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Abstract: This research presents a model called the ‘Gaussian negative binomial mixture with a
latent class choice model’, which serves as a robust and efficient tool for analyzing decisions across
different areas. Our innovative model combines elements of mixture models, negative binomial
distributions, and latent class choice modeling to create an approach that captures the complexities
of decision-making processes. We explain how the model is formulated and estimated, showcasing
its effectiveness in analyzing and predicting choices in scenarios. Through the use of a dataset,
we demonstrate the performance of this method, marking a significant advancement in choice
modeling. Our results highlight the applications of this model and point towards promising directions
for future research, especially in exploring symmetrical patterns and structures, within decision-
making processes.

Keywords: unsupervised machine learning; Gaussian mixture model; latent class choice model;
negative binomial mixture model; indoor environmental quality; thermal comfort models

1. Introduction

The discrete choice model (DCM) has rapidly become popular due to its practical
applicability and theoretical robustness under individual preferences. The primary interest
in the DCM was in the context of transportation. The contribution of [1] played a vital
role from the 1970s to 1990. Since that time, the DCM has only been considered a realistic
behavior of choice model when used as a closed-form model like nested logit, an open-form
model like mixed logit, and a latent class model.

The satisfaction of occupants in office buildings is linked to various factors, including
the indoor environmental quality (such as thermal, visual, and air quality and acoustic
conditions), as well as the characteristics of the workspace and the building itself, such
as the size, esthetics, furniture, and cleanliness. The ten studies listed in Table 1 have
acknowledged the parameters that constitute occupants’ satisfaction with buildings (see,
e.g., [2–16]).
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Table 1. Research on workspace satisfaction factors.

Study Data Analysis Findings

[2] Pearson correlation Satisfaction with the indoor environment was associated with satisfaction
regarding acoustics, thermal conditions, visual aspects, and air quality

[3] Principal component analysis, Pearson
correlation, and linear regression

The overall fulfillment was influenced by satisfaction with the thermal,
acoustic, and lighting conditions, air quality, control over the indoor
environment, level of privacy, as well as the office layout, decor, and sanitation.

[4] Pearson correlation
Satisfaction with the indoor environment was positively associated with
satisfaction regarding air quality, thermal conditions, lighting, acoustics, and
spatial conditions.

[5] Multiple linear regression Satisfaction with the warmth, air quality, air circulation, noise, humidity, and
lighting had an impact on overall workplace comfort.

[6] Multivariate logistic regression The suitability of the overall indoor environment was influenced by the
acceptability of the thermal conditions, acoustics, lighting, and air quality.

[7] Pearson correlation
Satisfaction with the workspace showed correlations with several factors,
including lighting, noise levels, air quality, heating, drafts, available space,
furniture quality, privacy, and the color and layout of walls and partitions.

[8] Squared multiple correlations (SMCs) CLS can advance the working environment of hospital staff employed in a
neuro-ICU or PACU.

[9]
Exploratory and confirmatory factor
analysis and structural equation
modeling

Satisfaction with the indoor workstation environment was determined by
factors such as noise, air circulation, air quality, temperature, lighting, privacy,
the view to the outside, as well as workspace size, esthetics, and the level of
enclosure.

[10] Multivariate logistic regression
The acceptability of the overall indoor environment was influenced by the
acceptability of the thermal conditions, air quality, noise level, and
illumination level.

[11] Correspondence analysis and principal
component analysis with ideal scaling

Workspace satisfaction was impacted by contentment with temperature,
lighting conditions, air quality, acoustics, spatial aspects (including privacy
and workspace individualization), office furniture, and office layout.

[12] Literature review

The review of the existing literature highlights the dual advantages of a
favorable indoor environmental quality (IEQ), encompassing both economic
and health-related benefits. It underscores the substantial influence of the IEQ
on occupant well-being and work efficiency.

[13]
Cross-sectional study design amongst
objective measurements and subjective
assessments

The study offered a positive suggestion for green buildings with qualitatively
and quantitatively measured performance in terms of the IEQ.

[14] Non-parametric techniques Satisfaction with the overall environment was influenced by satisfaction with
the thermal, acoustic, lighting, and air quality.

[15] Non-parametric statistical tests

The degree of improvement was more pronounced when moving from a
traditional building to one certified under the WELL standard, while it was
less significant or even negligible when transitioning from buildings certified
under BREEAM to WELL certification.

[16] Literature review The recovery of the indoor environment of a healthcare facility for both
patients and, more significantly, medical staff.

The studies did not provide a consistent definition of occupant satisfaction. However,
all of them approached occupant satisfaction broadly, linking it to either their satisfaction
and well-being with the indoor environmental quality or their fulfillment and comfort with
their workspace. Specifically, some studies [2,5,6,10] concentrated solely on how the indoor
environmental quality influenced the satisfaction of building occupants.

