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1. Introduction

The concept of tower function(s) cut across some areas of science and the problem is
sometimes how to identify them. In elementary real analysis, the function n 7→ nn for n ∈ N
is actually a tower function and it is well known that lim

n→∞
nn = ∞, lim

n→−∞
nn = 0, lim

n→0
nn = 1,

lim
n→∞

n
1
n = 1, etc. However, in the study of matrix algebra, we do encounter the matrices

of the type, AA, exp
(

AA
)

, where A is a square matrix. Sometimes, the evaluation(s) of
these matrices are highly provocative. It is technically believed that whenever a function is
raised to power itself or to order function(s), then we can say that such a function possesses
a tower function. Some prototypes are of the form NN, RNN

, RR, etc. The ideas above
are also applicable in building technology. We can now cast some idea of life science into
tower function.

Imagine a pregnant woman went to a radiologist for a scan. Naturally, the woman’s
chromosome is x; then, the radiologist informs her that she is carrying two female babies.
This miracle is indeed a tower function with respect to time when we allow it to be function
upon function(s). Suppose that the result of the scan says two baby boys; this is also a tower
function with respect to time, i.e., x 7→ xyy

. Finally, if the scan says a boy and a girl, then it
is also a tower function with respect to time, i.e., x 7→ xyx

, etc. This concept is naturally a
tower function; again, if it is two baby girls, then it is also a tower function with respect to
time, i.e., x 7→ xxx

, etc. We allow the positions of the babies to be upwards directed.
In probability theory, the three-tower problem and the concept looks slightly different;

a randomly chosen gambler loses a coin and another randomly chosen gambler obtains it.
The game continues until one of the three gamblers is ruined.
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Somewhere in combinatorial set theory we do encounter tower of infinite ordinals

and in elementary calculus, integration of a tower function of the type x 7→ xxx·
··

x·
··

is
interesting in its own right, and this is also called the infinite Sophomores type dream.
When it becomes numeric, it becomes an Ackermann number. In particular, the Sophomores
dream tower is of the type x 7→ xxx

. In metrical fixed point theories, especially, contraction
mappings involving such towers appeared first in Okeke and Francis [1].

In [2], the celebrated contraction principle due to S. Banach, which appeared in the
literature in 1922, is one of the most important and useful results in the metric fixed
point theory due to its numerous applications. In Banach’s theorem, X is taken to be a
complete metric space with a metric d and f : X → X is required to be a contraction; that
is, there must exist 0 ≤ L < 1 such that d( f (x), f (y)) ≤ Ld(x, y) for all x, y ∈ X. The
conclusion is that f has a fixed point, in fact exactly one of them. This has encountered
many extensions/generalizations, as recorded in [3–13] and references therein. Among
these generalizations, we prefer the one given by Geraghty [5].

More than a decade ago, Amini-Harandi and Emami [14] characterized the result of
Geraghty in the context of a partially ordered complete metric space with some application
to ordinary differential equations. Gordji et al. [15] defined the notion of ψ-Geraghty type
contraction and supposedly improved and extended the results of Amini-Harandi and
Emami [14]. Cho et al. [16] defined the concept of α-Geraghty contraction type maps in
the setting of a metric space and proved the existence and uniqueness of a fixed point of
such maps in the context of a complete metric space. Popescu [17] generalized the results
obtained by Cho et al. [16] and gave other conditions to prove the existence and uniqueness
of a fixed point of α-Geraghty contraction type maps in the context of a complete metric
space. See also [18,19] for other results for the fixed point theory.

It is interesting to know that some results that involved the Banach contraction map-
ping principle and its allied results involving partially ordered metric spaces have been
optimized to the theoretic relation by replacing the partial order relation with a locally H-
transitive relation, which remains an optimal condition of transitivity, as recorded in [20–24]
and some of their references therein.

Recently, Okeke and Francis [1] first defined a new class of nonlinear mappings in
metric spaces, called metric tower mappings, and proved the existence of a fixed point
of Geraghty tower-type mappings in complete metric spaces and gave some nontrivial
examples that justified the newly defined contraction mapping. Francis and Okeke [25],
defined rational type Geraghty tower contraction mapping and proved the existence of
finite and infinite rational Geraghty tower theorem(s) in complete metric spaces.

In 2010, Chistyakov [26] introduced modular metric space as a natural extension and
generalization of classical modular in the sense of Nakano [27] and classical metric spaces
in the sense of Fre’chet [28]. In fact, metric modular space is a parameterized metric space
in extended real line, which may not obey the famous triangular inequality. Chistyakov [29]
extended the famous Banach contraction mapping principle in the setting of modular metric
space. Furthermore, similar extension have been carried out by Mongkolkeha et al. [30],
and while their results contained some bugs, these were eventually solved. In the spirit
of modular metric spaces, Chaipunya et al. [31] extended the results in Geraghty [5] by
defining more classes satisfying Geraghty functions, while Okeke et al. [32] provided a
Geraghty-type class that contained several results in the literature. There are numerous
studies on Geraghty contraction in various spaces, such as multiplicative, b metric spaces,
partial metric spaces, extended modular metric spaces, G metric spaces, modular G metric
spaces, etc. Interested reader should consult [3,13,15,18,19,32] and the references therein
for other results for fixed point theory.

In this paper, we give a tower type contraction maps which further characterize and
include the results in Amini-Harandi and Emami [14], and some other related contraction
types in the literature. We also give a nontrivial supportive example to justify our claims.
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The results are new and interesting in their own right. The results we establish in this paper
extend, improve, and generalize some existing results in the literature.

2. Preliminaries

Throughout the article, N = {n ∈ Z | n ≥ 0} is the set of nonnegative integers and
R+ = {x ∈ R | x > 0} is the set of positive real numbers. By a relation (or a binary relation)
⊑ on a set A, we mean a subset of A × A. The following results and definitions will be
useful in this paper.

Following [24], A is a set, ⊑ is a relation on A, and f , g are self mappings. We begin
with the definitions involving a set theoretic relation.

Definition 1 ([23]). A pair of elements u, v ∈ A satisfying either (u, v) ∈⊑ or (v, u) ∈⊑ is said
to be ⊑-comparative. We shall denote such a pair by [u, v] ∈⊑ .

Definition 2 ([33]). For each pair u, v ∈ A, if [u, v] ∈⊑, we say that ⊑ is a complete relation.

Definition 3 ([33]). The inverse of ⊑ is a relation ⊑−1 defined by ⊑−1:= {(u, v) ∈ A × A :
(v, u) ∈⊑}.

Definition 4 ([33]). The symmetric closure of ⊑ is a relation ⊑s defined by ⊑s:=⊑ ∪ ⊑−1 .

Proposition 1 ([23]). (u, v) ∈⊑s⇔ [u, v] ∈⊑ .

Definition 5 ([33]). For any subset B ⊆ A, the relation on B defined by ⊑ |B :=⊑ ∩B × B, which
is referred as the restriction of ⊑ on B.

Definition 6 ([23]). For each pair of elements u, v ∈ A with (u, v) ∈⊑, if ( f u, f v) ∈⊑, then ⊑
is termed as f -closed.

Remark 1. We can improve Definition 6 in the following way: For each pair of elements u, v ∈ A
with (u, v) ∈⊑, if ( f u, gv) ∈⊑, then ⊑ is termed as ( f , g)-closed. The idea here coincides with
that of Definition 6 if f = g.

Proposition 2 ([21]). If ⊑ is f -closed, then ⊑ is f n-closed, ∀ n ∈ N.

Definition 7 ([23]). If a sequence {xn} ⊂ A verifies (xn, xn+1) ∈⊑ ∀n ∈ N, then we say that
{xn} is ⊑-preserving.

Definition 8 ([23]). ⊑ is called ρ-self-closed if each ⊑-preserving convergent sequence in A has a
subsequence whose terms are ⊑-comparative with the limit.

Definition 9 ( f -Transitive relation [21]). Given a map f : X → X, we say that a relation ⊑ on X
is f -transitive if ( f u, f w) ∈⊑ for all u, v, w ∈ X such that ( f u, f v), ( f v, f w) ∈⊑.

From Definition 9, we introduce the following concept.

Definition 10 (( f , g)-Transitive relation). Let f , g: X → X, we say that a relation ⊑ on X is ( f , g)-
transitive if ( f u, gw) ∈⊑ for all u, v, w ∈ X such that ( f u, f v), ( f v, gw), ( f u, gv), (gv, gw) ∈⊑.

Definition 11 ([21,24]). ⊑ is termed as locally f -transitive if for any ⊑- preserving sequence
{xn} ⊂ f (A) , the relation ⊑ |B (whereas B := {xn : n ∈ N}) is transitive.

Following [21], we have the definitions below.
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Definition 12. ⊑ is called locally ( f , g)-transitive if for any ⊑- preserving sequence {xn} ⊂
f (A) ⊆ g(A) , the relation ⊑ |B (whereas B := {xn : n ∈ N}) is transitive.

Remark 2. If f = g, coincide with Definition 11.

Definition 13 ([22]). f is termed as ⊑-continuous at x∗ ∈ A if for every ⊑-preserving sequence
{xn} ⊂ A verifying xn → x∗, f (xn) → f (x∗) . A ⊑-continuous map at each point of A is
referred as ⊑-continuous.

