to the
top, forming an interface that completely separates the gas and liquid phases. However, in
aerospace engineering, tanks on orbiting spacecraft frequently encounter various levels of
microgravity, necessitating an analysis of their morphological interfaces under different
gravity levels. To facilitate a better theoretical analysis, the situation inside the spherical
tank is simplified by removing the baffles and storage plates, leaving only the cylindrical
central column, as shown in Figure 3. This figure represents a simplified cross-sectional
view of the annular bubbles inside the tank and the forces that act on them.

Figure 3 below depicts a cross-sectional view of the liquid distribution inside the tank
when the Bond number is less than 1. The silver part represents the tank shell, the blue part
represents the liquid in the tank, and the white part represents the bubbles in the tank. The
tank has a cylindrical central column with a radius that is constant everywhere and equal
to r1. The z-axis is the vertical axis of symmetry of the tank, and the r-axis is the horizontal
line at the tank’s lowest point, with the two axes intersecting at the origin.
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with a central column under microgravity.

Since the liquid surface is axially symmetric about the central axis of the tank, the analysis
is conducted only on the right half of the cross-sectional diagram. In the diagram, θ represents
the contact angle of the gas–liquid interface in the tank, φ represents the angle between the
tangent of the profile curve of the liquid surface and the horizontal direction, and α represents
the angle between the tank wall and the horizontal line. Point A is where the bubble contour
intersects with the central column, with coordinates (r1, z1), and Point B is where the bubble
contour intersects with the tank wall, with coordinates (r2, z2).

In space, the equilibrium free surface of the bubble within the tank satisfies the
differential Equation (1),

1
r

d
dr

rdz/dr√
1+( dz

dr )
2 −

ρgz
σ = ∆P

σ = A (1)

In the equation, σ represents the surface tension of the liquid, ∆P is the pressure
difference between the liquid and the gas, g is the local gravitational constant, ρ is the
density of the liquid, and A is a constant to be determined.

The term with dz/dr in the equation can be simplified through relation (2).

dz/dr√
1 + (dz/dr)2

=
dz√

dz2 + dr2
= sin φ (2)

Then, multiplying Equation (1) by r and integrating with respect to r leads to Equation
(3) as follows:

r sin φ − ρg
σ

∫
zrdr =

A
2

r2 + B (3)

The gradient of the contour of the liquid surface can be written using Equation (4)
as follows:

dz
dr

= tan φ =
sin φ(

1 − sin2 φ
)0.5 (4)

By combining Equations (3) and (4), a differential equation for z as a function of r
can be obtained. Solving this differential equation yields the equation for the gas–liquid
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interface. However, due to the complexity of the equation, it is not directly solvable;
thus, perturbation methods are used for the solution. Below is the process of solving the
gas–liquid interface equation using perturbation methods.

Perturbation Method Solution Process

Before using the perturbation method, it is necessary to first nondimensionalize
Equations (3) and (4) as shown in Equation (5):

x =
r
r2

y =
z
r2

(5)

where A′ and B′ are the nondimensionalized parameters, ε = ρg
σ r2

2, is the nondimensional
Bond number.

This leads to Equation (6):
dx
dy = tan φ = sin φ

(1−sin2 φ)
0.5

x sin φ − ε
∫

yxdx = A′
2 x2 + B′

(6)

Let ε be the perturbation parameter, and expand φ, y, A′, B′ respectively to obtain the
expanded forms.

y = y0 + εy1
φ = φ0 + εφ1

A′ = A′
0 + εA′

1
B′ = B′

0 + εB′
1

 (7)

Introducing the order of perturbation (Equation (7)) into the system of Equation (6),
we obtain the zeroth-order equation x sin φ0 =

A′
0

2 x2 + B′
0

dy0
dx = tan φ0 = sin φ0

(1−sin2 φ0)
0.5

(8)

with the following boundary conditions:

x = r1
r2

, φ0 = θ − π/2
x = 1, φ0 = α + θ y0 = f (r2)

(9)