Their findings indicated that the thermal, visual, and acoustic atmosphere and superior
air quality influenced the building occupants’ sense of fulfillment. While the significance
of various indoor environmental factors in building occupants’ satisfaction showed slight
variations across studies, the thermal environment was consistently ranked as slightly
more important than the air quality and the acoustic environment, and significantly more
important than the visual environment.

A literature review conducted by [17] highlighted that various non-environmental fac-
tors significantly influence building occupants’ satisfaction alongside indoor environmental
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factors. Factors such as occupants’ control over the indoor environment, view satisfaction,
privacy levels, and office layout have been identified as crucial determinants ([3,4,8,18]).
Moreover, recent advancements propose the application of machine learning techniques to
enhance the examination of medical data, potentially surpassing traditional methods [19].
The complexity of human decision making has recently highlighted the need to compre-
hend risky options. One study, for example, used the choices 13k dataset to train neural
networks in a unique way that revealed information about decision noise and dataset
bias [20]. For various other applications, one should refer to ([16,21–26]). Further, [27]
promote the development of the agent decision model and provide a new way to solve
complex decision problems.

This research aims to present a latent class choice model with participant environ-
mental feedback data in an authentic setting. In order to overcome several issues with the
conventional approaches, we developed a novel hybrid latent class choice model in this
study that combines a Gaussian negative binomial mixture model [28]. To evaluate the
performance of the suggested model with more conventional models, we employed micro-
ecological momentary assessments (EMA) as secondary feedback data in this investigation.

Micro-EMA is a technique that utilizes a smartwatch interface to elicit and gather
immediate, in-the-moment subjective feedback from an individual over several weeks [16].
We gained insight into that person’s comfort preference patterns by obtaining an exten-
sive volume of feedback from a single individual in various environments and comfort
conditions. It is suggested that these behavioral patterns can be employed to categorize
individuals into clusters based on their environmental perceptions. Consequently, grouping
individuals with comparable comfort preferences could enhance the precision of forecast-
ing where a person will feel comfortable and how the system can respond without extra
sensors. Moreover, accumulating substantial quantities of subjective preference data from
numerous individuals in a specific area can help define the comfort-related characteristics
of that space to complement the data obtained from the installed sensors.

If it is theoretically feasible and minimally disruptive to the occupants, incorporating
humans as sensors within buildings can revolutionize post-occupancy evaluations and
building and system design, as well as controls and automation procedures. This opens
up opportunities for individuals to contribute feedback in various scenarios, whether for
short-term episodic purposes (spanning days or weeks), building commissioning extend-
ing to long-term assessments (over months or years), or continuous system control and
management. This research aligns with the growing interest in other fields that leverage
human input as sensors, such as event detection using cybersecurity [18], social media
data [24], ecological momentary assessment [29] and emergency detection [30].

In the context of environmental measurements, previous efforts have involved the
use of specific sensors mounted on mobile carts [31,32]. However, these sensors were
not cost-effective for many building operation scenarios and the affordability issue led to
the development of low-cost continuous-sensing sensors, albeit with the requirement for
frequent calibration [1,33,34]. Nonetheless, the placement of these sensors within buildings
and the interpretation of their readings remained challenging in the literature, primarily
due to the heterogeneous nature of indoor spaces [34]. Conversely, surveys introduced
their own set of challenges, such as determining the appropriate questions to ask, selecting
the right respondents, and interpreting the survey results [1]. Furthermore, [35] explored
the concept of ‘survey fatigue’, wherein survey participants become overwhelmed by the
volume of questions, potentially resulting in misrepresentations in responses and decreased
response rates.

The literature on choice modeling in the context of environmental perspectives is
estimated to have exceeded 14,200 publications. Some of the articles related to occupant
preferences and satisfaction with their findings are listed below.

The attention to discrete choice models as a hypothetically sound and practical tool for
investigating choice behavior, particularly behavioral outcomes like willingness to pay, has
grown rapidly. This development initially took place in the context of transportation, which
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was where McFadden made his initial contributions. The authors of [1] offer a historical
indication of these contributions from the 1970s to the early 1990s. Since then, there has
been a significant expansion of research in the various aspects of choice modeling. This
includes the development of more behaviorally realistic discrete choice model forms, such
as closed-form models like nested logit, and open-form models like mixed logit, latent
class, and generalized mixed logit. New data paradigms have also emerged, including
mixed data approaches and expressed preference and choice studies. Additionally, process
heuristics have been incorporated by researchers into choice models, such as hybrid logit
models, to handle attribute endogeneity and account for attribute non-attendance [36].