Definition 14 ([33]). A binary relation ⊑ defined on any nonempty set A is said to be:

(1) Reflexive if (u, u) ∈⊑ for all u ∈ A;
(2) Symmetric if (u, v) ∈⊑ implies (v, u) ∈⊑;
(3) Transitive if (u, v) ∈⊑, (v, w) ∈⊑ implies (u, w) ∈⊑;
(4) Dichotomous if [u, v] ∈⊑ for all u, v ∈ A;
(5) Trichotomous if [u, v] ∈⊑ or u = v for all u, v ∈ A;
(6) Equivalent if ⊑ is reflexive, symmetric, and transitive.

Definition 15 ([22]). A metric space (A, ρ) is referred as ⊑-complete if each ⊑- preserving Cauchy
sequence in A converges.

Definition 16 ([34]). A partially ordered set is a pair (A,⊑), where A is a set and ⊑ is a binary
relation on A such that:

(1) u ⊑ u for every u ∈ A;
(2) if u and v belong to A and u ⊑ v and v ⊑ u, then u = v;
(3) if u, v and r belong to A and u ⊑ v and v ⊑ r, then u ⊑ r.

Definition 17 ([5]). S is the class of functions α : R+ → [0, 1) with:
(i) R+ = {t ∈ R | t > 0};
(ii) α(tn) → 1 =⇒ tn → 0 as n → ∞.

Definition 18 ([31]). For each n ∈ N, let Sn denote the class of n-tuples of functions (β1, β2, β3, · · · ,
βn), where for each i ∈ {1, 2, · · · , n}, βi : R+ ∪ {∞} → [0, 1) and the following implications
holds: β(tk) := β1(tk) + β2(tk) + · · ·+ βn(tk) → 1 implies tk → 0.

It follows that, for each m ∈ {1, 2, · · · , n}, if (β1, β2, β3,
· · · , βm) ∈ Sm, then {β1, β2, β3, · · · , βm, 0, 0, 0 · · · , 0︸ ︷︷ ︸

n−m entries

} ∈ Sn, where 0 is a zero function.

Remark 3. Note that, if (β, β, · · · , β︸ ︷︷ ︸
n entries

) ∈ Sn, then we also have the following: β(tk) → 1
n implies

tk → 0.

Remark 4. The class of function defined in Definition 17 can equally put to work when we define
more functions other than α in that class, S.

Theorem 1 ([5]). Let X be a complete metric space. Let f : X → X with d( f (x), f (y)) < d(x, y),
for all x, y ∈ X. Let x0 ∈ X and set f (xn−1) = xn for all n > 0. Then, xn → x∗ in X, with x∗

a unique fixed point of f , if and only if for any two subsequences xhn and xhk
with xhn ̸= xhk

, we
have that Πn → 1 only if dn → 0.

Remark 5. In Theorem 1, we take for any pair of sequences xn and yn with xn ̸= yn, we write
dn = d(xn, yn) and Πn = d( f (xn), f (yn))

d(xn ,yn)
.
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Theorem 2 ([5]). Let f : X → X be a contraction on a complete metric space. Let x0 ∈ X and set
f (xn−1) = xn for all n > 0. Then xn → x∗ in X, where x∗ a unique fixed point of f in X, if and
only if there exists an α in S such that for all n, m:

d( f (xn), f (xm)) ≤ α(d(xn, xm))d(xn, xm). (1)

Theorem 3 ([5]). Let (X, ρ) be a complete metric space and T : X → X such that there is an α ∈ S
satisfying

ρ(Tx, Ty) ≤ α(ρ(x, y))ρ(x, y), (2)

for all x, y ∈ X. Then, the sequence {xk}k∈N defined by Txk−1 = xk converges to a unique fixed
point of T in X for k ≥ 1.

The functions ω of the form ω : (0, ∞)× X × X → [0, ∞], where X is a fixed nonempty
set (with at least two elements). Due to the disparity of the arguments, we may (and will)
write ωλ(x, y) = ω(λ, x, y) for all λ > 0 and x, y ∈ X. In this way, ω = {ωλ}λ>0 is a
one-parameter family of functions ωλ : X × X → [0, ∞]. On the other hand, given x, y ∈ X,
we may set ωx,y(λ) = ω(λ, x, y) for all λ > 0, so that ωx,y : (0, ∞) → [0, ∞].

Definition 19 ([35]). A function ω : (0, ∞)× X × X → [0, ∞] is said to be a metric modular (or
simply modular) on X if it satisfies the following three axioms:

(i) given x, y ∈ X, x = y if and only if ωλ(x, y) = 0 for all λ > 0;
(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0 and x, y ∈ X;
(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

Weaker and stronger versions of conditions (i) and (iii) will be of great importance. If,
instead of (i), the function ω satisfies (only) a weaker condition:

(i′) ωλ(x, x) = 0 for all λ > 0 and x ∈ X,
then ω is said to be a pseudomodular on X. Furthermore, if, instead of (i), the function ω
satisfies (i) and a stronger condition:

(is) given x, y ∈ X with x ̸= y, ωλ(x, y) ̸= 0 for all λ > 0, then ω is called a strict
modular on X.

A modular (or pseudomodular, or strict modular) ω on X is said to be convex if, instead
of (iii), it satisfied the (stronger) inequality (iv):

(iv) ωλ+µ(x, y) ≤ λ

λ + µ
ωλ(x, z) +

µ

λ + µ
ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.

Remark 6. (a) The assumption ω : (0, ∞)× X × X → (−∞,+∞] in the definition of a pseudo-
modular does not lead to a greater generality: in fact, setting y = x and µ = λ > 0 in (iii) and
taking into account (i’) and (ii), we find:

0 = ω2λ(x, x) ≤ ωλ(x, z) + ωλ(z, x) = 2ωλ(x, z) ,

thus, ωλ(x, z) ≥ 0 or ωλ(x, z) = ∞ for all λ > 0 and x, z ∈ X.
(b) If ωλ(x, y) = ωλ is independent of x, y ∈ X, then, by (i), ω ≡ 0. Note that ω ≡ 0 is

only a pseudomodular on X (by virtue of (i) ).
If ωλ(x, y) = ω(x, y) does not depend on λ > 0, then axioms (i)–(iii) mean that ω is an

extended metric (extended pseudometric if (i) is replaced by (i′) ) on X; ω is a metric on X if, in
addition, it assumes finite values.

(c) Axiom (i) can be written as (x = y) ⇐⇒ (ωλ(x, y) = 0) and part (i⇐) in it—as
(x ̸= y) ⇒ (ωλ(x, y) ̸= 0). Condition (is) says that (x ̸= y) ⇒ (ωλ(x, y) ̸= 0) for all λ > 0,
and thus, it implies (i⇐). In other words, (is) means that if ωλ(x, y) = 0 for some λ > 0 (and not
necessarily for all λ > 0 as in (i⇐)), then x = y. Thus, (i′) + (is) ⇒ (i) ⇒ (i′).
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Following [35], we have the essential property of a pseudomodular ω on X is its mono-
tonicity: given x, y ∈ X, the function ωx,y : (0, ∞) → [0, ∞] is nonincreasing on (0, ∞) . In
fact, if 0 < µ < λ, then axioms (iii) (with z = x) and (i’ ) imply:

ωλ(x, y) = ω(λ−µ)+µ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y). (3)

As a consequence, given x, y ∈ X, at each point λ > 0, the limit from the right:

(ω+0)λ(x, y) ≡ ωλ+0(x, y) = lim
µ→λ+0

ωµ(x, y) = sup{ωµ(x, y) : µ > λ} (4)

and the limit from the left:

(ω−0)λ(x, y) ≡ ωλ−0(x, y) = lim
µ→λ−0

ωµ(x, y) = inf{ωµ(x, y) : 0 < µ < λ}, (5)

exist in [0, ∞], and the following inequalities hold, for all 0 < µ < λ:

ωλ+0(x, y) ≤ ωλ(x, y) ≤ ωλ−0(x, y) ≤ ωµ+0(x, y) ≤ ωµ(x, y) ≤ ωµ−0(x, y) (6)

To see this, by the monotonicity of ω, for any 0 < µ < µ1 < λ1 < λ, we have:

ωλ(x, y) ≤ ωλ1(x, y) ≤ ωµ1(x, y) ≤ ωµ(x, y) (7)

and it remains to pass to the limits as λ1 → λ − 0 and µ1 → µ + 0.

Remark 7. For any xi ∈ X, the set Xω(xi) = {x ∈ X such that lim
λ→∞

ωλ(x, xi) = 0} is called a

modular metric space generated by xi and induced by ω. If its generator xi does not play any role in
the situation (that is, Xω is independent of generators), we shall write Xω instead of Xω(xi).

A metric modular on Xω is said to be nonincreasing with respect to λ > 0 if for any x, y ∈ Xω

and 0 < µ < λ such that ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y) for any x, y ∈ X and
λ > 0. We set ωλ+(x, y) := lim

ϵ↑0
ωλ+ϵ(x, y) and ωλ−(x, y) := lim

ϵ↓0
ωλ−ϵ(x, y)

Remark 8. For any x, y ∈ Xω, if a metric modular ω on Xω has a finite value and ωλ(x, y) =
ωµ(x, y) for all λ, µ > 0, then d(x, y) = ωλ(x, y) is a metric on Xω.

Remark 9. Let ω be a modular on X and let Xω be any one of the modular sets defined by ω.
Then, dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ ∀ x, y ∈ Xω} define a metric on Xω. If the
modular ω is convex, then the modular space can be endowed with another metric d∗ω given by
d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1 ∀ x, y ∈ Xω}. These metrics on the modular set are
strongly equivalent: dω ≤ d∗ω ≤ 2dω, as recorded in [26].

