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Abstract: The fractional reduced differential transform method is a finite iterative method based on
infinite fractional expansions. The obtained result is the approximation of the real value. Currently,
there are few reports on the approximate error and applicable condition. In this paper, we study the
factors related to the approximate errors according to the fractional expansions. Our research shows
that the approximate errors relate not only to fractional order but also to time t, and that they increase
rapidly with time t. This method can only be applied within a certain time range, and the time range
is relevant to fractional order and fractional expansions. We can ascertain this time range according
to the absolute error and the relative error. Many obtained achievements may be incorrect if the
applicable conditions are not satisfied. Some examples presented in this paper verify our analysis.
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1. Introduction

Fractional calculus is an extension of integer calculus from the integer dimension
to the fractional dimension, and can be applied to depict real physical systems with
arbitrary accuracy. Treatments of fractional models appear in many areas, including signal
processing [1], image processing, control engineering [2], mechanical engineering, and
more [3–5].

The symmetry design of the system includes integer calculus and fractional calculus.
Fractional calculus can be applied for modeling many problems in real-life situations.
The fractional calculus is defined by a convolution operation, and is computationally
complex. Simplifying this computation is an important research topic in the field of
fractional calculus. Many approximate approaches have been proposed for this issue [6–11].
Without exception, any approximate method can obtain only approximate solutions, never
exact solutions. Thus, there must exist an approximate error between the approximate
solution and the exact solution. Only within the allowable range of the approximate
error can this approximate method be correct, otherwise the obtained solution may be
incorrect [12–14]. For example, Ahmadian A. obtained the approximate solution in the
time domain using its approximate value in the Laplace domain [11]; however, Zhao L.
etc. [15] later analyzed the approximate error and pointed out that this approach may
be misleading.

Similarly, the fractional reduced differential transform method is an approximate ap-
proach in which the approximate value is obtained by omitting some higher-order items of frac-
tional expansions. It has been applied to solve fractional partial differential equations [16,17],
higher-dimensional fractional equations [18], fractional nonlinear equations [19], fractional
transport models [20], fractional financial models of awareness [21,22], etc. In this approach,
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the process of calculation can be simplified, and the approximate value can be obtained when
the omitted high-order items are infinitesimal; however, it can be misleading when the omitted
high-order items are not infinitesimal. On other cases, the high-order terms that are ignored
may be infinitesimal within a certain time range, but may gradually increase over the course
of this time range. In such cases, this method can only be applied within a certain time range.
However, the approximate error and applicable condition for the obtained solutions have
rarely been reported in the literature. Moreover, some special examples presented to date
cannot verify the effectiveness of the aforementioned method.

In this paper, we study the fractional expansion and obtain its parameters according to
the mean value theorem. The parameters are drawn step-by-step based on the hypothesis
that the high-order items are infinitesimal. Then, we determine the applicable condition
from the allowable error. Some examples are provided to verify our analysis. Numerical
simulations show that the approximate error is convergent in a certain time range and
increases rapidly over this time range.

The rest of this paper is organized as follows. Section 2 addresses the definitions
and some properties of fractional calculus. The fractional reduced differential transform
method is formulated in Section 3. We analyze the approximate error and the applicable
condition in Section 4. In Section 5, some examples are presented to verify our analysis.
Lastly, a conclusion is drawn in Section 6.

2. Definitions and Some Properties of Fractional Calculus

There exist many fractional derivative definitions, among which the Caputo fractional
derivative definition is widely adopted, as it is irrelevant to the initial condition. In this
paper, the Caputo fractional derivative definition is adopted.

Definition 1. The fractional derivative of the function ς(t) ∈ Cn(t ∈ [t0,+∞),R) in the Caputo
sense with order ϵ is defined as [2]

C
t0

Dϵ
t ς(t) =

1
Γ(n − ϵ)

∫ t

t0

ς(n)(τ)

(t − τ)ϵ−n+1 dτ, (1)

where Γ(·) is the Gamma function, ς(t0) is the initial value of ς(t), and n is a positive integer such
that n − 1 < ϵ < n.

Definition 2. The fractional integral of function ς(t) with order ϵ is defined as [2]

t0 Iϵ
t ς(t) =

1
Γ(ϵ)

∫ t

t0

(t − τ)ϵ−1ς(τ)dτ. (2)

Some properties of fractional calculus that may be adopted are introduced in the following:
(i) For a continuous function ς(t), t0 Iϵ

t [
C
t0

Dϵ
t ς(t)] = ς(t)− ς(t0).

