
Citation: Fang, N.; Cui, J. An

Improved Dempster–Shafer Evidence

Theory with Symmetric Compression

and Application in Ship Probability.

Symmetry 2024, 16, 900. https://

doi.org/10.3390/sym16070900

Academic Editors: Sergei D. Odintsov

and Calogero Vetro

Received: 24 April 2024

Revised: 19 June 2024

Accepted: 3 July 2024

Published: 15 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

An Improved Dempster–Shafer Evidence Theory with
Symmetric Compression and Application in Ship Probability
Ning Fang and Junmeng Cui *

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China;
ningfang@buaa.edu.cn
* Correspondence: junmengcui@buaa.edu.cn

Abstract: Auxiliary information sources, a subset of target recognition data sources, play a significant
role in target recognition. The reliability and importance of these sources can vary, thereby affecting
the effectiveness of the data provided. Consequently, it is essential to integrate these auxiliary
information sources prior to their utilization for identification. The Dempster-Shafer (DS) evidence
theory, a well-established data-fusion method, offers distinct advantages in handling and combining
uncertain information. In cases where conflicting evidence sources and minimal disparities in
fundamental probability allocation are present, the implementation of DS evidence theory may
demonstrate deficiencies. To address these concerns, this study refined DS evidence theory by
introducing the notion of invalid evidence sources and determining the similarity weight of evidence
sources through the Pearson correlation coefficient, reflecting the credibility of the evidence. The
significance of evidence is characterized by entropy weights, taking into account the uncertainty
of the evidence source. The proposed asymptotic adjustment compression function adjusts the
basic probability allocation of evidence sources using comprehensive weights, leading to symmetric
compression and control of the influence of evidence sources in data fusion. The simulation results
and their application in ship target recognition demonstrate that the proposed method successfully
incorporates basic probability allocation calculations for ship targets in various environments. In
addition, the method effectively integrates data from multiple auxiliary information sources to
produce accurate fusion results within an acceptable margin of error, thus validating its efficacy.
The superiority of the proposed method is proved by comparing it with other methods that use the
calculated weights to weight the basic probability allocation of the evidence sources.

Keywords: DS evidence theory; data fusion; weights; symmetric compression; probability

1. Introduction

A plethora of data sources is available in the realm of target recognition, with certain
sources serving as primary providers of high-dimensional data, such as one-dimensional
range profiles of targets [1,2], optoelectronic signals [3], and synthetic aperture radar
(SAR) [4–6]. The High Resolution Range Profile (HRRP) is the distribution of the target’s
Radar Cross Section (RCS) in the radar radial line of sight, the RCS can clearly show the
distribution of the target’s scattering center position and other structural information, and at
the same time, it is relatively easy to obtain. In practical applications, the target ship attitude
angle and sea surface undulation instability, as well as the sea surface air humidity for the
electromagnetic environment, radar bandwidth carrier frequency signal perturbation, and
other practical factors will bring interference to the HRRP, resulting in errors. Conversely,
there exists a subset of data sources that offers low-dimensional information, including sea
conditions, seasonal variations, target velocity, and other factors relevant to the recognition
of sea surface targets. In contemporary recognition systems, numerous algorithms prioritize
primary information sources owing to their ability to yield high recognition rates [7–9].
However, the utilization of auxiliary information sources and target identification methods
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is crucial because they offer essential data support. Hence, in presenting the ultimate target
recognition outcomes, it is imperative to not only rely on the primary information sources
for discrimination but also to consider the auxiliary information sources [10]. The optimal
amalgamation of these auxiliary sources of information holds significant importance as the
validity of their outcomes contributes to offering a more thorough information foundation
for the ensuing identification procedure, thereby enhancing the precision and dependability
of identification.

This study utilizes the similarity and information entropy of evidence sources to obtain
two weights, which are then weighted and averaged to obtain a comprehensive weight.
The Basic Probability Assignment (BPA) preprocessing of evidence sources is carried out
using the comprehensive weight and the proposed symmetric compression model, thereby
improving the DS evidence theory. The notion of invalid evidence sources facilitates
the convergence of the initial evidence towards invalid sources. This convergence is
accomplished through the proposed asymptotic adjustment compression function, thereby
addressing the issue arising from the direct weighting processing. The level of convergence
was established by weighting the similarity and entropy of the evidence sources. The
primary contributions of this study are as follows:

• Incorporating information entropy [11] as a metric for assessing the significance of
evidence enhances the differentiation between evidence, and addresses the issue of
accuracy in fusion outcomes when the BPA of evidence is minimally distinct. Entropy,
as a measure of uncertainty for each source of evidence, determines the weighting of
individual evidence by reflecting the level of uncertainty. Consequently, evidence with
higher uncertainty is assigned greater entropy and consequently, a reduced weight in
the process of data fusion.

• Introducing an asymptotic adjustment compression function to effectively modify
the comprehensive weight of evidence sources on the BPA, thereby addressing the
issue of evidence probability skewing towards reversal during weight introduction.
This model enables the adjustment of evidence source directionality, regulation of
their impact on data fusion, and preservation of the original bias of evidence sources
towards propositions.

• The modelling and quantification of different types of factors affecting the probability
of occurrence of ship targets are given, and the enhanced DS evidence theory has been
effectively utilized to determine the likelihood of ship targets appearing in specific
maritime regions. This methodology has enabled the integration of data from various
supplementary sources and has the ability to forecast the category and likelihood of
ship targets.

The subsequent sections of this article are structured as follows. Section 2 provides
an overview of related works. Section 3 provides an overview of the theoretical under-
pinnings of DS evidence theory, highlighting key areas for improvement, including the
consideration of similarity weight and entropy weight for evidence sources. Section 4
presents the simulation results and the corresponding analysis. Section 5 utilizes enhanced
DS evidence theory in the context of ship target recognition, thereby reinforcing the efficacy
of our approach. Section 6 discusses the proposed methodology. Section 7 presents a
comprehensive overview of this document.

2. Related Works

The data-fusion method has garnered significant interest from scholars. Traditional
approaches to data fusion include the weighted average method [12], Kalman filter [13],
wavelet transform [14], principal component analysis [15], Bayesian networks [16], and
Dempster-Shafer (DS) evidence theory [17]. Contemporary data-fusion techniques such as
neural networks [18] and ensemble learning methods [19] have gained traction in recent
years. The selected data-fusion methods are different for different goals of data fusion. In
this paper, we aim to fuse multiple data sources, mainly probabilistic data with uncertainty,
so DS evidence theory is more appropriate. The DS evidence theory, initially introduced
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by Dempster in 1967 and subsequently refined by Shafer, is a mathematical framework
designed to address uncertainty in decision-making processes. By integrating evidence
from diverse sources, this theory enables a thorough and precise analysis of uncertainty-
related matters, leading to its widespread application across various disciplines [20,21].