Definition 20 ([35], Sec. 2.1, page 19). Let (X, ω) be a modular space. Fix x0 ∈ X. Set
Xω = Xω(x0) = {x ∈ X : ωλ(x, x0) = 0 as λ → ∞} and X∗

ω = X∗
ω(x0) = {x ∈ X :

ωλ(x, x0) < ∞ f or λ > 0}, where Xω and X∗
ω are said to be modular spaces centered at x0.

Definition 21 ([26]). A metric modular on X is said to be nonincreasing with respect to λ > 0
if for any x, y ∈ X and 0 < µ < λ such that ωλ(x, y) ≤ ωλ−µ(x, x) + ωµ(x, y) = ωµ(x, y) for
any x, y ∈ X and λ > 0. We set ωλ+(x, y) := lim

ϵ↑0
ωλ+ϵ(x, y) and ωλ−(x, y) := lim

ϵ↓0
ωλ−ϵ(x, y).

Definition 22 ([31]). Let Xω be a modular metric space and {xn}n∈N be a sequence in Xω . Then

(a) A point x ∈ Xω is called a limit of {xn}n∈N if for each λ, ϵ > 0 there exists N ∈ N such that
ωλ(xn, x) < ϵ for all n ≥ N.
A sequence that has a limit is said to be convergent or converges to x, which we write as
lim

n→∞
xn = x.
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(b) A sequence {⃗xn}n∈N ∈ Xω is said to be a modular Cauchy sequence if for each λ, ϵ > 0, there
exists N ∈ N such that ωλ(xn, xm) < ϵ whenever n, m ≥ N.

(c) If every modular Cauchy sequence in Xω converges in Xω, then Xω is said to be complete
modular metric space.

Following [21,31], we give the following definitions via binary relation in metric
modular space.

Definition 23. A modular metric space, Xω is said to be ⊑-complete if each ⊑- preserving Cauchy
sequence in Xω converges.

Remark 10. Here, modular completeness and continuity are replaced by their relational analogs,
i.e., ⊑-completeness and ⊑-continuity;

Definition 24 ([30]). Let ω be a metric modular on X and Xω a modular metric space induced by
ω and T : Xω → Xω . A mapping T is called a contraction if for each x, y ∈ Xω and for all λ > 0,
there exists 0 ≤ k < 1 such that ωλ(Tx, Ty) ≤ kωλ(x, y).

Definition 25 ([25]). Let (X, ω) be a modular metric space and T : Xω → Xω such that there are
{α, β, γ, δ, ϵ} ∈ FGer. Then, T is called a Geraghty metric modular tower contraction map if for all
λ > 0, then:

ωλ(Tx, Ty) ≤ α(ωλ(x, y))ωλ(x, y)A
B

CDϵ
δ

γ
β ; (8)

where Aβ := β(ωλ(x, y))ωλ(x, Tx), Bγ := γ(ωλ(x, y))ωλ(y, Ty), Cδ := δ(ωλ(x, y))ωλ(x, Ty);
Dϵ := ϵ(ωλ(x, y))ωλ(y, Tx), for all distinct x, y ∈ Xω.

Remark 11. We can possibly interchange position(s) of Aβ, Bγ, Cδ, and Dϵ in Definition 25.

Following the construction by Okeke et al. [32] and Okeke and Francis [1], it will
be useful before spelling out the results of Section 3. The following analogy will help.
For each n ∈ N, let FnGer be the class of n-tuples of functions {µ1, µ2, · · · µn} and for
each i ∈ {1, 2, 3, · · · , n}, the map µi : R+ ∪ {∞} → [0, 1), so that we have the following
µ(tk) := µ1(tk)µ2(tk) · · · µn(tk) → 1 =⇒ tk → 0. Now for each m ∈ {1, 2, · · · , n},
suppose that {µ1, µ2, · · · µm} ∈ FmGer, then {µ1, µ2, · · · µm, 0, 0, 0 · · · , 0︸ ︷︷ ︸

n−m times

} ∈ FmGer, where 0

is a zero function. Again, if {µ, µ, · · · µ}︸ ︷︷ ︸
n times

∈ FnGer, then µ(tk) → 1
n implies tk → 0 as k → ∞.

If {µ1, µ2, · · · µn} ∈ FnGer, then π(µ1, µ2, · · · µn) ∈ FnGer is a permutation of (µ1, µ2, · · · µn).
If (µ1, µ2, · · · µn) ∈ FnGer, then its subsequences i.e; (µn1 , µn2 , · · · µnm) ∈ FmGer for each
m ∈ {1, 2, · · · , n}. µni ̸= µnj for all i, j ∈ {1, 2, · · · , m}, where µni ∈ {µ1, µ2, · · · µn}.

We will in this work take the class of functions in Definition 18 as FGer, the class of all
Geraghty functions.

3. Main Results

We start this section with a striking theorem concerning tower mappings in (pseudo)
modular metric spaces.

Theorem 4. Let (Xω,⊑) be a binary relation on (pseudo)modular set Xω and suppose that there
exists a metric modular dω in Xω such that (Xω, dω) is a ⊑-complete metric (pseudo)modular
space. Let f , g be nondecreasing self mappings on Xω and {α, δ, ϵ} ∈ FGer, λ ∈ Γ := (0, ∞)
satisfying:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AO
AOϵ

δ
ϵ

δ , (9)
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where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for all distinct close
u, v ∈ Xω and lnk(ωλ(gu, gv)) ≤ ωλ(gu, gv), ωk

λ(gu, gv) ≤ ωλ(gu, gv) for all k ∈ N, ⊑ is
( f , g)-closed and locally ( f , g)-transitive, and u, v ∈ Xω are ⊑-comparable. Assuming that there
exists x0 ∈ Xω such that gx0 ⊑ f x0; f (X) ⊆ g(X); f is (g,⊑)-nondecreasing; g is ⊑-continuous
and commutes with f and {guk}k∈N ⊑-converges to u∗, so that guk ⊑ gu∗ for each k ≥ 1 and
f is a ⊑-continuous mapping. Then, f and g have, at least, a coincidence point, that is, there
exists z ∈ Xω such that f z = gz. Furthermore, for any u, v ∈ Xω, there exists w ∈ Xω which is
⊑-comparable to u and v, i.e., [u, v] ∈⊑ so that f and g have a unique common fixed point in Xω.

Proof. Suppose that Xω = ∅, then there is nothing to prove. Observe that in particular,
if g (or f ) is injective on the set of all coincidence points of f and g, then f and g have a
unique coincidence point, which is also the common fixed point of f and g. Henceforth, we
take Xω ̸= ∅. Let x0 ∈ Xω such that gx0 ⊑ f x0. If f (Xω) ⊆ g(Xω), then there exists a Picard
sequence of ( f , g) based on any x0 ∈ Xω. Indeed, let x0 ∈ Xω. Since f x0 ∈ f (Xω) ⊆ g(Xω),
there exists x1 ∈ Xω such that gx1 = f x0. Analogously, since f x1 ∈ f (Xω) ⊆ g(Xω),
there exists x2 ∈ Xω such that gx2 = f x1. Repeating this argument by the inductive
hypothesis, we can find a Picard sequence of ( f , g) based on x0. Since f (Xω) ⊆ g(Xω),
the above assertion guarantees the existence of a Picard sequence {xn} of ( f , g), that is,
gxn+1 = f xn, for all n ≥ 0. Regarding that f is a (g,⊑) nondecreasing mapping, we observe
that gx0 ⊑ f x0 = gx1 implies gx1 = f x0 ⊑ f x1 = gx2. Inductively, we obtain:

gx0 ⊑ gx1 ⊑ gx2 ⊑ gx3 ⊑ . . . ⊑ gxn−1 ⊑ gxn ⊑ gxn+1 ⊑ . . . . (10)

This implies that (gxn, gxn+1) ∈⊑. If there exists n0 such that gxn0 = gxn0+1 , then
gxn0 = gxn0+1 = f xn0 , that is, f and g have a coincidence point, which completes the
existence part of the proof. On the contrary case, assume that gxn ̸= gxn+1 for all n ∈
N, λ ∈ Γ, that is, ωλ(gxn, gxn+1) > 0 for all n ≥ 0. Regarding inequality (10), we set
u = xn and v = xn+1 in inequality (9). Then we get, for all n ∈ N:

ωλ(gxn+1, gxn+2) = ωλ( f xn, f xn+1) = ωλ( f u, f v) ≤ α(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1)
AO

AOϵ
δ

ϵ
δ ; (11)

where Aδ := δ(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1); Oϵ := ϵ(ωλ(gxn, gxn+1))ωλ(gxn+1, f xn).
Thus, Aδ := δ(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1); Oϵ := ϵ(ωλ(gxn, gxn+1))ωλ(gxn+1,

gxn+1).
Therefore, inequality (11) collapses to:

ωλ(gxn+1, gxn+2) ≤ α(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1). (12)

Then, the sequence {ωλ(gxn, gxn+1)}n∈N is nonincreasing sequence and bounded
below, so lim

n→∞
ωλ(gxn, gxn+1) = ℓ ≥ 0. Assume that ℓ > 0, then from inequality (12),

we obtain:
ωλ(gxn+1, gxn+2)

ωλ(gxn, gxn+1)
≤ α(ωλ(gxn, gxn+1)), (13)

for n = 1, 2, 3, · · · . Then, from inequality (13), we get 1 ≤ lim
n→∞

α(ωλ(gxn, gxn+1)) and since

α ∈ FGer, this implies that ℓ = 0. Then, lim
n→∞

ωλ(gxn, gxn+1) = 0. Now we show that

{gxn}n∈N is a modular preserving Cauchy sequence in Xω. On the contrary, assume that
for each n, m ∈ N, and n > m:

lim
n,m→∞

ωλ(gxn, gxm) > 0. (14)

By triangle inequality:

ωλ(gxn, gxm) ≤ ω λ
3
(gxn, gxn+1) + ω λ

3
(gxn+1, gxm+1) + ω λ

3
(gxm+1, gxm).
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Hence, from inequality (12), we have ωλ(gxn, gxm) ≤ [1− α(ωλ(gxn, gxm))]
−1[ωλ(gxn,

gxn+1) + ωλ(gxn+1, gxm)].
Since lim sup

n,m→∞
ωλ(gxn, gxm) > 0 and lim

n→∞
ωλ(gxn, gxn+1) = 0, then lim

n→∞
lim sup

m→∞
(1 −

α(ωλ(gxn, gxm)))
−1 = +∞, from which we obtain lim

n,m→∞
sup α(ωλ(gxn, gxm)) = 1. How-

ever, α ∈ FGer, we get:
lim

n,m→∞
sup ωλ(gxn, gxm) = 0. (15)

This contradicts inequality (14) and shows that {gxn}n≥1 is a modular preserving
Cauchy sequence in Xω.