Based on the calculations in reference [26], the solution is known to be as follows:

y0 = [c
r1

r2
F(φ, k) + E(φ, k)] (10)

A′
0 = 2r2

r1 sin
(
θ − π

2
)
− r2 sin(α + θ)

r2
1 − r2

2
(11)

B′
0 =

−r2
1r2

2 sin(α + θ)− r1r3
2 sin(π/2 − θ)

r2
1 − r2

2
(12)

φ0 = arcsin(
A′

0
2

x −
B′

0
x
) (13)

where F(φ, k) and E(φ, k) are elliptic integrals of the first and second kinds, respectively, and

c =
r2 sin

(
θ − π

2
)
− r1 sin(α + θ)

r1 sin
(
θ − π

2
)
− r2 sin(α + θ)

(14)

k2 =
(

r2
2 − c2r2

1

)
/r2

2 (15)
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Using the zeroth-order solution, a first-order equation can be obtained as follows:φ1x cos φ0 +
∫ x

r1
r2

y0tdt = A′
1

2 x2 + B′
1

dy1
dx = φ1

cos2 φ0

(16)

To deal with the more complex integral terms in the expressions, we incorporate the
formula of y0 obtained earlier along with Equation (16) into the integration, yielding the
following formula

V(x) =
∫ x

r1
r2

y0tdt = 2π
3r2

2 [(2c2r2
1 + 3cr1r2 + 2r2

2)E(φ, k)

−c2r2
1F(φ, k) +

(
r2

2 − a2x2) 1
2
(
a2x2 − c2r2

1
) 1

2 ]− 2πx2

r2
[cr1F(φ, k) + r2F(φ, k)]

(17)

with the following boundary conditions:

x = r1
r2

, φ1 = 0
x = 1, φ1 = 0 y1 = 0

}
(18)

By incorporating the boundary conditions, the values of the two parameters can be
determined as follows:

A′
1 = 2

V0

r2
(
r2

1 − r2
2
) (19)

B′
1 =

−r2V0(
r2

1 − r2
2
) (20)

where
V0 =

∫ 1
r1
r2

y0tdt = 2π
3r2

2 [(2c2r2
1 + 3cr1r2 + 2r2

2)E(φ, k)

−c2r2
1F(φ, k) +

(
r2

2 − r2
1
) 1

2
(
r2

1 − c2r2
1
) 1

2 ]− 2πr2
1

r2
3 [cr1F(φ, k) + r2F(φ, k)]

(21)

After substituting the parameters, we obtain the following:

φ1(x) =
1

x cos φ0
[
r2

2 − r2

r2
2 − r2

1
V0 − V(x)] (22)

Then, by substituting φ1 into Equation (16), we obtain the following expression:

y1 =

x∫
r2

r1

1
x cos3 φ0

[
r2

2 − r2

r2
2 − r2

1
V0 − V(x)]dx (23)

Due to the complexity of integrating y1, the numerical solution can only be obtained
through numerical integration algorithms.

4. Theory of Big Bond Number

When the Bond number exceeds 1, the liquid surface tends to flatten so that the
influence of surface tension is only significant near the central column and the tank walls.
In this situation, the boundary layer theory can be used to solve the equations. It is
assumed that there exists a core region covering the majority of the liquid surface, within
which dx

dy = tan φ is very small, and the boundary layer regions near the tank walls and the
central column, where φ rapidly increases to the specified boundary values. The values
of parameters are determined by matching the core and boundary layer solutions in their
transition area.
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In the core region (|φ| ≪ 1), due to the very small value of |φ|, the Young–Laplace
equation can be written in the following form:

1
xc

d
dxc

{
xc

dyc

dxc

[
1 + O

(
φ2

)]}
− εyc − A′ = 0 (24)

where the subscript c represents the core region.
By introducing boundary condition (9), the solution to this equation is the following:

yc =
Ai
ε

[
I0

(
ε

1
2 xc

)
− 1

][
1 + O

(
φ2

)]
+

Ak
ε

K0

(
ε

1
2 xc

)[
1 + O

(
φ2

)]
+ h (25)

where I0 and K0 are the Bessel functions of the first and second kind, respectively, and h
is to be determined by comparison with the real boundary conditions after solving the
equations, with Ai and Ak having the following:

Ai + Ak = A′ (26)

In the boundary layer region, referring to the derivation in reference [27], set

β = ε−
1
2 (27)

The boundary layer at the tank wall has a thickness of

xw = β(1 − r) (28)

Now, using this as a variable, we reconstruct the Young–Laplace equation in the
vicinity of the tank wall as follows:

1
xw

d
dxw

xwdyw/dxw√
1+

(
dyw
dxw

)2
− εyw = Aw (29)

where the subscript W represents the boundary layer region near the tank wall.
By introducing φ = tan−1(dyw/dxw), Equation (29) can be transformed into the fol-

lowing:
dyw(φ)

dφ = sin φ
εyw−(sin φ)/xw+Aw

dxw(φ)
dφ = cos φ

εyw−(sin φ)/xw+Aw

, (0 < φ <
1
2

π − θ) (30)

Next, expanding yw and xw using perturbation theory results in{
yw = h + βyw1 + β2yw2
xw = 1 − βxw1 − β2xw2

(31)

with corresponding boundary conditions as follows:

φ = α − θ , xw1(φ) = xw2(φ) = 0
φ = 0 , yw1(φ) = yw2(φ) = 0

}
(32)

Next, we solve the first-order equation. During this process, since the value of Aw has
a higher order of smallness compared to other quantities, the first-order equation can be
simplified to the following form:{

dyw1/dφ = sin φ/yw1
dxw1/dφ = − cos φ/yw1

(33)
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Under the boundary conditions, based on the calculations in reference [27], the solution
is known to be as follows:

yw1 = 2 sin
1
2

φ (34)

xw1 = log
[

tan
1
4

φ1/ tan
1
4

φ

]
+ 2 cos

1
2

φ1 − 2 cos
1
2

φ (35)

where φ1 = α − θ.
Similarly, the second-order equations are as follows:

dyw2
dψ = − sin φ

yw1
2 yw2 +

sin2 φ

yw2
2

dxw2
dφ = cos φ

yw1
2 yw2 − sin φ cos φ

yw1
2

(36)

After introducing the boundary conditions, based on the calculations in reference [27],
the solution is known to be the following:

yw2 =
2
3

1 − cos3 1
2 φ

sin 1
2 φ

(37)

xw2 = − 2
3 sin2 1

2 φ1 − 1
6

(
1 + cos 1

2 φ1

)−1
+ 1

2 log tan 1
4 φ1

tan 1
4 φ

+ 2
3 sin2 1

2 φ + 1
6

(
1 + cos 1

2 φ
)−1 (38)

Next, the boundary layer solution and the core solution are matched to determine the
values of parameters. For the boundary layer solution, as φ → 0, yw → 0 and xw ≫ 1, so
after simplification by substituting xw with φ, we can obtain the following:

yw = 4β

{
1 + 1

2 [1 − xw(φ)] + β[ 19
12 − cos 1

2 φ1 − 3
3 sin2 1

2 φ1 − 1
6

(
1 + cos 1

2 φ1

)−1
] + o(β)

}
× exp

[
−(1 − xw(φ))/β + log tan 1

4 φ1 − 2
(

1 − cos 1
2 φ1

)] (39)

For the core solution, let yc = yw and xc = xw, and at this point, xc approaches 1, and
the value of xc/β is large enough; therefore, the expansion can be written as follows:

yc = (2π)−
1
2 Aiβ

5
2 exp(xc/β)[1 +

1
2
(1 − xc) +

1
8

β + o(β)] (40)

After matching, Ai can be obtained as follows:

Ai = e−1/ββ− 3
2 Ai0(1 + βAi1 + o(β)) (41)

where
Ai0 = 4(2π)

1
2 tan

1
4

φ1 exp{−2[1 − cos
1
2

φ1]} (42)