In engineering applications involving uncertain information, DS evidence theory is
frequently employed to achieve more precise outcomes. Khan et al. [22] utilized the DS
evidence theory for multisensor data fusion, which can handle conflicting sensor inputs
and can be applied without any prior information. As a result, DS-based information fusion
is very popular in decision-making applications. Lu, JJ [23] introduced a novel distributed
Kernel Extreme Learning Machine (KELM) algorithm. The application of DS evidence
theory addresses the challenge faced by the original KELM in meeting real-time demands
for aircraft engine onboard conditions when dealing with extensive sample sizes, which
applied DS evidence theory to aeronautical alternator fault diagnosis. These studies not
only promote its in-depth development in specific areas but also validate the effectiveness
of the DS evidence theory in practical applications.

The traditional DS evidence theory exhibits limitations in practical applications, partic-
ularly in cases of high evidence conflicts and deficiencies in usage. Two primary approaches
have been proposed to address these challenges: alternative combination rules and adjust-
ments to the evidence source model by preprocessing the original evidence.

A lot of scholars have conducted in-depth studies on the modification of combination
rules. For instance, Yager [24] proposed a method of transferring conflicts to unknown
propositions, theoretically resolving conflict situations, but the uncertainty within the
system persists. Sun et al. [25] introduced a novel combination rule that incorporated the
notion of evidence credibility and addressed local conflicts using the fusion method. Wang
et al. [26] proposed to combine fuzzy set theory with DS evidence theory, and established
a real-time monitoring system for water inrush in tunnels. These methods overcome
the limitations in the traditional DS evidence theory and achieve more reliable fusion of
conflicting multi-sensor information.

Although modifying the combination rule solves the highly conflicting situation,
the amount of conflicting allocations can easily be assigned to unknown propositions,
leading to failure to produce results. Therefore more research has focused on modifying
the evidence source model.

There are two main types of existing improvement methods in modifying evidence
source models. One is to introduce new concepts, such as the compatibility coefficient
between evidence [27], credibility [28], conflict intensity [29], etc. Tong et al. [29] defined
the classification conflict coefficients between the basic classifiers and selected different
fusion methods accordingly. Fan et al. [30] proposed to introduce a conflict metric based
on K and No(m1, m2) to assess the importance of each piece of evidence in the fusion
decision-making process by addressing the similarity between the evidence, but it suffers
from the drawbacks of complex computational process and poor focusing ability.

The other is to introduce methods such as BPA functions based on the number of
intervals [31], different distance functions [32], etc. Ga and colleagues [33] proposed a fault
diagnosis decision fusion algorithm based on proximity and DS theory. They established
weights for each piece of evidence based on the product of its closeness and the harmonic
mean, and optimized the classification probability values of various samples for a basic
classifier. Lin and colleagues [34] introduced the Markov distance function to compute the
degree of distance in the evidence, thereby determining the reliability of the evidence via
the distance matrix. Wei et al. [35] determined the significance of each piece of evidence by
calculating the degree of difference and exclusion between them, and after weighting and
averaging the pieces of evidence with different weights, the weighted pieces of evidence
were combined to make a decision and a further diagnosis, which proved that the method
has better diagnostic performance and reliability. Lu et al. [36] proposed a novel method
for the correct and incorrect classification of balanced classification structure information.
This method is based on the DS evidence theory and introduces a method based on inertia



Symmetry 2024, 16, 900 4 of 23

weight normalization in a confusion matrix, which effectively improves the accuracy of
decision fusion. Zhang et al. [37] proposed the enhanced DS evidence theory method. This
method is based on the Chebyshev distance and zero-divisor-corrected evidence source
method. It was designed to integrate conflicting multivariate monitoring data. Each of
these methods provides ideas for assigning weights to the BPA of evidence sources.

Since there are multiple propositions in the DS evidence theory, it gives a relative fusion
result when applied to it, but the magnitude of this value itself reflects the likelihood of the
proposition being valid to some extent, so it is fine for the current improved methods to
seek to make the likelihood more and more certain. However, when the BPA of the evidence
source is relatively average and using these methods still gives an extremely certain result,
then this should be considered with caution. Since the credibility of the evidence source
itself is reduced, it is not reasonable to give an extremely positive conclusion at this point.
Current improvement methods are at risk of overestimating certainty by disregarding
evidence with average BPA for propositions. It is unreasonable to assume that such
evidence does not contribute to the fusion process, as each source can influence the outcome
and should be considered in data fusion [37].

Employing weighted processing to preprocess the belief of evidence in current en-
hanced methods may not yield favorable results when incorporating relatively average
evidence from these BPAs. For instance, evidence that was initially perceived to have
a lesser impact on the data-fusion process was assigned lower weights. Using smaller
weights to assign a value to the evidence source may result in a reversal of the probability
direction of the evidence, potentially leading to contradictions [35,38]. Therefore, it is
essential to enhance the differentiation between evidence when the variances in BPA are
negligible and to make necessary adjustments to the BPA of the evidence source through
the use of appropriate weights. This article enhances DS evidence theory by addressing the
aforementioned issues, facilitating the fusion of evidence within a cohesive framework that
considers all relevant evidence and automatically eliminates invalid sources, resulting in a
more universally applicable approach.

3. Improved DS Evidence Theory
3.1. Traditional DS Evidence Theory

The utilization of DS evidence theory for problem of uncertain information fusion
necessitates the initial establishment of an identification framework, followed by the
modeling of uncertain information. This involves the conversion of objective observed
data into a fundamental probability function within the DS evidence theory framework.
Subsequently, the Dempster combination rule is employed to sequentially integrate the
produced basic probability functions. Ultimately, the decisions were made based on the
amalgamated results.

In DS evidence theory [39], Θ is the identification framework, and 2Θ is the entire
subset of Θ. Any proposition A belongs to the power set 2Θ if the function m : 2Θ → [0, 1]
satisfies the following conditions. {

m(∅) = 0
∑

A⊆Θ
m(A) = 1 (1)

In Equation (1), m is referred to as the basic probability allocation function of the
recognition framework Θ, also known as the mass function. m(A) represents BPA for
Proposition A, which is the degree to which evidence suggests that Proposition A has
occurred. m(A) is constructed from the data obtained from detection or provided by people
based on experience. m(∅) = 0 indicates that the trust of evidence in empty propositions
is zero, whereas ∑

A⊆Θ
m(A) = 1 indicates that the sum of trust in all propositions under the

recognition framework Θ is 1. If m(A) > 0 and A ⊆ Θ, then A is called the focal element
and the set of all focal elements is called the kernel.
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Under the recognition framework Θ, for proposition A, if there are multiple sets
of evidence and the corresponding probability allocation function is m1, m2, m3 · · · , the
synthesis rule of the DS theoretical evidence is:

m(A) =

 0 A = ∅
1

1−k ∑
Ai∩Bj∩Cl∩···=A

m1(Ai)m2(Bj)m3(Cl) · · · A ̸= ∅ (2)

In Equation (2), k is the conflict coefficient, which indicates the magnitude of the
conflict between evidence.

k = ∑
Ai∩Bj∩Cl∩···=∅

m1(Ai)m2(Bj)m3(Cl) · · · (3)

Here, k is the criterion for determining the acceptability of highly contradictory evi-
dence. When k < 0.95 is reached, it indicates that the conflict will not affect the accuracy of
fusion results, and evidence sources can be directly fused using the Dempster rule [40–42].
Otherwise, it is necessary to preprocess the conflicting evidence before fusion.