Due to ⊑-completeness of (Xω, dω), then there exists z ∈ Xω such that lim
n→∞

gxn = z,

i.e., for all λ ∈ Γ, lim
n→∞

ωλ(gxn, z) → 0. Indeed, it suffices to show that given a sequence

{gxn} ⊂ Xω and z ∈ Xω, we have: gxn → z if and only if ωλ(gxn, z) → 0 for all λ > 0.
Now, let gxn → z. Given ϵ > 0, there exists n0 = n0(ϵ) ∈ N such that dω(gxn, z) < ϵ
for all n ≥ n0(ϵ). By inequality (6) and Theorem 2.2.11(a) of ([35], Sec. 2.2), ωϵ(gxn, z) ≤
ωϵ−0(gxn, z) < ϵ for all n ≥ n0(ϵ). Hence, if λ > 0, then, for any n ≥ n0(min{ϵ, λ}), we
find, by inequality (3), that ωλ(gxn, z) ≤ ωmin{ϵ,λ}(gxn, z) < min{ϵ, λ} ≤ ϵ, and thus,
ωλ(gxn, z) → 0. Conversely, if ϵ > 0, then ωϵ(gxn, z) → 0, and thus, there is n1(ϵ) ∈ N
such that ωϵ(gxn, z) ≤ ϵ for all n ≥ n1(ϵ). By Remark 9, dω implies dω(gxn, z) ≤ ϵ for
n ≥ n1(ϵ) , i.e., dω(gxn, z) → 0. Therefore, lim

n→∞
gxn = z is justified. As g and f are ⊑-

continuous, ggxn → gz and f gxn → f z as n → ∞. On the other hand, recall that g and f
commute, so we have that ggxn+1 = g f xn = f gxn = f z for all n ≥ 0. Therefore, by the
uniqueness of the limit of a preserving modular ⊑-convergent sequence, i.e., we invoke
Theorem 4.1.1 of ([35], Sec. 4.1.1) and we conclude that gz = f z, that is, z is a coincidence
point of f and g.

Suppose that x∗ and z∗ are coincidence points of f and g respectively, then there exists
w ∈ Xω such that gx∗ ⊑ gw and gz∗ ⊑ gw. We claim that gx∗ = gz∗. In fact, this is
immediate from properties of binary relation. Without loss of generality, assume that x∗

and z∗ are two coincidence points of f and g and let w ∈ Xω be such that gx∗ ⊑ gw and
gz∗ ⊑ gw. Let {wn} be a Picard sequence of ( f , g) based on the point w0 = w. As x∗ ⊑ w
and z∗ ⊑ w and f is a (g,⊑) nondecreasing mapping, then gx∗ = f x∗ ⊑ f w0 = gw1 and
gz∗ = f z∗ ⊑ f w0 = gw1. Similarly, by induction, it is easy to prove that gx∗ ⊑ gwn and
gz∗ ⊑ gwn for all n ∈ N. Applying the inequality (9), for all n ∈ N, λ ∈ Γ:

ωλ(gx∗, gwn+1) = ωλ( f x∗, f wn) = ωλ( f u, f v) ≤ α(ωλ(gx∗, gwn))ωλ(gx∗, gwn)
AO

AOϵ
δ

ϵ
δ ; (16)

where Aδ := δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn); Oϵ := ϵ(ωλ(gx∗, gwn))ωλ(gwn, f x∗), so that:

ωλ(gx∗, gwn+1) ≤ α(ωλ(gx∗, gwn))ωλ(gx∗, gwn)
AO

AOϵ
δ

ϵ
δ ; (17)

where Aδ := δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn); Oϵ := ϵ(ωλ(gx∗, gwn))ωλ(gwn, gx∗). Now
we see the possibility of the limiting processes; put ∏

dω

:= ωλ(gx∗, gwn+1), so that:

∏
dω

≤ α(ωλ(gx∗, gwn))ωλ(gx∗, gwn)
AO

AOϵ
δ

ϵ
δ

= α(ωλ(gx∗, gwn)) exp

(
ln

(
ωλ(gx∗, gwn)

AO
AOϵ

δ
ϵ

δ

))
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= α(ωλ(gx∗, gwn)) exp

(
AO

AOϵ
δ

ϵ
δ ln

(
ωλ(gx∗, gwn)

))

= α(ωλ(gx∗, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ lni

(
ωλ(gx∗, gwn)

)
i!

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ

(
ωλ(gx∗, gwn)

)
i!

= α(ωλ(gx∗, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ

i!
ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

1
i!

exp

(
ln

(
AO

A
Oi

ϵ
δ

ϵ
δ

))
ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

1
i!

exp

(
O

AOi
ϵ

δ
ϵ ln

(
Aδ

))
ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ lnj
(

Aδ

)
ωλ(gx∗, gwn)

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ Aδωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)ωλ(gx∗, gwn)

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

exp

(
ln

(
O

AOij
ϵ

δ
ϵ

)
δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ lnk

(
Oϵ

)
δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ Oϵδ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ ϵ(ωλ(gx∗, gwn))ωλ(gwn, gx∗)δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ ϵ(ωλ(gx∗, gwn))δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

exp

(
ln

(
AOijk

ϵ
δ

))
ϵ(ωλ(gx∗, gwn))δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ lnl

(
Aδ

)
ϵ(ωλ(gx∗, gwn))δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)
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≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ Aδϵ(ωλ(gx∗, gwn))δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)ϵ(ωλ(gx∗, gwn))δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ(ωλ(gx∗, gwn))ϵ(ωλ(gx∗, gwn))δ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ2(ωλ(gx∗, gwn))ϵ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

(ϵ(ωλ(gx∗, gwn))ωλ(gwn, gx∗))ijklδ2(ωλ(gx∗, gwn))ϵ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

= α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gx∗, gwn))ω
ijkl
λ (gwn, gx∗)δ2(ωλ(gx∗, gwn))ϵ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gx∗, gwn))ωλ(gwn, gx∗)δ2(ωλ(gx∗, gwn))ϵ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gx∗, gwn))δ
2(ωλ(gx∗, gwn))ϵ(ωλ(gx∗, gwn))ωλ(gx∗, gwn)

≤ α(ωλ(gx∗, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

ϵijkl+1(ωλ(gx∗, gwn))δ2(ωλ(gx∗, gwn))

i!j!k!l!
ωλ(gx∗, gwn)

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gx∗, gwn))ϵijkl+1(ωλ(gx∗, gwn))δ2(ωλ(gx∗, gwn))

i!j!k!l!
ωλ(gx∗, gwn)

≤
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gx∗, gwn))ϵ
ijkl(ωλ(gx∗, gwn))ϵ(ωλ(gx∗, gwn))δ

2(ωλ(gx∗, gwn))ωλ(gx∗, gwn). (18)

Thus, by taking the limit as n → ∞, from inequality (18), we see clearly that:

lim
n→∞

ωλ(gx∗, gwn) = 0 ∀ λ ∈ Γ. (19)

Therefore, from Equation (19), we have that {gwn} → gx∗ as n → ∞. Similarly, replacing
gx∗ in inequality (18) with gz∗, it can be proved that:

ωλ(gz∗, gwn+1) ≤
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gz∗, gwn))ϵ
ijkl(ωλ(gz∗, gwn))ϵ(ωλ(gz∗, gwn))δ

2(ωλ(gz∗, gwn))ωλ(gz∗, gwn). (20)

Thus:

1 ≤ lim inf
n→∞

{ ∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gz∗, gwn))ϵ
ijkl(ωλ(gz∗, gwn))ϵ(ωλ(gz∗, gwn))δ

2(ωλ(gz∗, gwn))
}

, (21)

hence, inequality (21) implies that:

lim
n→∞

ωλ(gz∗, gwn) = 0, (22)

Therefore, from Equation (22), we get {gwn} → gz∗ as n → ∞. As a consequence, we
have that gx∗ = gz∗, which justified our claim. Next, we show that, for all coincidence
point x∗ of f and g, the point ξ = f x∗ is a common fixed point of f and g. Let x∗ ∈ Xω be
an arbitrary coincidence point of f and g and let ξ = f x∗ = gx∗. As f and g commutes, if
f and g are commuting mappings and x∗ is a coincidence point of f and g, then ξ = f x∗

is also a coincidence point of f and g. It follows from f ξ = f gx∗ = g f x∗ = gξ, so that
ξ = f x∗ is also a coincidence point of f and g. Then, f ξ = gξ. Moreover, by our previous
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claim, we have that gx∗ = gξ. In particular, f ξ = gξ = gx∗ = f x∗ = ξ. Therefore, ξ is a
common fixed point of f and g.