2. Model Framework

The subject model, namely the Gaussian negative binomial mixture with a latent class
choice model, is presented in this section. Then, we give an extensive comparison with
benchmark models, i.e., mixed logit, Multinomial Logit, and latent class choice models. We
observe that our subject model efficiently performs better than the benchmark models. By
including negative binomial distribution, the subject model effectively addresses overdis-
persion. Additionally, the presence of a latent class choice model makes it more reliable
for decision making under heterogeneity. The subject model performed better under the
circumstances of heterogeneity in classes and data variability.

2.1. Latent Class Choice Model

LCCM contains two models: a class membership model and a class-specific choice
model. The class membership model is defined as a function of the features of decision-
makers associated with a particular class. The utility ω of a decision-maker ‘m’ associated
with class ‘l’ is stated as follows:

ωml = C′
m φl + νml (1)

where Cm is a vector of the features of decision-makers ‘m’ and φl is the corresponding
vector of unknown parameters. νml is an error term that follows Extreme Value Type-I
distribution over decision-makers and classes, which is assumed to be i.i.d.

The probability of decision-makers ‘m’ associated with class ‘l’ is specified decision-
makers as follows:

P(rml = 1|Cm, φl) =
exp[C′

m φl ]
L
∑

l′=1
exp[C′

m φl′ ]

(2)

rml =

{
1, i f decision − makers associated with class l
0, otherwise.

The second model, namely, the class-specific model, is defined as the probability
of selecting a particular option as a function of the observed exogenous feature option,
conditioned on the person associated with class ‘l’. The utility of an individual ‘m’ selecting
an option ‘k’ at a time τ is expressed as follows:

Umkτ|l = E′
mkτ δl + νmkτ|l (3)

where Emkτ is a vector of the observed features of selecting an option ‘k’ at the time τ,
δl is the corresponding unknown parameter’s vector, and νmkτ|l is an error term that
follows Extreme Value Type-I distribution. At the same time, it is assumed to be i.i.d.; the
conditional probability of decision-makers ‘m’ selecting an option ‘k’ at a time τ is given
as follows:

P(tmkτ = 1|Emkτ , rml = 1, δl) =
exp

[
Emkτ|l

]
K
∑

k′=1
exp

[
Emk′τ|l

] (4)
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where K is the number of available options.
Let tm be a matrix of all the individual options at time τ, consisting of (k × τm) order

and Em be (k × τm) order matrix, where

tmkτ =

{
1, i f decision − makers ‘m’ selecting an option ‘k’ at time τ
0, otherwise.

The conditional probability of observing tm associated with class ‘l’ is expressed as
follows:

P(tm|Em, rml = 1, δl) =
τn

∏
τ1=1

K

∏
k=1

[P(tmkτ = 1|Emkτ , rml = 1, δl)]

tmkτ

(5)

The likelihood of an individual ‘m’ selecting an option ‘k’ can be defined by combining
the conditional option probability with the probability of an individual associated with
class ‘l’ as follows:

P(tm) =
L

∑
l=1

P(rml = 1|Cm, φl) P(tm|Em, rml = 1, δl) (6)

The resulting likelihood of all the decision-makers ‘m’ can be obtained as follows:

P(t) =
M

∏
m=1

L

∑
l=1

P(rml = 1|Cm, φl) P(tm|Em, rml = 1, δl) (7)

2.2. Proposed Model

The proposed model can be obtained by replacing the class membership probability
with the Gaussian negative binomial mixture model. The subject model is a hybrid machine
learning approach, as it combines the advantages of two types of models (i.e., discrete and
continuous) into one. For this purpose, GMM and NBMM are used for continuous and
discrete variables. The vector, consisting of ‘m’ decision-makers attributes, is split into two
sub-vectors, i.e., Ccm and Cdm. These two sub-vectors contain the dimensions ηc and ηd
which equals the number of elements in Ccm and Cdm (continuous or discrete attributes)
respectively.

Gaussian Negative Binomial Mixture Model

GMM N(Ccm|λcm, Πcm) is a collection of ‘L’ Gaussian densities, where each density
is a segment of the mixture and has its mean µcm and covariance Πcm matrix. The overall
likelihood that it represents the mixing coefficient Λl comes from the component ‘l’.

A useful and reliable distribution to incorporate count data is the negative binomial
distribution. It is a versatile statistical tool that has gained popular significance for dealing
with count data with overdispersion. The presence of multiple latent classes within the
data allows the model to assume observation counts that are generated from a mixture
of negative binomial models. This model can effectively capture the heterogeneity and
excess variation within the data through the parameter estimation of the negative binomial
mixture model and mixing proportion.