3.2. Validity of Evidence Sources

When the BPA of an evidence source for a proposition reaches a value of one, it
signifies that the BPA implies the evidence sources strongly support the proposition. At
this point the evidence source is most valid. Nevertheless, there exists a scenario in which
disparities in BPA among multiple propositions diminish or become equivalent as a result
of evidence sources. For instance, in the context of ship target recognition, unfavorable sea
conditions, all categories of ships sizes and categories are deemed likely to appear, leading
to identical BPA values for sea conditions across various ship sizes. The identical nature
of BPA indicates that the evidence source does not exhibit a preference for any particular
proposition, but rather considering them to occur with equal probability. Evidence sources
possessing this attribute have demonstrated no alterations in fusion outcomes pre- and post-
data fusion, rendering them ineffective in the fusion process. Consequently, the entropy
(and hence uncertainty) associated with such evidence sources are maximized. Thus, the
efficacy of evidence sources in data fusion can be evaluated by assessing the magnitude
of entropy.

Entropy is utilized as a metric to quantify a level of uncertainty associated with an
event [43]. As uncertainty increases, so does entropy; and vice versa. In the scenario where
a random variable D can take on K possible values, with pk denoting the probability of the
kth possible value occurring, the formula [43] for computing its entropy is as follows:

H(D) = −
K

∑
k=1

pk log2 pk (4)

This study attempts to assign weights to evidence sources based on the value of
entropy. In the context of binary categorization, it has been observed that as the probability
of belonging to one category approaches 0.5, the uncertainty increases, reflecting a state
of randomness [43]. Conversely, as this probability deviates further from 0.5 to either
extreme (0 or 1), the uncertainty decreases. This observation is consistent with the principle
of entropy.

The magnitude of entropy in the evidence source is indicative of its level of uncertainty
in mass allocation. Assuming that there are only two propositions, A and B, which are
subsets within the recognition framework, Figure 1 illustrates the correlation between
the belief mass allocation of the evidence source for proposition A and the magnitude of
entropy. Based on the data presented in Figure 1, it is evident that the entropy attains
a maximum value of 1 when the BPA of the evidence sources is uniformly distributed.
Conversely, when the BPA allocation for a proposition is highly certain, entropy reaches its
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minimum value of 0. Therefore, the entropy values can be predicted using the BPA of the
evidence source.
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Figure 2 illustrates the correlation between the entropy size of the evidence source and
its impact on the data-fusion outcomes. As depicted in the figure, an increase in the entropy
of the evidence source m diminishes the effectiveness of data fusion. When entropy reaches
its maximum, the third evidence source does not contribute effectively to the data-fusion
process. Therefore, the entropy of a source of evidence increases as it approaches invalidity
in DS evidence theory.
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Hence, altering the efficacy of the evidence source can impact the entropy of the evi-
dence source, leading to the convergence of an evidence source towards an unreliable state
and ultimately regulating the extent of the evidence source’s contribution to data fusion.

3.3. Similarity Weight and Entropy Weight of Evidence Sources

In the context of a recognition framework, the presence of a similarity relationship
between pieces of evidence may result in imprecise calculation outcomes. This study
evaluates evidence similarity using the Pearson correlation coefficient [44] and assigns
a similarity weight denoted as γ, indicative of evidence credibility. Furthermore, the
significance of evidence varies not only based on its inherent reliability but also on its
relative importance. The assessor must allocate distinct weights to individual pieces of
evidence, represented as η. The weight assigned to each piece of evidence is contingent
on the entropy of the evidence source. A higher entropy value indicates an increased
uncertainty of the evidence, resulting in a lower weight in the overall evidence analysis.
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This weight is defined as the entropy weight and its calculation process is outlined in detail
below [45].

• Similarity weight

1. Calculate the degree of relevance of the evidence. The correlation between pair-
wise evidence was calculated based on Pearson’s correlation coefficient. Taking the
correlation sij between evidence mi and mj as an example, the formula is:

sij =
E(mimj)− E(mi)E(mj)√

E(mi
2)− E2(mi)

√
E(mj

2)− E2(mj)
(5)

In the Equation (5), E is the mathematical expectation. i represents the i-th piece of
evidence and j represents the j-th piece of evidence.

2. We establish a correlation matrix, S, composed of the correlation coefficients of pair-
wise evidence:

S =


s11 s12 . . . s1n
s21 s22 . . . s2n
...

...
. . .

...
sn1 sn2 . . . snn

 (6)

Since sij ∈ [−1, 1], when sij ≤ 0 indicates a negative correlation between these two
pieces of evidence. To ensure the accuracy of the weight calculation and reduce the
impact of high conflict evidence, this article uniformly assigns a value of 0.001 to the
result when sij ≤ 0.

3. Calculate the similarity weight of the evidence. This study defines the similarity of

evidence mi as γ(mi), γ(mi) ∈ [0, 1] and
n
∑

i=1
γ(mi) = 1, and the formula.

γ(mi) =

n
∑

j=1,j ̸=i
sij(mi, mj)

n
∑

i=1

n
∑

j=1,j ̸=i
sij(mi, mj)

(7)

• Entropy weight

The entropy weight of the evidence source is defined as η, which represents the
proportion of a certain evidence source to all evidence sources. According to the relationship
between the entropy and weight of the evidence source, the formula for calculating the
entropy weight of the i-th evidence is defined as follows:

ηi =
e−ωHi

n
∑

i=1
e−ωHi

(8)

In the Equation (8), Hi represents the entropy of the i-th piece of evidence and n
represents the total number of evidences. It is found that when ω is taken as 5, it gives
maximum weight to the evidence sources with small entropy, so in this paper the value of
ω is 5.

3.4. Asymptotically Adjustable Compression Function

An asymptotically adjusted compression function is proposed in this study to enhance
the uncertainty and diminish the sensitivity of the evidence in constructing a refined
model. The asymptotic adjustment compression function outlined in this study aligns the
evidence source with an invalid evidence source, consequently mitigating its influence on
data fusion.
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The weighted average of the similarity weight γ and entropy weight η of a certain
evidence source was used to obtain the comprehensive weight α of a certain evidence
source. The formula used is as follows:

α =
γ + η

2
(9)

This study employs the asymptotic adjustment compression function to achieve BPA
adjustment, thereby guiding the evidence source towards the direction of invalid evidence
sources. The formula for this adjustment is as follows:

P′ =

{
P + (1 − α) ∗ (1/nnum − P) P ≤ 1/nnum
P − (1 − α) ∗ (P − 1/nnum) P > 1/nnum

(10)

In the Equation (10), nnum represents the number of propositions within the recog-
nition framework and P represents BPA before preprocessing. α represents the degree
of convergence, and when α = 1, the BPA of the evidence to the proposition remains
unchanged; When α = 0, BPA is compressed to 1/nnum, meaning that entropy reaches its
maximum and uncertainty is maximized, and the evidence source becomes completely
invalid. Regardless of the value of P, symmetric compression of P with respect to 1/nnum
was achieved using the asymptotic adjustment of the compression function.