λ1 =
3
24

− cos
1
2

ψ1 −
2
3

sin2 1
2

ψ1 −
1
6
[1 + cos(

1
2

ψ1)]
−1

(43)

For the boundary layer at the central column, we assume its thickness is the following:

xp = β(r1 + r) (44)

where the subscript p represents the boundary layer near the central column.
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Similar to the situation in the boundary layer at the tank wall, the Young–Laplace
equation is written in the same form as Equations (33) and (36). By introducing the
boundary conditions

φ = θ − 1
2 π , xp1(φ) = xp2(φ) = 0

φ = 0 , yp1(φ) = yp2(φ) = 0

}
(45)

the equations are similarly solved, and we obtain the following:

yp1 = 2 sin
1
2

φ (46)

xp1 = log
[

tan
1
4

φ2/ tan
1
4

φ

]
+ 2 cos

1
2

φ2 − 2 cos
1
2

φ (47)

yp2 =
2
3

1 − cos3 1
2 φ

sin 1
2 φ

(48)

xp2 = − 2
3 sin2 1

2 φ2 − 1
6

(
1 + cos 1

2 φ2

)−1
+ 1

2 log tan 1
4 φ2

tan 1
4 φ

+ 2
3 sin2 1

2 φ + 1
6

(
1 + cos 1

2 φ
)−1 (49)

where φ2 = 1
2 π − θ.

Now, we match the boundary layer solution with the core solution. For the boundary
layer solution at this location, we perform the same operation as for the boundary layer
solution at the wall; it can be written as follows:

yw = 4β{1 + β[ 1
12 − cos 1

2 φ1 − 2
3 sin2 1

2 φ1 − 1
6 (1 + cos 1

2 φ1)
−1

] + o(β)}
× exp

[
log tan 1

4 φ1 − 2(1 − cos 1
2 φ1)

][
1
β (xc − r1

r2
)
] (50)

For the core solution, let yp = yc and xp = xc. Near the central column, x approaches r1
r2

.
Since we are discussing a spherical tank and since the fill level is essentially between 30
and 70%, it is assumed that r1

r2
→ 0. When ε < 100, the core solution can be expanded and

simplified as follows:

yc = Akβ ln
(

2βr2

r1

)−1[ 1
β
(xc −

r1

r2
)

]
(51)

From this, we obtain the following:

Ak = ln
(

2βr2

r1

)
Ak0

[
1 + βAk1 + o(β)

]
(52)

where
Ak0 = tan

1
4

φ1 exp(2 − 2 cos
1
2

φ1) (53)

Ak1 = [
1

12
− cos

1
2

ψ1 −
2
3

sin2 1
2

ψ1 −
1
6
(1 + cos

1
2

ψ1)
−1

] (54)

when ε > 100, it can be approximated that Ak = 0.
After introducing the boundary layer solution into the formulas, we can obtain the fol-

lowing:

h =
z3

r2
− yw(α − θ) (55)
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Regardless of the method used, the formula for calculating the volume V of the liquid
in the tank can be obtained as follows:

V = 2πr3
2

1∫
r1

r2

x[y − f (x)]dy (56)

5. Numerical Simulation
5.1. Numerical Method

To further verify the accuracy of the theory, commercial software FLUENT is used for
simulation calculations. The simulation is based on a simplified grid model that includes
the central column, tank walls, and the space in between. Due to symmetry, a quarter-
sphere mesh model is utilized, with a radius of 50 mm, as shown in Figure 4, where the
surface generates a hexahedral mesh on this model, with a total of 124,500 elements. The
maximum element size is 2.4 × 10−4 m. The average mass per unit was recorded at 0.73,
with the mean skewness and maximum skewness measured at 0.11 and 0.53, respectively.
In addition, considering the drastic changes in the liquid surface near the contact surfaces,
a boundary layer method is used to refine the mesh near the surface of the central column
and the tank walls.
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Figure 4. 3D grid model.