Marginal and posterior probability is estimated using Bayes’ theorem after estimat-
ing subject model probability assuming Gaussian and negative binomial distributions
are independent on continuous and discrete datasets, after considering the conditional
independence properties on the graphical structure of the proposed model. The joint prob-
ability can be formulated by taking the product of four terms. The first term is class/label
probability, and the second and third are the conditional probabilities of Ccm and Cdm. The
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fourth term contains the choice probability conditional on the class. We can represent the
joint probability as follows:

P(Ccm, Cdm, tm, rml = 1|Em, δl , λcl , Πcl , λdl) = P(rml = 1|Λl) P(Ccm, rml = 1|λcl , Πcl)
·P(Cdm, rml = 1|λdl) P(tm|Em, rml = 1, δl)

(8)

where
P(rml = 1|Λl) = Λ (9)

L

∑
l=1

Λl = 1

P(Ccm, rml = 1|λcl , Πcl) = N(Ccm|λcm, Πcm)

= 1√
(2Λ)ηc |Πcl |

exp
[
−1
2 (Ccm − λcl)Π−1

cm (Ccm − λcl)
] (10)

P
(

C
Rdmi
dm , rml = 1

∣∣∣∣λdl

)
=

ηd

∏
i=1

λ
Rdmi
dli

(
1 − λdli

)Cdmi (11)

where Rdmi
= rth vectors of favorable features and Cdmi

is the discrete characteristics of
decision-makers ‘m’, Rdmi

is the number of λcl and λdl which are the corresponding mean
vectors of continuous and discrete distributions.

2.3. Joint Probability

The joint probability of Ccm, Cdm, and tm can be accessed by using Equation (8)’s
overall component ‘k’:

P(Ccm, Cdm, tm|Em, δ, Λ, λc, Πc, λd) =
L
∑

l=1
P(Ccm, Cdm, tm, rml = 1|Em, δl , Λl , λcl , Πcl , λdl) (12)

where λc and λd are matrices containing the ‘L’ mean vectors of continuous and discrete
variables, Πc is a matrix containing ‘L’ covariance matrices Πcl , and δ is a matrix containing
the L vectors of δl . By omitting the dependencies on the left-hand side of the equation to
make the notation more assembled,

P(Cc, Cd, t) =
M

∏
m=1

P(Ccm, Cdm, tm|Em, δ, Λ, λc, Πc, λd) (13)

P(Cc, Cd, t) =
M
∏

m=1

L
∑

l=1
ΛlN(Ccm|λcl , Πcl)

ηd
∏
i=1

λ
Rdmi
dli

(
1 − λdli

)Cdmi .
τm
∏

τ=1

K
∏

k=1

 eEmkτδk

K
∑

k′=1
eE′

mk′τδk


tmkτ

(14)

The overall joint probability can be estimated by using different methods (i.e., maxi-
mum likelihood estimation, Hessian Matrix, and Expectation Maximization Algorithm).
The traditional maximum likelihood estimation method is inscrutable due to the sum-
mation over ‘L’ that will appear inside the equation on both LCCM and GNBM-LCCM.
However, as the number of parameters increases in the model, the MLE becomes more
burdensome and lengthened. In addition, the empirical singularity problems might arise
during the Hessian Matrix procedures and become numerically challenging, [37]. Therefore,
the EM algorithm is an effective way to overcome all these problems. Moreover, it is a
powerful technique to estimate the parameters with latent variables.

2.4. EM Algorithm

The EM algorithm is divided into two steps, expectation and maximization steps,
respectively, as follows:

E-step: This step starts first by taking the joint likelihood function as follows:
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P(Cc, Cd, t, r) =
M

∏
m=1

L

∏
l=1

[
ΛlN(Ccm|Mcl , Πcl)

ηd

∏
i=1

λ
Rdmi
dli

(
1 − λdli

)Cdmi

]rml M

∏
m=1

L

∏
l=1

τm

∏
τ=1

K

∏
k=1

 eE′
mkτδk

K
∑

k′=1
eE′

mk′τδk


tmkτ

(15)

Then, taking the logarithm of the likelihood, the probability breaks the function into
two separate terms, i.e., the class membership model and the class-specific choice model.

LL =
M

∑
m=1

L

∑
l=1

rml log

[
ΛlN(Ccm|λcl , Πcl)

ηd

∏
i=1

λ
Rdmi
dli

(
1 − λdli

)Cdmi

]
+

M

∑
m=1

L

∑
l=1

τm

∑
τ=1

K

∑
k=1

tmkτrmk log

 eE′
mkτδk

K
∑

k′=1
eE′

mk′τδk

 (16)

Now, we find the value of rml by taking the expectation using the Bayes theorem.