3.5. Decompression Function

The purpose of linear compression of the BPA of the evidence source is to pre-process
the evidence source, then after the data fusion is completed it should be linearly amplified
accordingly for the fusion result to be reasonable.

P =



P′ + (β − 1/nnum) ∗
P′ − 1/nnum

nnum ′

∑
i=1

(Pi
′ − 1/nnum)

P′ ≥ 1/nnum

P′ − (β − 1/nnum) ∗
1/nnum − P′

nnum ′

∑
i=1

(1/nnum − Pi
′)

P′ < 1/nnum

(11)

where P′ denotes the BPA of the fused result, β denotes the general understanding for
making probabilistic judgements, which is taken as 0.5. nnum denotes the number of
propositions in the recognition framework, nnum

′ denotes the number of BPAs within the
corresponding range of values, and Pi

′ denotes the i-th BPA within the corresponding
range of values. by using the inverse compression model, it is possible to make a linear
amplification of the fused result corresponding to the time when it was compressed.

4. Simulation Results and Analysis
4.1. Basic Settings

The simulations conducted in this study were implemented using the Python 3.9
programming language.

Various comparison methods were employed to assess the efficacy of the proposed
method. In addition to the traditional DS evidence theory [46] and Yager’s rule [24],
the enhanced methods are denoted as Contradictory coefficient [38], Importance-based
weight [35], and Chebyshev distance [47] based on their respective enhancements.

4.2. Fusion Results of Different Combinations of Evidence

To assess the efficacy of the method outlined in this article in diminishing the influence
of specific evidence sources in data fusion, as opposed to outright disregarding them, a
selection of evidence sources with ambiguous BPA was provided for examination. Assum-
ing a recognition framework denoted as Θ = {A, B, C} and an evidence set denoted as
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M = {m1, m2, m3, m4, m5}, and assuming the true target is denoted as “A”, the conflicting
information is detailed in Table 1.

Table 1. Evidence Combination 1.

Evidence
Targets

A B C

m1 0.4 0.3 0.3
m2 0.4 0.3 0.3
m3 0 0.5 0.5
m4 0.4 0.3 0.3
m5 0.4 0.3 0.3

The fusion results of the comparison method and the method proposed in this paper
are displayed in Table 2 when there is an evidence source that presents significant conflicts
with other sources, and the BPA of the latter is ambiguous. The traditional DS evidence
theory completely rejects proposition A based on m3, leading to the fusion result also
negating proposition A. Yager’s rule, faced with substantial conflicts, opts to assign a
higher BPA to an uncertain proposition, thereby failing to provide a conclusive judgment,
such as the value of 0.9919 in Table 2.

Table 2. Comparison of Fusion Results of Evidence Combination 1.

Methods Targets BPA of Proposition after Fusion Fusion Results

DS combination

A 0

Unknown
B 0.5
C 0.5
Θ 0

Yager’s rule

A 0

Unknown
B 0.0040
C 0.0040
Θ 0.9919

Contradictory coefficient

A 0.0570

Unknown
B 0.4714
C 0.4714
Θ 0.0002

Importance-based weight

A 0.2795

B
B 0.3960
C 0.3244
Θ 0.0001

Chebyshev distance

A 0.1552

B
B 0.5110
C 0.3338
Θ 0

Proposed

A 0.3401

A
B 0.3299
C 0.3299
Θ 0.0001

The Chebyshev distance method reallocates the sum of BPAs based on the credibility
of the individual pieces of evidence. Consequently, when the combined BPAs for the two
propositions are equal, the fusion results cannot be differentiated. Moreover, this approach
may lead to instances where the total BPAs in the evidence exceed or fall short of one
following preprocessing, thus giving results that are inconsistent with the assumption. On
the other hand, the Importance-based weight involves directly multiplying weights with
BPAs, potentially providing evidence that supports a proposition to become unsupportive.
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The Contradictory coefficient method calculates the conflict coefficient to give a con-
tradiction matrix, which indicates the degree to which different pieces of evidence are
in conflict with each other. Based on the contradiction matrix, the mutual contradiction
coefficient of each piece of evidence is obtained, and then the weight of each piece of
evidence is obtained. The mechanism of action of the Contradictory coefficient method can
appear to fail to give fusion results. The proposed method introduced a comprehensive
weight to compress the BPA of the evidence source without changing the judgement of the
proposition by the evidence source, maintaining the integrity of the evidence’s assessment
of the propositions.

Based on the findings from the simulation results, it is evident that the effectiveness of
the evidence diminishes when BPA is ambiguous. Employing entropy weights to assess
the significance of evidence enhances discrimination between sources of evidence and
addresses inaccuracies in fusion outcomes resulting from similar BPAs. Additionally, the
utilization of comprehensive weights to condense the BPA of evidence sources mitigates
the issue of evidence probability pointing towards reversal.

To enhance the thoroughness of the simulation verification process outlined in this
study, the data fusion of evidence sources with explicit BPA was examined. Assuming that
A represents the actual target, conflicting information is presented in Table 3.

Table 3. Evidence Combination 2.

Evidence
Targets

A B C

m1 0.7 0.2 0.1
m2 0.9 0.05 0.05
m3 0 0.8 0.2
m4 0.8 0.1 0.1
m5 0.85 0.1 0.05

When conflicting evidence is juxtaposed with other sources with clear BPA, the fusion
outcomes of the comparison method and the novel method outlined in this study are
presented in Table 4. The table demonstrates that the proposed method not only yields
the same conclusion as the assumption but also generates more rational outcomes. Our
method’s fusion result for target A’s BPA may be modest compared to other methods, but it
effectively decreases the sensitivity of BPA and enhances the robustness of evidence fusion.
Excessively positive outcomes can breed overconfidence among decision-makers, poten-
tially blinding them to potential uncertainties or unknown variables. The methodology
outlined in this article demonstrates the potential for yielding favorable outcomes in the
specified scenario. Given the inherent uncertainty associated with individual pieces of
evidence in supporting BPA, it is advisable to exercise caution when interpreting the final
fusion result. Consequently, it is recommended to place a higher degree of trust in fusion re-
sults derived from unambiguous sources of BPA, while also approaching decision-making
with prudence.

Table 4. Comparison of Fusion Results of Evidence Combination 2.

Methods Targets BPA of Proposition after Fusion Fusion Results

DS combination

A 0

B
B 0.94
C 0.06
Θ 0

Yager’s rule

A 0

Unknown
B 0.0001
C 0
Θ 0.9999
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Table 4. Cont.

Methods Targets BPA of Proposition after Fusion Fusion Results

Contradictory coefficient

A 0.9651

A
B 0.0222
C 0.0099
Θ 0.0028

Importance-based weight

A 0.9975

A
B 0.0023
C 0.0001
Θ 0.0001

Chebyshev distance

A 0.9991

A
B 0.0009
C 0
Θ 0

Proposed

A 0.8017

A
B 0.1237
C 0.0745
Θ 0.0001

This approach employs weighted compression of the BPA of evidence sources to
mitigate the issue of evidence probability leading to reversal, thereby enabling control
over the contribution of evidence sources to data fusion. In addition, it enhances the
discrimination of evidence sources with ambiguous BPA, decreases the sensitivity of BPA,
improves the robustness of evidence fusion, and yields accurate fusion outcomes within a
rational scope.