In the simulation, multiple sets of calculations are carried out by varying the values
of contact angle and liquid volume to simulate different operating conditions. To reduce
computational effort, the liquid surface is pre-set as a flat plane for the calculations. The
initialization model is shown in Figure 5, where the red part represents the gas phase and
the blue part represents the liquid phase.
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The motion of the fluid is described using the discrete form of the Navier–Stokes (N-S)
equations, with its momentum equation shown as follows:

∂

∂t
(ρ

→
ν ) +∇ · (ρ→ν →

ν ) = −∇p +∇ · [µ(∇→
ν +∇→

ν
T
)] + ρ

→
g +

→
F (57)

where
→
g is the local gravitational constant,

→
F represents the body force, and ρ and

→
ν denote

the fluid density and velocity vector respectively. The values of ρ and µ are not constant
across different elements but are determined by the phase field, depending on the prop-
erties of all phases passing through the control volume, and their formulae are provided
further below.

The mass conservation equation employs a phase-field model, described by the Volume
of Fluid (VOF) model, which depicts the behavior of gas–liquid two-phase flow. This model
tracks the interface between phases by solving a continuity equation for the volume fraction
of one (or more) phase(s). The following equation describes the evolution of the gas–liquid
interface tracked by the VOF method in this model:

1
ρq

[
∂

∂t
(αqρq) +∇ · (αqρq

→
ν q) = Sαq +

p=1

∑
n
(

.
mpq − .

mqp)] (58)

This is a discrete equation where
.

mqp represents the mass transfer from phase q to
another phase p and

.
mpq denotes the mass transfer from phase p to phase q. The subscripts

q and p represent the two material phases in the simulation. S stands for source terms, t for
time, and α for the fraction of a material in a local cell, with

αq + αp = 1 (59)

To solve the flow field, the model solves a single momentum equation across the entire
control volume, sharing the resulting velocity field among the phases.

After the phase fractions have been determined in each cell, equations for ρ and µ in
Equation (58) can be solved, with their calculation formulae given below:

ρ = ∑ αqρq (60)

µ = ∑ αqµq (61)
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Substituting these numerical values back into Formula (57) allows for the calculation
of the corresponding velocities.

The description of surface tension employs the continuum surface force (CSF) model,
which interprets surface tension as a continuous three-dimensional effect on the interface
rather than as a boundary condition on the interface. The surface tension effects are
represented as body forces on the surface using the divergence theorem and are reflected in
the momentum equation, with its formula being the following:

Fνol = σpq
ρκq∇αq

1
2
(
ρq + ρp

) (62)

where κq is the curvature of the fluid phase boundary, σpq is the surface tension between
the two fluid phases, and ∇ is the gradient operator. The values of ρ are determined by
Formula (60).

After the control equations are defined, the properties of the two fluids listed in Table 2
are substituted for fluid phases p and q, respectively, with the boundary conditions on the
left and right cross-sections set to be symmetric and the contact angles on the surface of the
central column and the tank walls are set to their respective values for solution. Utilizing
the aforementioned model, with the time step set to 10−4 s, the problem is solved with the
SIMPLE algorithm until the liquid surface becomes stable, which yields the condition of
the liquid surface.

5.2. Comparison with Theoretical Results

Figure 6 displays 2D cross-sectional views of the gas–liquid interface simulation results
under different gravity conditions, with a contact angle of 90 degrees. In the figure, the red
part represents the gas phase, and the blue part represents the liquid phase.
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Figure 6. Liquid distributions when the contact angle is 0◦: (a) Distribution at equilibrium when
g = 0.1 m/s2; (b) Distribution at equilibrium when g = 1 m/s2; (c) Distribution at equilibrium when
g = 10 m/s2; (d) Distribution at equilibrium when g = 100 m/s2.

When the gravity level is within the range of 0.01–10 (m/s2) (Bond number between
0.1 and 100), it can be observed that there are significant fluctuations at the gas–liquid
interface. At this time, the effect of surface tension on the liquid distribution is more
pronounced. When gravity exceeds 1 (m/s2), the liquid surface tends to be flat, showing
significant changes only near the central column and the tank walls. At this point, the
influence of gravity is dominant. This change at the interface also verifies the application
of the two different calculation methods discussed earlier.