P(rml = 1|tm, Ccm, Cdm, Em, λcl , Πcl , λdl , Λl , δl) ∝ P(rml = 1|Λl)P(Ccm|rml = 1, λcl , Πcl)
·P(Cdm|rml = 1, λdl) · P(tm|Em, rml = 1, δl)

(17)

P(rml = 1|tm, Ccm, Cdm, Em, λcl , Πcl , λdl , Λl , δl) ∝ ΛlN(Ccm|λcl , Πcl)
ηd
∏
i=1

λ
Rdmi
dli

(
1 − λdli

)Cdmi

·
τm
∏

τ=1

K
∏

k=1

 eE′
mkτδk

K
∑

k′=1
eE′

mk′τδk


tmkτ

(18)

E[rml ] = γrml =

ΛlN(Ccm|λcl , Πcl)
ηd
∏
i=1

λ
Rdmi
dli

(
1 − λdli

)Cdmi
τm
∏

τ=1

K
∏

k=1

 eE′
mkτδl

K
∑

k′=1
eE′

mk′τδl


tmk′τ

L
∑

l′=1
ΛlN(Ccm|λcl , Πcl)

ηd
∏
i=1

λ
Rdmi
dli

(
1 − λdli

)Cdmi
τm
∏

τ=1

K
∏

k=1

 eE′
mkτδk

K
∑

k′=1
eE′

mk′τδk


tmk′τ

(19)

It is important to note that Λl in Equation (9) and γrml in Equation (16) contemplate
prior probability and corresponding posterior probabilities, respectively.

M-step: In this step, the unknown parameters are estimated, since, in the presence of
latent variable rml , Equation (16) cannot be estimated directly. Making use of Equations (16)
and (19), it gives the following:

LL =
M
∑

m=1

L
∑

l=1
rml

[
log Λl + logN(Ccm|λcl , Πcl) +

ηd
∑

i=1

{
Rdmi

log λdli + Cdmi
log

(
1 − λdli

)}]

+
M
∑

m=1

L
∑

l=1

τm
∑

τ=1

K
∑

k=1
tmkτγrml log

 eE′
mkτδl

K
∑

k′=1
eE′

mk′τδl


(20)

By taking the derivatives of unknown parameters and setting them to zero, we ob-
tained the following:

λcl =
1

Ml

M

∑
m=1

γrmlCcm (21)

Πcl =
1

Ml

M

∑
m=1

γrml(Ccm − λcl)(Ccm − λcl)
′ (22)
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λdl =
Ml Rdml

L
∑

l=1
Cdl+Ml Rdml

(23)

Λl =
Ml
M

(24)

where Ml =
M
∑

m=1
γrml

δl = argmax
M

∑
m=1

τm

∑
τ=1

K

∑
k=1

tmkτγrmk log

 eE′
mkτδL

K
∑

k′=1
eE′

mk′τδL

 (25)

Overall, the EM algorithm revolves between E-step and M-step until convergence
is attained. First, the unknown parameters are estimated. Second, the latent variable
(Equation (19)) is estimated by taking the expectation using the Bayes Theorem. In addition,
the closed-form solution of the parameters is derived (from Equation (21) to Equation (24)).
Finally, the log-likelihood is examined by utilizing the obtained values of the unknown
parameters and then scrutinized for convergence. If the convergence benchmark is not
reached, we return to E-step. From Equation (21) to Equation (24), the closed-form solution
is available for maximizing coefficient, the Gaussian mean matrix, the negative binomial
mean matrix, and Gaussian covariance matrix, respectively. Regarding Equation (25),
we cannot obtain any closed-form solution for the parameter δl . For this purpose, the
Gradient-Based Numerical Optimization method is used.

2.5. Final Likelihood

After attaining convergence, the marginal probability of observing a vector of ‘t’
options of all the decision-makers ‘M’ is examined as follows:

P(t) =
M

∏
m=1

L

∑
l=1

P(rml = 1|Ccm, Cdm, λcl , Πcl , λdl , Λl)
τm

∏
τ=1

K

∏
k=1

[P(tmkτ = 1|Em, rml = 1, δl)]

tmkτ

(26)

where P(rml = 1|Ccm, Cdm, λcl , Πcl , λdl , Λl) is the posterior probability of the vector Cm =
{Ccm, Cdm} being obtained by the cluster ‘l’.

The posterior probability can be expressed using Bayes theorem as follows:

P(rml = 1|Ccm, Cdm, λcl , Πcl , λdl , Λl) =
P(rml = 1|Λl)(Ccm|rml = 1, λcl , Πcl)P(Cdm|rml = 1, λdl)

L
∑

l′=1
P(rml = 1|Λl′)(Ccm|rml′ = 1, λcl , Πcl)P(Cdm|rml′ = 1, λdl)

(27)

The above posterior probability of Equation (27) can be used to compare the GNBM-
LCCM and traditional LCCM from Equation (7). Further, it is used to compute extrapolated
sample prediction accuracy.

2.6. Real-Life Application with Discussion

Dataset Overview: This dataset comprises data collected from the BUDS lab deploy-
ments of the Cozie Fitbit smartwatch platform. It involves collecting intensive longitudinal
subjective feedback regarding comfort-based preferences through micro-ecological momen-
tary assessments on a smartwatch platform. In an experiment conducted over two weeks
with 30 occupants, a total of 4378 field-based surveys were generated to assess thermal,
noise, and acoustic preferences.