4.3. Influence of Similarity Weight

To assess the impact of similarity weights on the fusion results, a dataset of evidence
information is presented in Table 5, assuming A to be the true target. Utilizing the Pearson
correlation coefficient, the similarity weights of evidence sources were determined to [0.25,
0.2496, 0.0003, 0.2495, and 0.25]. To mitigate the influence of entropy weights from evidence
sources, an equal distribution was established at [0.2, 0.2, 0.2, 0.2, 0.2], according that
entropy weight represents the importance of an evidence in all evidence.

Table 5. Evidence Combination 3.

Evidence
Targets

A B C

m1 0.75 0.15 0.1
m2 0.8 0.15 0.05
m3 0 0.7 0.3
m4 0.9 0.05 0.05
m5 0.85 0.1 0.05

The fusion outcomes of the different enhancement techniques are presented in Table 6.
The analysis of the table reveals that the conventional DS method yields inaccurate fu-
sion outcomes, whereas Yager’s rule fails to produce fusion results. Conversely, alter-
native methods can generate precise fusion outcomes, albeit within a specified range
of reasonableness.

In the calculation of total system reliability, the reliability calculation formulas for
parallel systems are as follows [46]:

R = 1 −
n

∏
i=1

(1 − Ri) (12)
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In the Equation (12), Ri represents the reliability of the subsystem.

Table 6. Comparison of Fusion Results of Evidence Combination 3.

Methods Targets BPA of Proposition after Fusion Fusion Results

DS combination

A 0

B
B 0.95
C 0.05
Θ 0

Yager’s rule

A 0

Unknown
B 0.0001
C 0
Θ 0.9999

Contradictory coefficient

A 0.9681

A
B 0.0217
C 0.0076
Θ 0.0026

Importance-based weight

A 0.9986

A
B 0.0012
C 0.0001
Θ 0.0001

Chebyshev distance

A 0.9995

A
B 0.0004
C 0.0001
Θ 0

Proposed

A 0.9041

A
B 0.0746
C 0.0212
Θ 0.0001

This study examined the relationship between the credibility of the evidence source
and the reliability of the subsystem. There was no direct correlation between the sources
of evidence. Therefore, in line with the concept of calculating system reliability, the simi-
larity weight is utilized as the maximum limit of the BPA based on the outcomes derived
from the parallel system. Given the uncertainty associated with each piece of evidence
in determining the BPA, it is logical that the fusion result does not surpass this upper
limit. Figure 3 shows the BPA of proposition A after fusion for each method and the
upper limit value calculated according to Equation (18), which represents the maximum
value of the result obtained from data fusion of the evidence source. The data indicate
that only the method posited in this study remained within the prescribed upper limit, as
opposed to other methodologies that surpassed this threshold owing to the BPA limit of 1.
Incorporating similarity weights can facilitate the generation of fusion outcomes that are
conducive to informed decision making within an acceptable range. Consequently, employ-
ing the approach delineated in this research can assure the precision and dependability of
fusion results.

4.4. Influence of Entropy Weight

To evaluate the influence of entropy weight on fusion outcomes, a collection of evi-
dential data is presented in Table 7, under the assumption that A represents the true target.
The allocation of weights was determined based on the entropy values of the evidence
sources, resulting in a distribution of [0.23, 0.078, 0.31, 0.078, 0.151, 0.153]. To mitigate
the impact of similarity weights from the evidence sources, all evidence was assigned a
uniform similarity weight of [1, 1, 1, 1, 1, 1], indicating full reliability on each piece of
evidence itself. Table 7 shows that m1, m2, and m3 support Proposition A, while m4, m5,
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and m6 support Proposition B. In cases where the amount of supporting evidence for each
proposition is equal, the fusion result may be uncertain and susceptible to errors.
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Table 7. Evidence Combination 4.

Evidence
Targets

A B C

m1 0.5 0.4 0.1
m2 0.4 0.3 0.3
m3 0.6 0.3 0.1
m4 0.3 0.4 0.3
m5 0.35 0.5 0.15
m6 0.25 0.55 0.2

The fusion outcomes for each technique are presented in Table 8. In contrast to other
enhanced methods that overlook the uncertainty inherent in the evidence sources and
prioritize fusion, the approach outlined in this study allocates weights based on the entropy
of the evidence sources. This methodology ensures that evidence sources with lower
entropy receive greater weight, thereby maximizing the utilization of pertinent information
within the evidence sources and yielding the same conclusion as the assumption.

Table 8. Comparison of Fusion Results of Evidence Combination 4.

Methods Targets BPA of Proposition after Fusion Fusion Results

DS combination

A 0.4413

B
B 0.5549
C 0.0038
Θ 0

Yager’s rule

A 0.0031

Unknown
B 0.0040
C 0
Θ 0.9929

Contradictory coefficient

A 0.4213

B
B 0.5723
C 0.0063
Θ 0.0001
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Table 8. Cont.

Methods Targets BPA of Proposition after Fusion Fusion Results

Importance-based weight

A 0.4426

B
B 0.5528
C 0.0045
Θ 0.0001

Chebyshev distance

A 0.4325

B
B 0.5628
C 0.0047
Θ 0

Proposed

A 0.4140

A
B 0.3979
C 0.1880
Θ 0.0001

The findings in Table 8 demonstrate that our method yields the same conclusion as
the assumption, indicating a preference for the BPA of the evidence source with the highest
entropy weight. Consequently, when faced with an equal number of incompatible evidence
sources, our method prioritizes evidence with lower entropy, amplifying its significance,
and increasing reliance on evidence sources with greater weight.

5. Results: Probability of Ship Detection

In the realm of ship target recognition, the likelihood of a particular ship type manifest-
ing in a designated maritime region is instrumental in facilitating informed decision making
regarding recognition outcomes. In practical scenarios, it is imperative to offer probabilities
of ship-type targets across varying-size categories, encompassing large, medium, and small
vessels. This section utilizes the improvement method outlined in the aforementioned
article, considering the perspectives of varying scales and incorporating empirical data
pertaining to environmental conditions and the motion characteristics of the target to
estimate the likelihood of ship type targets manifesting.

5.1. Quantification of Influencing Factors

The assessment of the likelihood of the presence of maritime vessels of varying sizes is
instrumental in enabling decision makers to devise appropriate response strategies. Table 9
provides the definition, size, and speed of maritime vessels of varying sizes [47].

Table 9. Maritime Vessels of Varying Sizes.