Finally, we prove that f and g have a unique common fixed point. Let ξ and z be two
common fixed points of f and g, that is, ξ = f ξ = gξ and z = f z = gz.

For any ξ, z ∈ Xω, there exists w ∈ Xω which is ⊑-comparable to both ξ and z, i.e.,
[ξ, z] ∈⊑. Suppose that ξ < z which implies that ωλ(ξ, z) > 0 for all λ ∈ Γ, so by triangle
inequality we have that:

ωλ(ξ, z) =ωλ( f (ξ), f (z))

≤ω λ
2
(ξ, f (wn)) + ω λ

2
(z, f (wn))

≤ωλ(g(ξ), f (wn)) + ωλ(g(z), f (wn))

=ωλ( f (ξ), f (wn)) + ωλ( f (z), f (wn)). (23)

Monotonicity implies that f (wn) is ⊑-comparable to f (ξ) = ξ and f (z) = z for
n = 1, 2, 3, · · · . Moreover, inequality (23) splits into two fold claims.
Claim a.

ωλ(ξ, f (wn)) =ωλ( f (ξ), f (wn))

≤α(ωλ(gξ, gwn))ωλ(gξ, gwn)
AO

AOϵ
δ

ϵ
δ , (24)

where Aδ := δ(ωλ(gξ, gwn))ωλ(gξ, gwn); Oϵ := ϵ(ωλ(gξ, gwn))ωλ(gwn, f ξ), and hence,
Aδ := δ(ωλ(gξ, gwn))ωλ(gξ, gwn); Oϵ := ϵ(ωλ(gξ, gwn))ωλ(gwn, gξ).

From inequality (24), we get Θdω
:= ωλ(ξ, f (wn)). Thus:

Θdω
=ωλ( f (ξ), f (wn))

≤α(ωλ(gξ, gwn))ωλ(gξ, gwn)
AO

AOϵ
δ

ϵ
δ

= α(ωλ(gξ, gwn)) exp

(
ln

(
ωλ(gξ, gwn)

AO
AOϵ

δ
ϵ

δ

))

= α(ωλ(gξ, gwn)) exp

(
AO

AOϵ
δ

ϵ
δ ln

(
ωλ(gξ, gwn)

))

= α(ωλ(gξ, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ lni

(
ωλ(gξ, gwn)

)
i!

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ

(
ωλ(gξ, gwn)

)
i!

= α(ωλ(gξ, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ

i!
ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

1
i!

exp

(
ln

(
AO

A
Oi

ϵ
δ

ϵ
δ

))
ωλ(gξ, gwn)
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= α(ωλ(gξ, gwn))
∞

∑
i=0

1
i!

exp

(
O

AOi
ϵ

δ
ϵ ln

(
Aδ

))
ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ lnj
(

Aδ

)
ωλ(gξ, gwn)

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ Aδωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ δ(ωλ(gξ, gwn))ωλ(gξ, gwn)ωλ(gξ, gwn)

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

exp

(
ln

(
O

AOij
ϵ

δ
ϵ

)
δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ lnk

(
Oϵ

)
δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ Oϵδ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ ϵ(ωλ(gξ, gwn))ωλ(gwn, gξ)δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ ϵ(ωλ(gξ, gwn))δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

exp

(
ln

(
AOijk

ϵ
δ

))
ϵ(ωλ(gξ, gwn))δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ lnl

(
Aδ

)
ϵ(ωλ(gξ, gwn))δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ Aδϵ(ωλ(gξ, gwn))δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ(ωλ(gξ, gwn))ωλ(gξ, gwn)ϵ(ωλ(gξ, gwn))δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))δ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ2(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

(ϵ(ωλ(gξ, gwn))ωλ(gwn, gξ))ijklδ2(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gξ, gwn))ω
ijkl
λ (gwn, gξ)δ2(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))ωλ(gξ, gwn)

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gξ, gwn))ωλ(gwn, gξ)δ2(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))ωλ(gξ, gwn)
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≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gξ, gwn))δ
2(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))ωλ(gξ, gwn)

≤ α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

ϵijkl+1(ωλ(gξ, gwn))δ2(ωλ(gξ, gwn))

i!j!k!l!
ωλ(gξ, gwn)

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gξ, gwn))ϵijkl+1(ωλ(gξ, gwn))δ2(ωλ(gξ, gwn))

i!j!k!l!
ωλ(gξ, gwn)

≤
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gξ, gwn))ϵ
ijkl+1(ωλ(gξ, gwn))δ

2(ωλ(gξ, gwn))ωλ(gξ, gwn)

= α(ωλ(gξ, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

ϵijkl(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))δ
2(ωλ(gξ, gwn))ωλ(gξ, gwn)

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gξ, gwn))ϵ
ijkl(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))δ

2(ωλ(gξ, gwn))ωλ(gξ, gwn). (25)

From Inequality (25), we get;

1 ≤ lim
n→∞

inf
{ ∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gξ, gwn))ϵ
ijkl(ωλ(gξ, gwn))ϵ(ωλ(gξ, gwn))δ

2(ωλ(gξ, gwn))
}

, (26)

and thus, inequality (26) implies that lim
n→∞

ωλ(gξ, gwn) = 0, for all λ ∈ Γ. Hence:

lim
n→∞

ωλ(ξ, f (wn)) = 0 = lim
n→∞

ωλ( f (ξ), f (wn)) = lim
n→∞

ωλ(g(ξ), f (wn)). (27)

Again, for any z ∈ Xω , there exists w ∈ Xω which is ⊑-comparable to z. Monotonicity
implies that f (wn) is ⊑-comparable to f (z) = z for n = 1, 2, 3, · · · . Moreover, from
inequality (23).
Claim b.

ωλ(z, f (wn)) =ωλ( f (z), f (wn))

≤α(ωλ(gz, gwn))ωλ(gz, gwn)
AO

AOϵ
δ

ϵ
δ , (28)

where Aδ := δ(ωλ(gz, gwn))ωλ(gz, gwn); Oϵ := ϵ(ωλ(gz, gwn))ωλ(gwn, f z), and hence,
Aδ := δ(ωλ(gz, gwn))ωλ(gz, gwn); Oϵ := ϵ(ωλ(gz, gwn))ωλ(gwn, gz).

From inequality (28), we see that:

Φdω
=ωλ( f (z), f (wn))

≤α(ωλ(gz, gwn))ωλ(gz, gwn)
AO

AOϵ
δ

ϵ
δ

= α(ωλ(gz, gwn)) exp

(
ln

(
ωλ(gz, gwn)

AO
AOϵ

δ
ϵ

δ

))

= α(ωλ(gz, gwn)) exp

(
AO

AOϵ
δ

ϵ
δ ln

(
ωλ(gz, gwn)

))

= α(ωλ(gz, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ lni

(
ωλ(gz, gwn)

)
i!
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≤ α(ωλ(gz, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ

(
ωλ(gz, gwn)

)
i!

= α(ωλ(gz, gwn))
∞

∑
i=0

AO
A

Oi
ϵ

δ
ϵ

δ

i!
ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

1
i!

exp

(
ln

(
AO

A
Oi

ϵ
δ

ϵ
δ

))
ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

1
i!

exp

(
O

AOi
ϵ

δ
ϵ ln

(
Aδ

))
ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ lnj
(

Aδ

)
ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ Aδωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ δ(ωλ(gz, gwn))ωλ(gz, gwn)ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

O
AOij

ϵ
δ

ϵ δ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

1
i!j!

exp

(
ln

(
O

AOij
ϵ

δ
ϵ

)
δ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ lnk

(
Oϵ

)
δ(ωλ(gz, gwn))ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ Oϵδ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ ϵ(ωλ(gz, gwn))ωλ(gwn, gz)δ(ωλ(gz, gwn))ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

AOijk
ϵ

δ ϵ(ωλ(gz, gwn))δ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

1
i!j!k!

exp

(
ln

(
AOijk

ϵ
δ

))
ϵ(ωλ(gz, gwn))δ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ lnl

(
Aδ

)
ϵ(ωλ(gz, gwn))δ(ωλ(gz, gwn))ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ Aδϵ(ωλ(gz, gwn))δ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ(ωλ(gz, gwn))ωλ(gz, gwn)ϵ(ωλ(gz, gwn))δ(ωλ(gz, gwn))ωλ(gz, gwn)
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= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))δ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

Oijkl
ϵ δ2(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

(ϵ(ωλ(gz, gwn))ωλ(gwn, gz))ijklδ2(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gz, gwn))ω
ijkl
λ (gwn, gz)δ2(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gz, gwn))ωλ(gwn, gz)δ2(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

1
i!j!k!l!