Throughout the entire study, the environmental variables (such as temperature and
relative humidity) in three different buildings were observed. The participants used an
open-source application called Cozie on their smartwatches to complete comfort surveys.
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Additionally, a custom-designed smartphone application constantly tracked their indoor
locations. This location data allowed us to accurately synchronize the timing and spatial
aspects of environmental measurements with the thermal preference responses provided
by the participants.

In order to extract valuable insights from the dataset, we initiated the exploration by
carefully reviewing the features and their corresponding descriptions (refer to Table 2).
This preliminary examination served as an informative starting point, granting us a holistic
understanding of the dataset’s contents. It facilitated the identification of essential vari-
ables that play a pivotal role in shaping user choice behavior. These key variables were
subsequently selected for more in-depth analysis and model development.

Table 2. List of features and their descriptions in the initial dataset.

Feature Name Type Description and Values

Index Numeric Unique numeric value assigned to occupants
Clothing Count Data Clothing value of occupants
Comfort cozie Count Data Indoor comfort level of occupants
Heart rate cozie Count Data Heart rate of occupants collected from the Fitbit smartwatch device
Lat. Cozie Continuous The floor latitude is identified by its grid cell
Light Cozie Count Data Environmental comfort by lightning
Lon Cozie Continuous The floor longitude is identified by its grid cell
Noise Cozie Count Data Noise level in the environment
Response speed Cozie Continuous The response speed of occupants collected from the Fitbit smartwatch device
Thermal Cozie Count Data The satisfaction or contentment of individuals with the thermal environment
Room Count Data Room temperature profile and occupied zone gradient
Co2 sensing Discrete Oxygen gradient for assessing comfort
Humidity sensing Continuous Relative humidity for assessing comfort
Light sensing Discrete Light gradient for assessing comfort
Noise sensing Discrete Noise gradient for assessing comfort
Temperature sensing Continuous Temperature gradient in the occupied zone for assessing comfort
Voc sensing Discrete Velocity in the occupied zone for assessing comfort
Temperature. Mbient Continuous Radiant temperature for assessing comfort

Table 3 presents the mean matrix illustrating the class membership model of the subject
data. This matrix offers valuable insights into the distribution of the occupants among the
different latent classes within the dataset. Through an examination of this mean matrix, we
can gain an understanding of the likelihood of users belonging to each class and identify
the underlying class structure within our hybrid model. Figure 1 graphically represents the
majority of the data attributes in the case where the distribution of Environmental Light
values already exhibits a noticeable overlap for various visual feedback (located at the
top-middle distribution in Figure 2).

The variable ‘time’ was generated by employing feature engineering techniques on
the timestamps corresponding to when the occupants provided feedback. This engineered
feature represents the time cyclically, taking into account both the hour of the day and the
day of the week. This straightforward feature type was integrated into all the scenarios to
identify potential cyclical patterns or factors influencing preference prediction. The attribute
‘time’ is used to categorize the class membership model into distinct classes, as follows:
Class L = 1: This initial latent class corresponds to environmental data recorded from
September 28th to October 10th. These applications represent a specific group characterized
by an early time frame. Class L = 2: The second class is associated with applications
recorded from October 11th to October 22nd. Class L = 3: The third class is related to
periods spanning from October 23rd to November 3rd. Class L = 4: The fourth and final
class comprises applications with a time frame from November 4th to November 15th,
representing the last observation period for the occupants. These class assignments help
delineate the temporal structure of the dataset and provide a meaningful segmentation of
the occupant observations. This finding strengthens the argument that relying solely on
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environmental measurements is insufficient for characterizing an individual’s preferences,
thus leading to less accurate predictions, as has been observed in earlier research [7].

Table 3. Mean matrix of class membership model.

Attribute Range Class 1 Class 2 Class 3 Class 4

9 0.0126 0.0008 0.0013 0.0026
Clothing 10 0.0131 0.0024 0.0040 0.0021

11 0.0160 0.0019 0.0023 0.0014

Comfort 9 0.0265 0.0050 0.0056 0.0026
10 0.0606 0.0107 0.0163 0.0111

1.00–1.17 0.3882 0.1025 0.1032 0.0317
Latitude Cozie 1.18–1.35 0.0194 0.0008 0.0053 0.0036

1.36–1.50 0.0443 0.0007 0.0095 0.0054

9 0.5490 0.1274 0.1480 0.0782
Light Cozie 10 0.0475 0.0071 0.0086 0.0046

11 0.0136 0.0014 0.0024 0.0021

Noise Cozie 9 0.0025 0.0000 0.0002 0.0005
10 0.0008 0.0000 0.0000 0.0001

2 0.5211 0.1187 0.1304 0.0581
3 0.0115 0.0015 0.0036 0.0015

Floor 4 0.0058 0.0005 0.0021 0.0006
5 0.0025 0.0002 0.0010 0.0003
6 0.0015 0.0008 0.0006 0.0001