From the numerical calculation results, a gas–liquid isosurface with a phase ratio
of 0.3 to 0.7 is extracted. With the calculation program, the intersections of the liquid
surface with the surface of the central column and the tank wall, A and B, and the lowest
point C of the liquid surface are identified in the figure. We measure the distances of
these three points from the tank’s lowest point in the z-direction and the distances of
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points C and B from the symmetry axis, which correspond to the coordinates of points
A, B, and C in the mathematical model. By substituting the coordinates of point A into
the mathematical model and solving the model with a program written based on it, we
obtain theoretical results for the coordinates of points B and C. Comparing these with the
numerical simulation results, as shown in Table A1, the accuracy is above 95%. On this
basis, by overlaying the theoretically calculated contour with increased transparency on the
corresponding cloud map by numerical simulation, as shown in Figure 7, it can be seen that
the contours of the liquid surfaces basically coincide. Considering the errors in numerical
simulations, we can say that the theoretical results are in good agreement with reality.
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Figure 7. Comparison of theoretical calculation results with numerical calculation results. By
overlaying the liquid surface contours obtained from perturbation theory with the cloud diagrams
derived from numerical calculations, it can be seen that the two gas–liquid interfaces are very similar.

6. Further Analysis
6.1. Procedures for Calculating Contours

Two types of programs for predicting liquid surface morphologies have been devel-
oped based on the theoretical model. The first program requires inputs of the vertical
coordinate of point A and the level of gravity (assuming the inherent properties of the
two phases are known). Then, as mentioned earlier, it directly solves the Young–Laplace
equation to obtain the corresponding liquid surface contour. Figure 8 illustrates the com-
parison of surface contours generated by this program under different contact angles and
gravity conditions.
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The second program requires inputs of the liquid volume and gravity level (with
the inherent properties of the two phases known). It then uses the shooting method to
determine the coordinates of point A on the liquid surface at that volume of liquid. Similar
to the first program, it solves the Young–Laplace equation to obtain the corresponding
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liquid surface contour. Figure 9 illustrates the comparison of surface contours generated by
this program under different contact angles and gravity conditions.

Symmetry 2024, 16, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 9. Bubble profiles with various Bond numbers of 0.1 (red), 1 (orange), 10 (green), 100 (blue), 

and 1000 (purple) based on the known liquid volume: (a) 1θ  = 90°; (b) 1θ  = 60°; (c) 1θ  = 30°. 

The method presented in this paper is based on the Young–Laplace equation and a 
simple numerical algorithm, allowing for quick and accurate calculation of liquid surface 
profiles under any conditions ranging from microgravity to normal gravity. Compared to 
traditional numerical algorithms, its advantages include significant time savings and 
adaptability to different gravity conditions. However, a drawback of this method is that 
it is limited to predicting static and quasi-static situations, and further research is needed 
to address the prediction of oscillations caused by rapid changes. 

6.2. Analyses of Relevant Parameters 
Using the developed numerical calculation program, analyses of various surface 

properties of the liquid inside the tank are conducted. Figures 10–14 represent the 
analyses of various properties of a liquid with a volume of x under different gravity 
conditions in the tank. In these analyses, H1 denotes the z-coordinate of the intersection 
point of the liquid surface with the tank wall, H2 represents the z-coordinate of the 
intersection point of the liquid surface with the surface of the central column, Δh is the 
height difference between the highest and lowest points on the profile of the liquid 
surface, and S is the area of the gas–liquid interface of the liquid surface, with its 
calculation formula being the following: 

1

1 2

0.52

4 4 1
r

r

dzS rds r dr
dr

π π
Γ

  = = +  
   

   (63)

ZC represents the center of mass of the liquid, with its calculation formula being the 
following: 
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when the Bond number is between 1 and 10, significant changes start to occur in various 
parameters. As the Bond number increases further, the liquid surface tends to become flat, 
and the interface properties at different contact angles almost converge to the same value. 
This change marks the transition from a surface tension-dominated interface to a gravity-
dominated interface, which aligns with outcomes from numerical simulations. The 
variations in the levels H1 and H2 of liquid surfaces with differing contact angles are 
notably complex, as Figures 10 and 11 represent. Surfaces with larger contact angles 
exhibit a descending curve, while those with smaller contact angles show an ascending 
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Figure 9. Bubble profiles with various Bond numbers of 0.1 (red), 1 (orange), 10 (green), 100 (blue),
and 1000 (purple) based on the known liquid volume: (a) θ1 = 90◦; (b) θ1 = 60◦; (c) θ1 = 30◦.