ϵijkl(ωλ(gz, gwn))δ
2(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))ωλ(gz, gwn)

≤ α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

ϵijkl+1(ωλ(gz, gwn))δ2(ωλ(gz, gwn))

i!j!k!l!
ωλ(gz, gwn)

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gz, gwn))ϵijkl+1(ωλ(gz, gwn))δ2(ωλ(gz, gwn))

i!j!k!l!
ωλ(gz, gwn)

≤
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gz, gwn))ϵ
ijkl+1(ωλ(gz, gwn))δ

2(ωλ(gz, gwn))ωλ(gz, gwn)

= α(ωλ(gz, gwn))
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

ϵijkl(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))δ
2(ωλ(gz, gwn))ωλ(gz, gwn)

=
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gz, gwn))ϵ
ijkl(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))δ

2(ωλ(gz, gwn))ωλ(gz, gwn), (29)

where Φdω
:= ωλ(z, f (wn)).

From Inequality (29), we get:

1 ≤ lim
n→∞

inf
{ ∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

∞

∑
l=0

α(ωλ(gz, gwn))ϵ
ijkl(ωλ(gz, gwn))ϵ(ωλ(gz, gwn))δ

2(ωλ(gz, gwn))
}

, (30)

and thus, inequality (30) implies that lim
n→∞

ωλ(gz, gwn) = 0 ∀ λ ∈ Γ. Hence:

lim
n→∞

ωλ(z, f (wn)) = 0 = lim
n→∞

ωλ( f (z), f (wn)) = lim
n→∞

ωλ(g(z), f (wn)). (31)

Finally, using inequalities (24) and (28), inequality (23) becomes ωλ(ξ, z) ≤ ωλ(ξ, f (wn))
+ωλ(z, f (wn)) = ωλ( f (ξ), f (wn)) + ωλ( f (z), f (wn)) = ωλ(g(ξ), f (wn)) + ωλ(g(z), f (wn)),
using Equations (27), (31) and on taking the limit as n → ∞ yields ωλ(ξ, z) = 0 for all
λ ∈ Γ, which is a contradiction. Therefore, ξ = z. Hence, ξ = f (ξ) = g(ξ).

Remark 12. Theorem 4 is a generalization and further characterization of results in Amini-Harand
and Emami [14], Geraghty [5], Banach [2], Alam et al. [20], Alam and Imdad [22,23], and
Chisyakov [29]. Again, it is a common practice in analysis that whenever existence proof is made,
then the uniqueness follows easily, but the case in this paper is entirely different.
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Example 1. Let Xω = [0, 1] ∪ {∞}. Define the operators f , g : Xω → Xω by:

gu =


u
2

, if u ∈ Xω (32)

0, if u = 0
1
2

, if u = 1.

and:

f u =


u
2

, if u ∈ Xω (33)

0, if u = 0.

Then, the maps satisfy all the conditions in Theorem 4.
Indeed, it suffices to show that inequality (9) and other conditions of Theorem 4 hold, where

Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for all distinct close u, v ∈
Xω and for all λ ∈ Γ.

Now, ωλ( f u, f v) = ωλ(
u
2 , v

2 ) =
1
2 ωλ(u, v):

ωλ(gu, gv) = ωλ(
u
2

,
v
2
)

≤ 1
2

ωλ(u, v).

ωλ(gv, f u) = ωλ(
v
2

,
u
2
)

≤ 1
2

ωλ(u, v).

Thus, we get:

ωλ( f u, f v) =
1
2

ωλ(u, v) ≤ 1
2

α(
1
2

ωλ(u, v))ωλ(u, v)

(
ωλ(u, v)

2

)(ωλ(u, v)
2

)(ωλ(u, v)
2

)(ωλ(u, v)
2

)

. (34)

It is clear that δ( 1
2 ωλ(u, v)) = 1

2 < 1 and ϵ( 1
2 ωλ(u, v)) = 1

2 < 1. Now, we estimate
α( 1

2 ωλ(u, v)). The right hand side of inequality (34) becomes:

ωλ(u, v)ωλ(u,v)ωλ(u,v)ωλ(u,v)ωλ(u,v)

= exp

(
ωλ(u, v)ωλ(u,v)ωλ(u,v)ωλ(u,v)

ln
(
ωλ(u, v)

))

=
∞

∑
i=0

ωλ(u, v)ωλ(u,v)ωλ(u,v)
ωi

λ
(u,v)

i!
lni(ωλ(u, v))

≤
∞

∑
i=0

ωλ(u, v)ωλ(u,v)ωλ(u,v)
ωi

λ
(u,v)

i!
ωλ(u, v)

=
∞

∑
i=0

exp

(
ωλ(u, v)ωλ(u,v)ωi

λ
(u,v)

ln ωλ(u, v)

)
ωλ(u, v)

i!
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=
∞

∑
i=0

∞

∑
j=0

ωλ(u, v)ωλ(u,v)ω
ij
λ
(u,v)

lnj ωλ(u, v)
i!j!

ωλ(u, v)

≤
∞

∑
i=0

∞

∑
j=0

ωλ(u, v)ωλ(u,v)ω
ij
λ
(u,v)

i!j!
ωλ(u, v)ωλ(u, v)

≤
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

ωλ(u, v)ω
ijk
λ (u,v)

i!j!k!
ωλ(u, v)ωλ(u, v)ωλ(u, v)

≤
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

ω
ijkl
λ (u, v)
i!j!k!l!

lnl ωλ(u, v)ωλ(u, v)ωλ(u, v)ωλ(u, v)

≤
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

ω
ijkl+4
λ (u, v)

i!j!k!l!

≤
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

ωλ(u, v)
i!j!k!l!

=
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

1
i!j!k!l!

ωλ(u, v).

Take α(
1
2

ωλ(u, v)) =
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

1
i!j!k!l!

. By classical analysis,
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

1
i!j!k!l!

is

convergent. Then, there exists bounded z ∈ Xω such that
∞

∑
i=0

∞

∑
j=0

∞

∑
j=0

∞

∑
l=0

|z|
i!j!k!l!

≤ 1
2

. Therefore,

the right hand side of inequality (34) becomes 1
2 ωλ(u, v).

Hence:

ωλ( f u, f v) =
1
2

ωλ(u, v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AO
AOϵ

δ
ϵ

δ =
1
2

ωλ(u, v). (35)

Therefore:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AO
AOϵ

δ
ϵ

δ ; (36)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for all distinct close
u, v ∈ Xω . Hence, all the conditions of Theorem 4 are satisfied. The trivial common fixed point is at
u = 0.

Corollary 1. Let (Xω,⊑) be a binary relation on (pseudo)modular set Xω and suppose that there
exists a metric modular dω in Xω such that (Xω , dω) is a ⊑-complete metric (pseudo)modular space.
Let f , g be nondecreasing self mappings on Xω and {α, δ, ϵ} ∈ FGer, λ ∈ Γ := (0, ∞) satisfying:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AOϵ
δ ; (37)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for all distinct close
u, v ∈ Xω and lnk(ωλ(gu, gv)) ≤ ωλ(gu, gv), ωk

λ(gu, gv) ≤ ωλ(gu, gv) for all k ∈ N, ⊑ is
( f , g)-closed and locally ( f , g)-transitive and u, v ∈ Xω are ⊑-comparable. Assuming that there
exists x0 ∈ Xω such that gx0 ⊑ f x0; f (X) ⊆ g(X); f is (g,⊑)-nondecreasing; g is ⊑-continuous
and commutes with f and {guk}k∈N ⊑-converges to u∗, so that guk ⊑ gu∗ for each k ≥ 1 and
f is a ⊑-continuous mapping. Then, f and g have, at least, a coincidence point, that is, there
exists z ∈ Xω such that f z = gz. Furthermore, for any u, v ∈ Xω, there exists w ∈ Xω which is
⊑-comparable to u and v, so that f and g have a unique common fixed point in Xω.
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Corollary 2. Let (Xω,⊑) be a binary relation on (pseudo)modular set Xω and suppose that there
exists a metric modular dω in Xω such that (Xω , dω) is a ⊑-complete metric (pseudo)modular space.
Let f , g be nondecreasing self mappings on Xω and {α, δ, ϵ} ∈ FGer, γ ∈ R+ and λ ∈ Γ satisfying:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AγO
AOϵ

δ
ϵ

δ ; (38)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for all distinct close
u, v ∈ Xω and lnk(ωλ(gu, gv)) ≤ ωλ(gu, gv), ωk

λ(gu, gv) ≤ ωλ(gu, gv). For all k ∈ N, ⊑
is ( f , g)-closed and locally ( f , g)-transitive and u, v ∈ Xω are ⊑-comparable. Assuming that
there exists x0 ∈ Xω such that gx0 ⊑ f x0; f (Xω) ⊆ g(Xω); f is (g,⊑)-nondecreasing; g is
⊑-continuous and commutes with f and {guk}k∈N ⊑-converges to u∗, so that guk ⊑ gu∗ for each
k ≥ 1 and f is a ⊑-continuous mapping. Then, f and g have, at least, a coincidence point, that
is, there exists z ∈ Xω such that f z = gz. Furthermore, for any u, v ∈ Xω, there exists w ∈ Xω

which is ⊑-comparable to u and v, so that f and g have a unique common fixed point in Xω.