1–4 0.0194 0.0008 0.0053 0.0036
Room 5–8 0.0443 0.0007 0.0095 0.0054

9–12 0.1497 0.0410 0.0414 0.0137
13–16 0.2775 0.0690 0.0706 0.0231
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Table 4 provides an overview of the parameter estimation in the class-specific choice
model. This table offers insights into the estimated parameters for each latent class within
the hybrid model. These estimated parameters enable us to quantitatively assess the
influence of different variables on the choice behavior of users within each class. The
proposed model facilitated the division and categorization of these zones, now based on
the various comfort praeferences exhibited by the occupants in those areas. This outcome
primarily offered facility managers an overview of the office spaces they oversee, equipping
them with insights to enhance comfort and take necessary actions.

Table 4. Parameter estimation of the class-specific choice model (GNBM).

Parameters Class 1 Class 2 Class 3 Class 4

Heart Rate −1.3240 (0.018) 0.0061 (0.020) −0.0134 (0.073) −0.0999 (0.009)
Response −1.8896 (0.010) 0.1021 (0.005) 0.0004 (0.000) −0.2637 (0.006)
Thermal 0.1989 (0.004) 0.0342 (0.016) 0.0261 (0.039) 0.01763 (0.018)

CO2 Sensing 0.0175 (0.030) 0.0014 (0.036) 0.0163 (0.000) 0.0721 (0.036)
Humidity 0.0013 (0.028) 0.0735 (0.061) 0.0536 (0.047) 0.0165 (0.080)

Light Sensing 0.0092 (0.037) 0.0938 (0.083) 0.0728 (0.023) 0.0828 (0.009)
Noise Sensing 0.0037 (0.008) 0.0015 (0.019) 0.0183 (0.025) 0.0194 (0.028)
Voc Sensing 0.0083 (0.019) 0.0635 (0.051) 0.0387 (0.019) 0.0295 (0.019)
Temperature 0.0163 (0.060) 0.0927 (0.019) 0.0624 (0.014) 0.0576 (0.016)

In Table 5, we compare the proposed Gaussian negative binomial mixture with a latent
class choice model (GNBM-LCCM) and traditional models. Our evaluation involves the use
of various metrics, including AIC (Akaike Information Criterion), BIC (Bayesian Informa-
tion Criterion), HEIC (Hannan–Quinn Information Criterion), LL (log-likelihood), Joint LL
(Joint Log-Likelihood), and Pred LL (Predictive Log-Likelihood). This comparative assess-
ment allows us to determine the superiority of our GNBM-LCCM over traditional models
in terms of model fit, complexity, and predictive accuracy. The visual representations of
these benchmark comparisons are also provided in Figures 3–5.
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Table 5. Model comparison of proposed model with benchmark models using different criteria.

Models Specifications LL 1 Joint LL 2 Pred. LL Residual
Deviance AIC BIC HEIC

Multinomial Logistic −954.81 −514.62 1594.47 1512.17 1527.45 1605.33
Mixed Logit Normal −743.23 −494.76 1598.38 1519.23 1494.08 1543.65

LCCM −798.06 −8615.23 −504.88 1499.56 1452.00 1418.89 1489.00
GNBM-LCCM Diagonal covariance −755.77 −7856.14 −489.63 1416.00 1326.41 1304.93 1367.41

Spherical covariance −797.54 −7904.37 −474.19 1401.98 1310.01 1227.82 1394.56
Full covariance −734.21 −7866.56 −415.35 1429.67 1276.20 1224.54 1384.03

1 Marginal log-likelihood of GNBM-LCCM (Equation (26)) and LCCM (Equation (7)); 2 Joint log-likelihood of
GNBM-LCCM (Equation (14).
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Considering the preference feedback in this methodology occurred at a notably higher
frequency compared to typical surveys or occupants’ interactions with thermostats, this
study possessed preference data characterized by a relatively diverse temporal and spatial
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nature. In the initial observation, it is apparent that the office space generally provided
a comfortable environment, whereas outdoor seating areas exhibited an overall higher
preference for cooling. The study also captured time-dependent fluctuations, revealing
the model’s capability to predict comfort preferences that varied across different times of
the day or days of the week. Notably, within the office environment, there was a peak in
warmer preference around mid-day. However, it is worth noting that the model sometimes
attempted to predict comfort preferences inaccurately during periods when no data were
available. The square peaks observed in the office area for aural and visual prediction,
particularly between the hours of 22:00 and 7:00, were a result of the absence of data to
make accurate predictions during those times.