Size Examples Length (m) Speed (m/s)/(knots)

Large cruise ships and container ships 100–400 5–13/10–25
Medium cargo and passenger ships 20–150 8–15/15–30

Small fishing boats and yachts 10–30 10–25/20–50

The computation of the probability of the presence of these vessels necessitates consid-
eration of multiple influencing factors. These include environmental conditions, speed and
length of the target vessel, and information derived from various data sources. These factors
are divided into target-related and data source-related factors, each contributing indepen-
dently to BPA. As depicted in Figure 4, the Analytic Hierarchy Process (AHP) is employed
to classify these influencing factors, thereby facilitating their integration into the data-fusion
process. This approach provides a more appropriate way of categorising factors.



Symmetry 2024, 16, 900 15 of 23

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 24 
 

 

5. Results: Probability of Ship Detection 
In the realm of ship target recognition, the likelihood of a particular ship type mani-

festing in a designated maritime region is instrumental in facilitating informed decision 
making regarding recognition outcomes. In practical scenarios, it is imperative to offer 
probabilities of ship-type targets across varying-size categories, encompassing large, me-
dium, and small vessels. This section utilizes the improvement method outlined in the 
aforementioned article, considering the perspectives of varying scales and incorporating 
empirical data pertaining to environmental conditions and the motion characteristics of 
the target to estimate the likelihood of ship type targets manifesting. 

5.1. Quantification of Influencing Factors 
The assessment of the likelihood of the presence of maritime vessels of varying sizes 

is instrumental in enabling decision makers to devise appropriate response strategies. Ta-
ble 9 provides the definition, size, and speed of maritime vessels of varying sizes [47]. 

Table 9. Maritime Vessels of Varying Sizes. 

Size Examples Length (m) Speed (m/s)/(knots) 
Large cruise ships and container ships 100–400 5–13/10–25 

Medium cargo and passenger ships 20–150 8–15/15–30 
Small fishing boats and yachts 10–30 10–25/20–50 

The computation of the probability of the presence of these vessels necessitates con-
sideration of multiple influencing factors. These include environmental conditions, speed 
and length of the target vessel, and information derived from various data sources. These 
factors are divided into target-related and data source-related factors, each contributing 
independently to BPA. As depicted in Figure 4, the Analytic Hierarchy Process (AHP) is 
employed to classify these influencing factors, thereby facilitating their integration into 
the data-fusion process. This approach provides a more appropriate way of categorising 
factors. 

Target

The Probability of Ship 
Targets Appearing

Signal Source

Environment

Length

Speed

Sea Conditions

Season

Quality of Signal

 
Figure 4. Influence Factor. 

By quantifying the factors according to their acquisition methods and data character-
istics, the probability distribution of the ship under each factor was obtained. 
• Sea conditions 

Within the scope of environmental factors, the impact of weather is predominantly 
manifested in the state of the sea [48]; hence, the primary focus is on the sea conditions. 
Existing research [49] categorizes sea conditions ranging from 0 to 9 into four distinct lev-
els based on the significant wave height: normal, high, severe, and hazardous sea condi-
tions, as shown in Table 10. Generally, we postulate the likelihood of the presence of large, 
medium, and small vessels is relatively high under favorable sea conditions. Conversely, 
under adverse sea conditions, the probability of vessel presence is comparatively low. Un-
der moderate sea conditions, the probability of a large vessel presence increases, whereas 
the likelihood of a small vessel presence decreases. Utilizing the empirical data provided 

Figure 4. Influence Factor.

By quantifying the factors according to their acquisition methods and data characteris-
tics, the probability distribution of the ship under each factor was obtained.

• Sea conditions

Within the scope of environmental factors, the impact of weather is predominantly
manifested in the state of the sea [48]; hence, the primary focus is on the sea conditions.
Existing research [49] categorizes sea conditions ranging from 0 to 9 into four distinct levels
based on the significant wave height: normal, high, severe, and hazardous sea conditions, as
shown in Table 10. Generally, we postulate the likelihood of the presence of large, medium,
and small vessels is relatively high under favorable sea conditions. Conversely, under
adverse sea conditions, the probability of vessel presence is comparatively low. Under
moderate sea conditions, the probability of a large vessel presence increases, whereas the
likelihood of a small vessel presence decreases. Utilizing the empirical data provided by the
National Marine Science Data Center, piecewise linear fitting was conducted to calculate
the annual probability of occurrence for each sea condition level. This calculated probability
is subsequently utilized as the BPA for sea conditions, and is represented as follows:

fsea(xsea) =


0.8 0 ≤ xsea ≤ 6

0.0014 ∗ l + 0.33 6 < xsea ≤ 7
0.0012 ∗ l + 0.14 7 < xsea ≤ 8

0.1 8 < xsea ≤ 9

(13)

In the Equation (13), xsea represents the sea state level and l represents the length of
the target to be identified.

Table 10. Sea State Classification.

Sea State Description of Sea Surface Phenomena Significant Wave
Height (m)

0 like a plane 0
1 Fish-scale ripples, but no bubbles 0–0.1
2 Small waves, cresting and breaking, foam glassy in color 0.1–0.5
3 Small waves, crests rolling, white foam appearing 0.5–1.25
4 Medium waves, numerous self-generated waves 1.25–2.5
5 Large waves, significant foam atop wave crests 2.5–4.0
6 Giant waves, longer waveforms, edges of crests rupturing 4.0–6.0
7 Raging waves, sea roiling, surface turning white 6.0–9.0
8 Stormy seas, violently rolling waves, whitened ocean surface 9.0–14.0
9 Furious surf, saturated air, reduced visibility >14.0

• Speed and length

The velocities of the different types of ships exhibited variability and distinct ranges.
Ships of different sizes are categorized based on their length divisions with the assumption
that they conform to a normal distribution [50]. Using the velocity of sea vessel as a specific
example, the central tendency of this variable acts as the focal point of the distribution.
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Consequently, the probability density function of a specific velocity v for the navigation of
diverse ship types can be derived.

fnor(v) =
1√
2πσ

e−
(v−µ)2

2σ2 − ∞ < v < +∞ (14)

In the Equation (14), µ is the mean velocity, and σ2 is the variance. The probability
density function of a normal distribution is generally used as a membership function for
target classification based on the velocity. Therefore, based on the value of attribute k, the
Gaussian membership function classified as A is shown in Figure 5, and the calculation
formula [50] is as follows:

µA
k (x) =

exp
[
− (x−Xk)

2

2(σk)
2

]
, Xk − 3σk ≤ x ≤ Xk + 3σk

0, Xk − 3σk ≥ x or x ≥ Xk + 3σk

(15)

In the Equation (15), k = 1, 2, . . . , K, Xk and σk represent the sample mean and standard
deviation of attribute k. x is the value of the target attribute k. For any target, µA

k (x) reflects
the degree to which it belongs to category A from the perspective of attribute k. In this
article, it reflects the probability that the target belongs to a large ship from the perspective
of speed. And use it as the BPA provided by the evidence of velocity information.
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• Season