The method presented in this paper is based on the Young–Laplace equation and a
simple numerical algorithm, allowing for quick and accurate calculation of liquid surface
profiles under any conditions ranging from microgravity to normal gravity. Compared
to traditional numerical algorithms, its advantages include significant time savings and
adaptability to different gravity conditions. However, a drawback of this method is that it
is limited to predicting static and quasi-static situations, and further research is needed to
address the prediction of oscillations caused by rapid changes.

6.2. Analyses of Relevant Parameters

Using the developed numerical calculation program, analyses of various surface
properties of the liquid inside the tank are conducted. Figures 10–14 represent the analyses
of various properties of a liquid with a volume of x under different gravity conditions in the
tank. In these analyses, H1 denotes the z-coordinate of the intersection point of the liquid
surface with the tank wall, H2 represents the z-coordinate of the intersection point of the
liquid surface with the surface of the central column, ∆h is the height difference between
the highest and lowest points on the profile of the liquid surface, and S is the area of the
gas–liquid interface of the liquid surface, with its calculation formula being the following:

S = 4π
∫

Γ1

rds = 4π
∫ r1

r2

r

[
1 +

(
dz
dr

)2
]0.5

dr (63)
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ZC represents the center of mass of the liquid, with its calculation formula being
the following:

zc =

2πr2
4

1∫
r1

r2

x[y − f (x)]2dy

V
(64)

when the Bond number is between 1 and 10, significant changes start to occur in various
parameters. As the Bond number increases further, the liquid surface tends to become
flat, and the interface properties at different contact angles almost converge to the same
value. This change marks the transition from a surface tension-dominated interface to
a gravity-dominated interface, which aligns with outcomes from numerical simulations.
The variations in the levels H1 and H2 of liquid surfaces with differing contact angles
are notably complex, as Figures 10 and 11 represent. Surfaces with larger contact angles
exhibit a descending curve, while those with smaller contact angles show an ascending
trend. This occurs because, at low Bond numbers, surface tension is the predominant
force. Smaller contact angles facilitate easier ascension along the spherical wall surfaces,
which are inherently inclined. Consequently, at low Bond numbers, a liquid surface with a
90-degree contact angle forms a concave shape, which transitions to a flat plane as the Bond
number increases, resulting in a rise in H1. In Figure 12, the height difference of the liquid
surface is selected to better illustrate the impact of the contact angle on the liquid surface
rise. Under low Bond number conditions, a larger contact angle results in a higher liquid
surface rise, with a noticeable difference compared to smaller contact angles. However, this
distinction diminishes as the Bond number increases. Figure 13 shows the variation in the
area of the gas–liquid interface, a metric that directly determines the influence of surface
effects on liquid distribution according to the Young–Laplace equation. This figure visually
demonstrates the differences in surface effects of liquids with varying contact angles under
low Bond number conditions. Figure 14 calculates the change in the liquid’s center of
mass, which is a critical parameter for researchers studying PMD (Propellant Management
Device) issues. Liquids with smaller contact angles exhibit better stability in their center
of mass.

6.3. Comparison with Other Works

Concus [27] also conducted theoretical calculations of cylindrical liquid surfaces
under different Bond numbers, obtaining similar liquid surface profiles and images of
characteristic parameters varying with the Bond number. However, his study was limited
to a simplistic wall environment, specifically a cylindrical tube with no variations along
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the z-axis and without a central column. This means that the images produced by Concus
are simpler, and the trends in the characteristic parameters are relatively straightforward.
Because his research did not account for the influence of different wall shapes on the height
of the liquid surface rise, his results cannot be directly applied to most of the current
spacecraft tanks.