Proof. We give the proof in two cases.
(a) Observe that if γ = 0, then inequality (38) reduced to:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv) ∀ λ ∈ Γ. (39)

Observe that in particular, if g (or f ) is injective on the set of all coincidence points of f
and g, then f and g have a unique coincidence point, which is also the common fixed point
of f and g. Let x0 ∈ Xω such that gx0 ⊑ f x0. If f (Xω) ⊆ g(Xω), then there exists a Picard
sequence of ( f , g) based on any x0 ∈ Xω. Indeed, let x0 ∈ Xω. Since f x0 ∈ f (Xω) ⊆ g(Xω),
there exists x1 ∈ Xω such that gx1 = f x0. Analogously, since f x1 ∈ f (Xω) ⊆ g(Xω),
there exists x2 ∈ Xω such that gx2 = f x1. Repeating this argument by the inductive
hypothesis, we can find a Picard sequence of ( f , g) based on x0. Since f (Xω) ⊆ g(Xω),
the above assertion guarantees the existence of a Picard sequence {xn} of ( f , g), that is,
gxn+1 = f xn, for all n ≥ 0. Regarding that f is a (g,⊑) nondecreasing mapping, we observe
that gx0 ⊑ f x0 = gx1 implies gx1 = f x0 ⊑ f x1 = gx2. Inductively, we obtain:

gx0 ⊑ gx1 ⊑ gx2 ⊑ gx3 ⊑ . . . ⊑ gxn−1 ⊑ gxn ⊑ gxn+1 ⊑ . . . . (40)

This implies that (gxn, gxn+1) ∈⊑. If there exists n0 such that gxn0 = gxn0+1 , then
gxn0 = gxn0+1 = f xn0 , that is, f and g have a coincidence point, which completes the
existence part of the proof. On the contrary case, assume that gxn ̸= gxn+1 for all n ∈ N
and for all λ ∈ Γ, that is, ωλ(gxn, gxn+1) > 0 for all n ≥ 0. Regarding inequality (40), we
set u = xn and v = xn+1 in inequality (38). Then, we get, for all n ∈ N:

ωλ(gxn+1, gxn+2) = ωλ( f xn, f xn+1) = ωλ( f u, f v) ≤ α(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1). (41)

Therefore, inequality (41) collapse to:

ωλ(gxn+1, gxn+2) ≤ α(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1). (42)

Then, the sequence {ωλ(gxn, gxn+1)}n∈N is nonincreasing sequence and bounded
below, so lim

n→∞
ωλ(gxn, gxn+1) = ℓ ≥ 0. Assume that ℓ > 0, then from inequality (42),

we obtain:
ωλ(gxn+1, gxn+2)

ωλ(gxn, gxn+1)
≤ α(ωλ(gxn, gxn+1)), (43)

for n = 1, 2, 3, · · · . Then, from inequality (43), we get i ≤ lim
n→∞

α(ωλ(gxn, gxn+1)) and since

α ∈ FGer this implies that ℓ = 0. Then lim
n→∞

ωλ(gxn, gxn+1) = 0 for some λ ∈ Γ. Now, we

show that {gxn}n∈N is a preserving modular Cauchy sequence in Xω. On the contrary,
assume that for each n, m ∈ N, and n > m:
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lim
n,m→∞

ωλ(gxn, gxm) > 0. (44)

By triangle inequality:

ωλ(gxn, gxm) ≤ ω λ
3
(gxn, gxn+1) + ω λ

3
(gxn+1, gxm+1) + ω λ

3
(gxm+1, gxm).

Hence, from inequality (42), we have ωλ(gxn, gxm) ≤ [1− α(ωλ(gxn, gxm))]
−1[ωλ(gxn,

gxn+1) + ωλ(gxn+1, gxm)].
Since lim sup

n,m→∞
ωλ(gxn, gxm) > 0 and lim

n→∞
ωλ(gxn, gxn+1) = 0, for some λ ∈ Γ, then

lim
n→∞

lim sup
m→∞

(1 − α(ωλ(gxn, gxm)))
−1 = +∞, from which we obtain lim

n,m→∞
sup α(ωλ(gxn,

gxm)) = 1. However, with α ∈ FGer, we get:

lim
n,m→∞

sup ωλ(gxn, gxm) = 0. (45)

This contradicts inequality (44) and shows that {gxn}n≥1 is a preserving modular
Cauchy sequence in Xω.

Due to the ⊑-completeness of (Xω, dω), there exists z ∈ Xω such that lim
n→∞

gxn = z,

i.e., for all λ ∈ Γ, lim
n→∞

ωλ(gxn, z) → 0. Indeed, it suffices to show that given a sequence

{gxn} ⊂ Xω and z ∈ Xω, we have: gxn → z if and only if ωλ(gxn, z) → 0 for all λ > 0. Now,
let gxn → z. Given ϵ > 0, there exists n0 = n0(ϵ) ∈ N such that dω(gxn, z) < ϵ for all
n ≥ n0(ϵ). By inequality (6) and Theorem 2.2.11(a) of [35], ωϵ(gxn, z) ≤ ωϵ−0(gxn, z) < ϵ
for all n ≥ n0(ϵ). Hence, if λ > 0, then, for any n ≥ n0(min{ϵ, λ}) we find, by inequality
(3), that ωλ(gxn, z) ≤ ωmin{ϵ,λ}(gxn, z) < min{ϵ, λ} ≤ ϵ, and thus, ωλ(gxn, z) → 0.
Conversely, if ϵ > 0, then ωϵ(gxn, z) → 0, and thus, there is n1(ϵ) ∈ N such that
ωϵ(gxn, z) ≤ ϵ for all n ≥ n1(ϵ). By Remark 9, dω implies dω(gxn, z) ≤ ϵ for n ≥ n1(ϵ)
, i.e., dω(gxn, z) → 0. Therefore, lim

n→∞
gxn = z is justified. As g and f are ⊑-continuous,

ggxn → gz and f gxn → f z as n → ∞. On the other hand, recall that g and f commute, so
we have that ggxn+1 = g f xn = f gxn = f z for all n ≥ 0. Therefore, by the uniqueness of
the limit of a ⊑-convergent sequence, we conclude that gz = f z, that is, z is a coincidence
point of f and g.

Suppose that x∗ and z∗ are coincidence points of f and g respectively, then there exists
w ∈ Xω such that gx∗ ⊑ gw and gz∗ ⊑ gw. We claim that gx∗ = gz∗. In fact, this is
immediate from properties of binary relation. Without loss of generality, assume that x∗

and z∗ are two coincidence points of f and g and let w ∈ Xω be such that gx∗ ⊑ gw and
gz∗ ⊑ gw. Let {wn} be a Picard sequence of ( f , g) based on the point w0 = w. As x∗ ⊑ w
and z∗ ⊑ w and f is a (g,⊑) nondecreasing mapping, then gx∗ = f x∗ ⊑ f w0 = gw1 and
gz∗ = f z∗ ⊑ f w0 = gw1. Similarly, by induction, it is easy to prove that gx∗ ⊑ gwn and
gz∗ ⊑ gwn for all n ∈ N. Applying the inequality (38), for all k ∈ N:

ωλ(gx∗, gwn+1) = ωλ( f x∗, f wn) = ωλ( f u, f v) ≤ α(ωλ(gx∗, gwn))ωλ(gx∗, gwn), (46)

so that:
ωλ(gx∗, gwn+1) ≤ α(ωλ(gx∗, gwn))ωλ(gx∗, gwn). (47)

Thus, by taking the limit as n → ∞, from inequality (47), we can see clearly that:

lim
n→∞

ωλ(gx∗, gwn) = 0 ∀ λ ∈ Γ. (48)

Therefore, from Equation (48) {gwn} → gx∗ as n → ∞. Similarly, replacing gx∗ in
inequality (47) with gz∗, it can be proved that:

lim
n→∞

ωλ(gz∗, gwn) = 0 ∀ λ ∈ Γ. (49)
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Therefore, from Equation (49) {gwn} → gz∗ as n → ∞. As a consequence, we have
that gx∗ = gz∗, which justifies our claim. Next, we show that, for all coincidence point
x∗ of f and g, the point ξ = f x is a common fixed point of f and g. Let x∗ ∈ X be an
arbitrary coincidence point of f and g and let ξ = f x = gx. As f and g commute, if f and g
are commuting mappings and x∗ is a coincidence point of f and g, then ξ = f x is also a
coincidence point of f and g. It follows from f ξ = f gx∗ = g f x∗ = gξ, so that ξ = f x∗ is
also a coincidence point of f and g. Then, f ξ = gξ. Moreover, by our previous claim, we
have that gx∗ = gξ. In particular, f ξ = gξ = gx∗ = f x∗ = ξ. Therefore, ξ is a common
fixed point of f and g. Now the conclusion follow

(b) We suppose that γ ̸= 0. Copy the proof of Theorem 4.

Corollary 3. Let (Xω,⊑) be a binary relation on (pseudo)modular set Xω and suppose that there
exists a metric modular dω in Xω such that (Xω, dω) is a ⊑-complete metric (pseudo)modular
space. Let f , g be nondecreasing self mappings on Xω and {α, δ, ϵ} ∈ FGer, λ ∈ Γ satisfying:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AA
AAϵ

δ
ϵ

δ ; (50)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); for all distinct close u, v ∈ Xω and lnk(ωλ(gu, gv)) ≤
ωλ(gu, gv), ωk

λ(gu, gv) ≤ ωλ(gu, gv) for all k ∈ N, λ ∈ Γ, ⊑ is ( f , g)-closed and locally
( f , g)-transitive and u, v ∈ Xω are ⊑-comparable. Assuming that there exists x0 ∈ Xω such that
gx0 ⊑ f x0; f (Xω) ⊆ g(Xω); f is (g,⊑)-nondecreasing; g is ⊑-continuous and commutes with
f and {guk}k∈N ⊑-converges to u∗, so that guk ⊑ gu∗ for each k ≥ 1 and f is a ⊑-continuous
mapping. Then, f and g have, at least, a coincidence point, that is, there exists z ∈ Xω such that
f z = gz. Furthermore, for any u, v ∈ Xω , there exists w ∈ Xω which is ⊑-comparable to u and v,
then f and g have a unique common fixed point in Xω.