Seasonal factors primarily consider the likelihood of vessels embarking on sea voyages
during various months as well as the constraints imposed by fishing moratoriums. Broadly
speaking, ships are more prevalent in the summer and autumn months because of the
impact of tourism and commercial activities. For instance, in the Northern Hemisphere,
the likelihood of ship sightings is notably higher from June to November, with varying
probabilities for different vessel types. Study [51] has indicated that the likelihood of ships
embarking on sea voyages within a year typically conforms to a normal distribution; thus,
the aforementioned membership function can be utilized to quantify BPA as pmonth. The
restriction of fishing activities pertains solely to fishing vessels, the majority of which
are small in size; thus, this factor is only considered when assessing the probability of
small vessels being present. Generally, fishermen are expected to comply with fishing ban
regulations and refrain from engaging in fishing activities at sea. This study posits that the
likelihood of ships appearing during the fishing ban period is minimal, with a probability
set at 0.05. Other ship categories are exempt from fishing bans; thus, their occurrence is
deemed to have a probability of 1. The fishing ban period is assumed to extend until a
specified time, such as in the waters of China, where the requirements for fishing bans
in each sea area are denoted as l1 = 3 and l2 = 6 [52]. The period from March to June
was designated as the fishing ban period. In conclusion, the probability of small boats
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appearing is determined by the BPA derived from seasonal factors, which can be expressed
by the following equation:

fmonth(xmonth) =

{
min(pmonth, 0.95) xmonth < l1 or xmonth > l2
min(pmonth, 0.05) l1 ≤ xmonth ≤ l2

(16)

In the Equation (16), xmonth represents the month. When calculating the probability of
the appearance of non-small-size boats, the formula for calculating BPA is:

fmonth(xmonth) = min(pmonth, 1) (17)

In the Equation (17), xmonth represents the month.

• Quality of signal

Signal quality can be standardized by calculating the signal-to-noise ratio (SNR) of
the data originating from the signal source to derive the BPA. The SNR represents the
ratio of signal power or amplitude to noise and serves as a metric to assess the strength
and clarity of useful signals in comparison to background noise. Signals that convey
desired information may be disrupted by noise and extraneous interference stemming from
sources, such as electromagnetic interference and atmospheric disturbances. The larger the
signal-to-noise ratio, the better is the quality of the signal relative to the noise.

5.2. Calculation and Analysis

Potential scenarios were analyzed to assess the practical applicability of the proposed
method outlined in this article. The recognition framework is established as
Θ = {Large, Medium, Small}, and the individual probabilities of large, medium, and
small ships appearing are calculated. It is worth noting that certain sources suggest that
under specific conditions, such as favorable sea conditions, the likelihood of large, medium,
and small ships appearing may be equal, with a probability of 0.8. In accordance with
the principles of the DS evidence theory, it is necessary for the recognition framework to
consist of a comprehensive set of mutually exclusive basic propositions, leading to the
normalization of BPA during the process of data fusion. For instance, the normalization
formula of large ship for the first evidence presented in Table 11 is as follows:

m1
′(Large) =

m1(Large)
m1(Large) + m1(Medium) + m1(Small)

(18)

Table 11. The fusion result of Non-conflicting evidence.

Evidence
Targets

Fusion Result
Large Ship Medium Ship Small Ship Θ

Sea conditions 1/3 1/3 1/3 0

Medium ship

Season 0.4 0.55 0.05 0
Quality of signal 1/3 1/3 1/3 0

Speed 0.3 0.6 0.1 0
Length 0.1 0.8 0.1 0

BPA after fusion 0.2434 0.5569 0.1953 0.0044

5.2.1. Non-Conflicting Evidence

In practical applications, evidence often does not conflict. An example of this can
be seen in a specific probability calculation related to ship occurrences, where the sea
condition was categorized as level 4, which took place in May during a fishing ban. The
ship was traveling at a speed of approximately 24 nautical miles per hour, and had a
length of approximately 200 m. These factors were utilized to determine the membership
degree for obtaining BPA with high-quality data acquired from the signal source. BPA was
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subsequently derived by calculating the signal-to-noise ratio. The analysis suggests that
the intended target is a medium-sized vessel, as indicated by the evidence of participation
in the evaluation, its BPA, and the fusion results presented in Table 11.

The proposed method obtains the composite weight of each evidence source by calcu-
lating the similarity weight and entropy weight of each evidence source, and preprocesses
the evidence sources using the composite weight and the asymptotic adjustment compres-
sion function. Since there is no conflict between the evidence, the method in this paper
gives fusion results that are consistent with common sense.

In practical scenarios, conflicts may arise between evidence as a result of uncertain
events. This analysis examines the application of the proposed method to address potential
conflicts that may arise in practice [53].

5.2.2. Conflict with Zero Confidence

A sea-condition level of 7 results in significant wave interference that obstructs data
collection and renders the signal quality unreliable. Consequently, the signal cannot be
considered as a valid source of evidence for data fusion. This observation was made in June
during a fishing ban period, with the ship’s speed recorded at approximately 27 nautical
miles per hour. Following the calculation using the membership function, the BPA for
a large ship was determined to be 0. A length of approximately 120 m was utilized in
conjunction with other factors to determine membership for the purpose of obtaining BPA
in the context of a medium-sized ship. The evaluation included evidence of participation,
BPA, and fusion results, as shown in Table 12. The analysis in Table 12 reveals that the fusion
results generated by this method pertain to large ships. Therefore, in light of conflicting
evidence and evidence with moderate BPA values, a comprehensive consideration of all
evidence is necessary to overcome the limitations of the traditional DS evidence theory and
produce an accurate fusion result.

Table 12. The fusion result of Conflict with 0 Confidence.

Evidence
Targets

Fusion Result
Large Ship Medium Ship Small Ship Θ

Sea conditions 0.5 0.3 0.2 0

Large ship

Season 0.57 0.38 0.05 0
Quality of signal 1/3 1/3 1/3 0

Speed 0 0.6 0.4 0
Length 0.7 0.2 0.1 0

BPA after fusion 0.4272 0.3439 0.2254 0.0035

An in-depth examination of the data-fusion process is outlined in Table 12. In this
study, data fusion was conducted sequentially, based on the evidence presented in Table 12.
Theoretically, the presence of contradictory information, such as speed, suggests that the
BPA of large vessels decreases when this evidence is integrated into the data-fusion process.
Figure 6 illustrates the variation in the BPA values of the fusion outcomes as the number
of BPAs incorporated in the fusion process increases. Figure 6 illustrates that neither
the traditional DS evidence theory nor Yager’s rule yielded the same conclusion as the
assumption. Specifically, when the number of BPAs is four, there is an anomalous increase
in the BPA of large ships, contradicting Importance-based weight method and Chebyshev
distance method. Only the method proposed in this study and the Contradictory coefficient
method showed a decreasing trend. However, the final fusion outcome of the Contradictory
coefficient method was inaccurate, indicating that medium-sized ships had the highest
likelihood of occurrence.