Chen S.T. [28], also based on the Young–Laplace equation, studied the distribution of
liquid in slits within the context of PMD issues, gaining a preliminary understanding of
static liquid surfaces in tanks. Chen S.Y. [29] focused on the same engineering background
and examined the gas–liquid interface in spherical tanks without a central column under
microgravity conditions. They analyzed the contribution of different tank wall shapes and
contact angles to the liquid surface rise. However, their studies did not further explore
liquid surfaces under varying gravity conditions, nor did they consider the commonly used
central column structure in modern plate tanks.

In summary, this study targets the most widely used central column tank structure in
current PMD devices, encompassing most gravity conditions that might occur in contempo-
rary aerospace engineering, making it more suitable for practical engineering applications.

7. Conclusions

This paper delves into the gas–liquid interface observed within a tank containing a
central column during microgravity experiments conducted in the Chinese Space Station
and carries out a detailed study of the state of the gas–liquid interface under different
gravity conditions. Based on the Young–Laplace equation and by utilizing perturbation
methods, the contour of the gas–liquid interface at Bond numbers between 0.1 and 1 is
derived. For the Bond numbers greater than 1, we note that by simplifying the Young–
Laplace equation and combining perturbation methods with the boundary layer theory, the
contour of the gas–liquid interface at Bond numbers between 1 and 1000 is obtained. The
behavior of the liquid under different gravity conditions is simulated using the VOF model.
Simulation results are compared with theoretical results from perturbation methods, with
an accuracy exceeding 95%.

Two numerical calculation programs based on the perturbation theory are developed.
The first program calculates the contour of the gas–liquid interface by inputting the coor-
dinates of the intersection point of the profile of gas–liquid interface with the surface of
the central column; the second program determines the contour of the gas–liquid interface
by inputting the volume of liquid within the tank. Moreover, based on these programs,
an analysis of various properties of the liquid inside the tank under different gravity con-
ditions is conducted, revealing the trends in the behavior of the liquid within the tank as
gravity changes.

These findings hold significant importance for the management of tanks in aerospace
engineering, such as dealing with the impact of oscillations generated during spacecraft
launches and orbital changes on the management of tanks.
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Appendix A

Table A1. Comparison between Theoretical and Numerical Results.

g (m/s2) Bond Contact
Angle

V (mm3) r2 z2

z1 (mm) Error
Rate z3 (mm) Error

Rate

Numerical
Results

Theoretical
Results

Numerical
Results

Theoretical
Results

0.05 5 50 2 × 105 49.9 53 46.7 46.3 0.86% 35 35.4 1.14%
1 100 50 2.2 × 105 50 51 50.8 51 0.39% 48.9 48.6 0.61%

10 1000 50 2.5 × 105 50 50.3 50.3 50.3 0.02% 49.2 49.4 0.41%
0.05 5 90 2 × 105 44 59 42.9 43.1 0.47% 37 38 2.70%

1 100 90 2.2 × 105 49.8 52 51.5 52 0.97% 5.1 6.7 2.37%
10 1000 90 2.5 × 105 50 50.7 50.7 50.7 0.02% 48.7 48.6 0.21%

0.05 3.8 50 0.8 × 105 43.8 25.4 27.57 27.01 2.03% 23.25 23.2 0.22%
1 72 50 1 × 105 42.8 24.2 26.33 26.74 1.56% 23.25 23.53 1.20%

10 720 50 1 × 105 43 24.46 25.37 25.23 0.55% 23.97 24.16 0.79%
0.05 4.3 90 0.8 × 105 46.6 32 26.32 26.66 1.29% 19.19 19.68 2.55%

1 81 90 1 × 105 44.8 27.8 28.9 29.5 2.08% 23.5 22.9 2.55%
10 770 90 1 × 105 43.6 25.4 25.9 26 0.39% 23.98 23.9 0.33%
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