Figures 6 and 7 provide a comprehensive comparison of the performance metrics for
four models: MNL, mixed logit, LCCM, and GNBM-LCCM, evaluated both in-sample and
out-of-sample. Table 6 illustrates the in-sample evaluation criteria, where the GNBM-LCCM
consistently outperforms the benchmark models across most metrics. Specifically, the
GNBM-LCCM demonstrates superior accuracy (0.9246), Recall (0.9204), precision (0.8693),
and AUC (0.8971), with only a slight dip in the F1 Score (0.8249) compared to LCCM
(0.8396). These results indicate that the GNBM-LCCM not only enhances the predictive
accuracy but also effectively captures the intricacies of decision-making processes within
the sample data.
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Table 6. Evaluation criterion of benchmark model and proposed model (in-sample).

Models MNL Mixed Logit LCCM GNBM-LCCM

Accuracy 0.7118 0.7298 0.8016 0.9246

Recall 0.8034 0.7839 0.8119 0.9204

F1 Score 0.7185 0.8102 0.8396 0.8249

Precision 0.7155 0.8193 0.8110 0.8693

AUC 0.7287 0.8004 0.7998 0.8971

Table 7 extends this evaluation to out-of-sample performance, where the GNBM-
LCCM maintains its dominance over the traditional models. The GNBM-LCCM achieves
the highest accuracy (0.8103), AUC (0.8901), competitive Recall (0.7983), F1 Score (0.8398),
and precision (0.8024). These metrics suggest that the GNBM-LCCM is robust and general-
izes well to unseen data, thus providing reliable predictions beyond the training dataset.
In contrast, the mixed logit model shows the weakest performance out-of-sample, with
lower accuracy (0.6197) and Recall (0.6115), highlighting its limitations in generalizability.
The reliable performance of both the in-sample and out-sample evaluation criteria of the
subject model makes it a more robust and accurate choice model.

Table 7. Evaluation criterion of benchmark model and proposed model (out-of-sample).

Models MNL Mixed Logit LCCM GNBM-LCCM

Accuracy 0.6315 0.6197 0.7593 0.8103

Recall 0.7109 0.6115 0.7158 0.7983

F1 Score 0.7610 0.6789 0.8374 0.8398

Precision 0.7398 0.7630 0.7932 0.8024

AUC 0.7198 0.7481 0.7294 0.8901

3. Conclusions

In this study, an innovative hybrid choice model has been introduced, namely the
Gaussian negative binomial mixture with latent class choice model (GNBM-LCCM). Further,
we have checked its practical application by implementing this to environmental preference
data. Our primary objective was to make it more reliable as compared to benchmark
studies, i.e., Multinomial Logit model, mixed logit model, and latent class choice model
(LCCM). By this comparison, we have proved the superior performance of our subject
model. The results demonstrate that the proposed model not only outperforms in-sample
evaluation, but it also shows superior performance for out-of-sample criteria.

All of the previous studies effectively represent the heterogeneity in individual prefer-
ences, but they fail to deal with the overdispersion situation. The benchmark models such
as the Multinomial Logit and latent class choice models could easily depict the decision-
making process, but it is not accurate in complex criteria like the subject model. We fill
the gap of the restricted comprehension of individual preferences and latent classes with
overdispersion data by incorporating the hybrid model.

The decision-making process is being scrutinized by implementing GNBM-LCCM in
the analysis of environmental preference data. These data are more extensively examined
through GNBM with the presence of latent classes in it. These results highlight how impor-
tant it is to take latent classes into account and correct for overdispersion in a choice model
that not only increases its accuracy but also plays a vital role in capturing heterogeneity in
individual preferences.

The subject model is a robust framework for analyzing the decision-making process;
however, it faces some limitations. For example, it may give over-generalized results as
the latent class follows an independent assumption. Secondly, the model performance
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might oversimplify the input data, especially with sparse or noisy datasets. Additionally, in
large-scale applications, parameter estimation may lead to false predictions, which require
more consideration of computational complexity.

Therefore, future research could focus on the GNBM-LCCM for large dataset scalability
and model performance. The applicability and robustness of the subject model could
investigate different areas using different datasets. Finally, the advancement of the subject
model could be enhanced by adding an alternative regularization technique with sparse or
noisy data.
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Nomenclature

ωml The utility of decision-makers associated with class l.
Emkτ The vector of observed characteristics of individual m.
Ccm The continuous attributes of decision-maker m.
Cdm The discrete attributes of decision-maker m.
ηc The number of elements in Ccm.
ηd The number of elements in Cdm.
δl The unknown parameter of utility belonging to class l at the time τ.
φl The unknown parameter of utility belonging to class l.
λcl and λdl The mean of the Gaussian and negative binomial mixture model.
Πcl The covariance of the Gaussian mixture model.
δl Mixing probability associated with class c.
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