Hence, in cases where conflicting evidence arises in the fusion process, the BPA of
large ships decreases; however, the approach outlined in this study ultimately yields an
accurate fusion outcome, offering distinct advantages in addressing challenges associated
with multi-evidence fusion issues.
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October 0.33/0.33/0.33/0 0.20/0.30/0.50/0 0.33/0.33/0.33/0 0.96/0.03/0.01/0 0.85/0.10/0.05/0 
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5.3. Effect of Time

The experimental simulation presented in Table 13 utilizes data obtained from a
real large-ship target. The BPA of various evidences assigned to ships of different sizes
over consecutive months within a year was examined. Sea-state data were derived from
measurements provided by the National Marine Science Data Center. It is noted that June
to August mark the typhoon season in Chinese waters annually, whereas November to
February of the following year is characterized by strong winds in northern waters, leading
to unfavorable sea conditions. Seasonal factors are determined by analyzing the likelihood
of ships departing in various months, whereas Bayesian probability analysis incorporates
empirical data collected over multiple months.

Table 13. Evidence combination for different months.

Time
Evidence

Sea Conditions Season Quality of Signal Speed Length

January 0.45/0.35/0.20/0 0.50/0.30/0.20/0 0.33/0.33/0.33/0 0.71/0.24/0.05/0 0.68/0.30/0.02/0
February 0.60/0.20/0.20/0 0.67/0.16/0.17/0 0.33/0.33/0.33/0 0.85/0.10/0.05/0 0.91/0.05/0.04/0

March 0.33/0.33/0.33/0 0.82/0.13/0.05/0 0.33/0.33/0.33/0 0.55/0.35/0.10/0 0.66/0.25/0.09/0
April 0.33/0.33/0.33/0 0.77/0.18/0.05/0 0.33/0.33/0.33/0 0.80/0.05/0.15/0 0.74/0.16/0.10/0
May 0.33/0.33/0.33/0 0.40/0.55/0.05/0 0.33/0.33/0.33/0 0.60/0.30/0.10/0 0.80/0.10/0.10/0
June 0.50/0.30/0.20/0 0.57/0.38/0.05/0 0.33/0.33/0.33/0 0.00/0.60/0.40/0 0.70/0.20/0.10/0
July 0.70/0.20/0.10/0 0.65/0.25/0.10/0 0.33/0.33/0.33/0 0.90/0.06/0.04/0 0.89/0.10/0.01/0

August 0.65/0.25/0.10/0 0.90/0.05/0.05/0 0.33/0.33/0.33/0 0.78/0.14/0.08/0 0.67/0.19/0.14/0
September 0.33/0.33/0.33/0 0.50/0.20/0.30/0 0.33/0.33/0.33/0 0.64/0.35/0.01/0 0.71/0.10/0.19/0

October 0.33/0.33/0.33/0 0.20/0.30/0.50/0 0.33/0.33/0.33/0 0.96/0.03/0.01/0 0.85/0.10/0.05/0
November 0.41/0.30/0.29/0 0.70/0.10/0.20/0 0.33/0.33/0.33/0 0.51/0.35/0.14/0 0.68/0.21/0.11/0
December 0.55/0.30/0.15/0 0.53/0.27/0.20/0 0.33/0.33/0.33/0 0.83/0.13/0.04/0 0.91/0.05/0.04/0

The probability outcomes regarding the presence of large ships, as determined through
data fusion employing various enhancement techniques, are shown in Figure 7. Analysis
of Figure 7 reveals that the fusion outcomes of the Contradictory coefficient method in
June were inaccurate, with other methodologies surpassing the upper threshold to varying
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extents. Notably, only the fusion outcomes of this particular method were accurate and
fell within the acceptable range, which refers to the upper limit value which represents the
maximum value of the result obtained from data fusion of the evidence source.
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Hence, in real-world scenarios, the methodology presented in this study has the
capability to regulate the directionality of evidence sources, manage their influence in
data integration, and uphold the inherent biases of evidence sources towards propositions,
thereby ensuring the precision of fusion outcomes and offering a level of data reliability.

6. Discussion

Many fusion methods aim to minimize uncertainty in fusion results, with traditional
synthesis rules of DS evidence theory proving effective in achieving this goal. To fully
capitalize on these methods, a clear distinction must be made between the evidence, partic-
ularly in cases where the BPAs are ambiguous. This paper proposes a method to enhance
differentiation between evidence from an entropy perspective. When there is only one
piece of evidence, its entropy weight is 1, and the entropy value of the evidence source does
not impact the BPA. With two pieces of evidence, the BPAs transition from being identical
to completely conflicting, meaning that while one piece of evidence remains unchanged,
the BPA of the other piece becomes increasingly antagonistic towards the proposition. If a
linear relationship exists between the change in BPA and the change in weights, subsequent
preprocessing using the asymptotic adjustment compression function results in a minimal
alteration in the evidence’s BPA, leading to insignificant differentiation. In the proposed
methodology, it is observed that a linear increase in BPA results in an exponential increase
in entropy weights. The weights obtained are larger when the entropy of the evidence is
smaller, and the rate of weight increase accelerates as the entropy approaches zero. By
employing the asymptotic adjustment compression function to preprocess the evidence,
the BPA undergoes more significant changes, leading to enhanced differentiation between
evidence and assigning larger weights to more certain evidence. The outcomes of data
fusion using DS evidence theory are found to be more reliant on the evidence with greater
weights. Hence, the proposed methodology effectively achieves accurate results through
enhancing the distinction between evidence sources and integrating data.

7. Conclusions

This article introduces a modification to DS evidence theory as a solution to this
challenge. Asymptotic adjustment compression function is used to achieve symmetric
compression of the integrated weights of the evidence sources on the BPA of the evidence
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sources and to control the degree of their influence in data fusion, which is a new pre-
processing method of the evidence sources and solves the problem of the reversal of the
probabilistic pointing of the evidence in the process of the introduction of the weights. By
comparing with the existing methods, the proposed method assigns different weights to
each evidence source by calculating similarity weights and entropy weights, which in turn
have different degrees of influence in data fusion. The mechanism of the proposed method
makes the fusion result more dependent on the evidence sources with higher weights,
which helps to get the correct fusion result.

In the domain of ship target recognition, the effective integration of auxiliary informa-
tion sources that influence the probability of ship appearance is imperative. The rationality
of these methods contributes significantly to providing comprehensive information support
for subsequent ship identification processes, thereby enhancing accuracy and reliability
in identification. Given the differing levels of effectiveness exhibited by these auxiliary
information sources, their fusion to yield precise results has emerged as a pivotal focus
of research. The modelling and quantification of different types of factors affecting the
probability of occurrence of ship targets are given, and the enhanced DS evidence theory
has been effectively utilized to determine the likelihood of ship targets appearing in specific
maritime regions. This methodology has enabled the integration of data from various
supplementary sources. This study provides data support for the recognition method using
primary information sources when the target recognition results are finally given. With the
advancement of technology, the number of information sources influencing ship probability
will continue to grow, increasing the factors involved in decision-making. Therefore, this
paper proposes an effective method for data fusion. By integrating identification results
from algorithms suitable for different information sources, this study also offers a sound
strategy. Future research will incorporate the identification algorithms themselves into
data fusion to assess the credibility of identification results. Currently, this methodology
exclusively evaluates certain static variables; however, there is potential for future develop-
ment to incorporate dynamic, real-time recognition sequences that evolve over time. This
evolution necessitates the use of stable, quantitative recognition algorithms.
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