Proof. Observe that in particular, if g (or f ) is injective on the set of all coincidence points of
f and g, then f and g have a unique coincidence point, which is also the common fixed point
of f and g. Let x0 ∈ Xω such that gx0 ⊑ f x0. If f (Xω) ⊆ g(Xω), then there exists a Picard
sequence of ( f , g) based on any x0 ∈ Xω. Indeed, let x0 ∈ Xω. Since f x0 ∈ f (Xω) ⊆ g(Xω),
there exists x1 ∈ Xω such that gx1 = f x0. Analogously, since f x1 ∈ f (Xω) ⊆ g(Xω),
there exists x2 ∈ Xω such that gx2 = f x1. Repeating this argument by the inductive
hypothesis, we can find a Picard sequence of ( f , g) based on x0. Since f (Xω) ⊆ g(Xω),
the above assertion guarantees the existence of a Picard sequence {xn} of ( f , g), that
is, gxn+1 = f xn, for all n ≥ 0. Regarding that f is a (g,⊑)-nondecreasing mapping, we
observe that gx0 ⊑ f x0 = gx1 implies gx1 = f x0 ⊑ f x1 = gx2. Inductively, we obtain:

gx0 ⊑ gx1 ⊑ gx2 ⊑ gx3 ⊑ . . . ⊑ gxn−1 ⊑ gxn ⊑ gxn+1 ⊑ . . . . (51)

This implies that (gxn, gxn+1) ∈⊑. If there exists n0 such that gxn0 = gxn0+1 , then
gxn0 = gxn0+1 = f xn0 , that is, f and g have a coincidence point, which completes the
existence part of the proof. On the contrary case, assume that gxn ̸= gxn+1 for all n ∈ N,
that is, ωλ(gxn, gxn+1) > 0 for all n ≥ 0, λ ∈ Γ. Regarding inequality (51), we set u = xn
and v = xn+1 in inequality (50). Then, we get, for all n ∈ N:

ωλ(gxn+1, gxn+2) = ωλ( f xn, f xn+1) = ωλ( f u, f v) ≤ α(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1)
AA

AAϵ
δ

ϵ
δ ; (52)

where Aδ := δ(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1).
Thus, Aδ := δ(ωλ(gxn, gxn+1))ωλ(gxn, gxn+1). Carefully following the proof of Theo-

rem 4, the conclusion follows.

Corollary 4. Let (Xω,⊑) be a binary relation on (pseudo)modular set Xω and suppose that there
exists a metric modular dω in Xω such that (Xω, dω) is a ⊑-complete metric (pseudo)modular
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space. Let f , g be nondecreasing self mappings on Xω for all λ ∈ Γ and {α, δ, ϵ} ∈ FGer,
γ ∈ R+ satisfying:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AγA
AAϵ

δ
ϵ

δ ; (53)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); for all distinct close u, v ∈ Xω and lnk(ωλ(gu, gv)) ≤
ωλ(gu, gv), ωk

λ(gu, gv) ≤ ωλ(gu, gv) < ∞ for all k ∈ N, ⊑ is ( f , g)-closed and locally ( f , g)-
transitive and u, v ∈ Xλ are ⊑-comparable. Assuming that there exists x0 ∈ Xω such that
gx0 ⊑ f x0; f (Xω) ⊆ g(Xω); f is (g,⊑) nondecreasing; g is ⊑-continuous and commutes with
f and {guk}k∈N ⊑-converges to u∗, so that guk ⊑ gu∗ for each k ≥ 1 and f is a ⊑-continuous
mapping. Then, f and g have, at least, a coincidence point, that is, there exists z ∈ Xω such that
f z = gz. Furthermore, for any u, v ∈ Xω , there exists w ∈ Xω , which is ⊑-comparable to u and v,
then f and g have a unique common fixed point in Xω.

Proof. We give the proof in three cases.
(a) Observe that if γ = 0, then inequality (53) is reduced to:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv) ∀ λ ∈ Γ. (54)

Observe that in particular, if g (or f ) is injective on the set of all coincidence points of f
and g, then f and g have a unique coincidence point, which is also the common fixed point
of f and g. Let x0 ∈ Xω such that gx0 ⊑ f x0. If f (Xω) ⊆ g(Xω), then there exists a Picard
sequence of ( f , g) based on any x0 ∈ Xω. Indeed, let x0 ∈ Xω. Since f x0 ∈ f (Xω) ⊆ g(Xω),
there exists x1 ∈ Xω such that gx1 = f x0. Analogously, since f x1 ∈ f (Xω) ⊆ g(Xω),
there exists x2 ∈ Xω such that gx2 = f x1. Repeating this argument by the inductive
hypothesis, we can find a Picard sequence of ( f , g) based on x0. Since f (Xω) ⊆ g(Xω),
the above assertion guarantees the existence of a Picard sequence {xn} of ( f , g), that is,
gxn+1 = f xn, for all n ≥ 0. Regarding that f is a (g,⊑) nondecreasing mapping, we observe
that gx0 ⊑ f x0 = gx1 implies gx1 = f x0 ⊑ f x1 = gx2. Part (a) of Corollary 2 finishes the
proof of (a).

(b) Observe also that if γ = 1, then inequality (53) is reduced to:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AA
AAϵ

δ
ϵ

δ ; (55)

and the Corollary 3 finishes the proof of (b).
(c) Now we suppose that γ ∈ R. With little effort, Corollary 3 concludes the proof

of (c).

Corollary 5. Let (Xω,⊑) be a binary relation on (pseudo)modular set Xω and suppose that there
exists a metric modular dω in Xω such that (Xω, dω) is a ⊑-complete metric (pseudo)modular
space. Let f , g be nondecreasing self mappings on Xω and {α, δ, ϵ} ∈ FGer, λ ∈ Γ satisfying:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)A
min

{
Oϵ

1+Oϵ
,

Aδ
1+Oϵ

}
δ , (56)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for all distinct close
u, v ∈ Xω and lnk(ωλ(gu, gv)) ≤ ωλ(gu, gv), ωk

λ(gu, gv) ≤ ωλ(gu, gv) for all k ∈ N, ⊑
is ( f , g)-closed and locally ( f , g)-transitive and u, v ∈ Xω are ⊑-comparable. Assuming that
there exists x0 ∈ Xω such that gx0 ⊑ f x0; f (Xω) ⊆ g(Xω); f is (g,⊑)-nondecreasing; g is
⊑-continuous and commutes with f and {guk}k∈N ⊑-converges to u∗, so that guk ⊑ gu∗ for each
k ≥ 1 and f is a ⊑-continuous mapping. Then, f and g have, at least, a coincidence point, that
is, there exists z ∈ Xω such that f z = gz. Furthermore, for any u, v ∈ Xω, there exists w ∈ Xω

which is ⊑-comparable to u and v, so that f and g have a unique common fixed point in Xω.
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Proof. It follows from proof of part (a) of Corollary 2.

Corollary 6. Let (Xω,⊑) be a binary relation on (pseudo)modular set Xω and suppose that there
exists a metric modular dω in Xω such that (Xω, dω) is a ⊑-complete metric (pseudo)modular
space. Let f , g be nondecreasing self mappings on Xω for all λ ∈ Γ and {α, δ, ϵ} ∈ FGer satisfying:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)A
max

{
Oϵ

1+Oϵ
,

Aδ
1+Oϵ

}
δ ; (57)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for all distinct close
u, v ∈ Xω and lnk(ωλ(gu, gv)) ≤ ωλ(gu, gv), ωk

λ(gu, gv) ≤ ωλ(gu, gv) for all k ∈ N, ⊑
is ( f , g)-closed and locally ( f , g)-transitive and u, v ∈ Xω are ⊑-comparable. Assuming that
there exists x0 ∈ Xω such that gx0 ⊑ f x0; f (Xω) ⊆ g(Xω); f is (g,⊑)-nondecreasing; g is
⊑-continuous and commutes with f and {guk}k∈N ⊑-converges to u∗, so that guk ⊑ gu∗ for each
k ≥ 1 and f is a ⊑-continuous mapping. Then, f and g have, at least, a coincidence point, that
is, there exists z ∈ Xω such that f z = gz. Furthermore, for any u, v ∈ Xω, there exists w ∈ Xω,
which is ⊑-comparable to u and v, so that f and g have a unique common fixed point in Xω.

Question: Is it possible to have a common unique fixed point in Theorem 4 if we
replace inequality (9) with an infinite type of the form? That is:

ωλ( f u, f v) ≤ α(ωλ(gu, gv))ωλ(gu, gv)AO
A

O··
··

ϵ
δ

ϵ
δ , (58)

where Aδ := δ(ωλ(gu, gv))ωλ(gu, gv); Oϵ := ϵ(ωλ(gu, gv))ωλ(gv, f u), for u, v ∈ Xω.

4. Conclusions

The results established in this paper are new, novel, and interesting. Our findings here
further characterize and include in their full strength some results in the literature on the
playground of binary relational metric pseudo(modular) spaces. Particularly, results such as
Banach contraction mapping and Geraghty contraction, i.e., Amini-Harand and Emami [14],
Geraghty [5], Banach [2], Alam et al. [20], Alam and Imdad [22,23], Chisyakov [29], etc.
become special cases.
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