(ii) C
t0

Dϵ
t C = 0, where C is a constant.

(iii) C
t0

Dϵ
t tξ = Γ(ξ+1)

Γ(ξ−ϵ+1) (t − t0)
ξ−ϵ, where n − 1 < ϵ < n and ϵ is not an integer less

than n.
(iv) C

t0
Dα

t (
C
t0

Dϵ
t ς(t)) =C

t0
Dα+ϵ

t ς(t).

Theorem 1. If ς(n)(t)(t ∈ [t0, a]) is a continuous function, then there must exist a constant
ν ∈ [t0, a] satisfying

C
t0

Dϵ
t ς(t) =

ς(n)(ν)

Γ(n − ϵ + 1)
(t − t0)

n−ϵ. (3)

Proof. According to the mean value theorem, there must exist ν ∈ [t0, a] satisfying the
following equation:
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C
t0

Dϵ
t ς(t) =

1
Γ(n − ϵ)

∫ t

t0

ς(n)(τ)

(t − τ)ϵ−n+1 dτ|t=a

= ς(n)(ν)
1

Γ(n − ϵ)

∫ t

t0

1
(t − τ)ϵ−n+1 dτ

=
ς(n)(ν)

Γ(n − ϵ + 1)
(t − t0)

n−ϵ

(4)

where min(ς(n)(t)) ≤ ς(n)(ν) ≤ max(ς(n)(t)).
The proof of Theorem 1 is completed.

Conclusion 1: If ς(t)(t ∈ [t0, a]) is a continuous function, then there must exist a constant
ν ∈ [t0, a] satisfying

t0 Iϵ
t ς(t) |t=a= ς(ν)

1
Γ(ϵ)

∫ t

t0

(t − τ)ϵ−1dτ

.
Note 1: In particular, when t → t0, this yields ς(n)(ν) = ς(n)(t0) = ς(n)(t) and

lim
t→t0

C
t0

Dϵ
t ς(t) =

ς(n)(t0)

Γ(n − ϵ + 1)
(t − t0)

n−ϵ. (5)

Obviously, the above holds only when t → t0, otherwise it may be incorrect.

Theorem 2. When 0 < ϵ ≤ 1, if ς(t) and g(t) (t ∈ (t0, tb)) are continuous differentiable
functions, then there must exist a constant ν ∈ [t0, tb] making the following equation hold:

ς(tb)− ς(t0)

g(tb)− g(t0)
=

C
t0

Dϵ
t ς(t)|t=ν

C
t0

Dϵ
t g(t)|t=ν

. (6)

Proof. We define the function ϑ(t) = ς(t)− ς(tb)−ς(t0)
g(tb)−g(t0)

g(t) and obtain

ϑ(tb)− ϑ(t0) = 0. (7)

From the property of fractional calculus, this yields

ϑ(tb)− ϑ(t0)

=t0 Iϵ
t [

C
t0

Dϵ
t ϑ(t)]

=
1

Γ(ϵ)

∫ t

t0

(t − τ)ϵ−1[Ct0
Dϵ

τϑ(τ)]dτ.

(8)

According to Conclusion 1, we obtain

ϑ(tb)− ϑ(t0)

=
1

Γ(ϵ)

∫ t

t0

(t − τ)ϵ−1[Ct0
Dϵ

τϑ(τ)]dτ

= [Ct0
Dϵ

t ϑ(t)]|t=ν
1

Γ(ϵ)

∫ t

t0

(t − τ)ϵ−1dτ

= 0.

(9)

Then, there must exist a constant ν ∈ [t0, a] satisfying
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[Ct0
Dϵ

t ϑ(t)]|t=ν =C
t0

Dϵ
t [ς(t)−

ς(tb)− ς(t0)

g(tb)− g(t0)
g(t)]|t=ν

= [Ct0
Dϵ

t ς(t)− ς(tb)− ς(t0)

g(tb)− g(t0)
C
t0

Dϵ
t g(t)]|t=ν

= 0.

(10)

We can obtain
ς(tb)− ς(t0)

g(tb)− g(t0)
=

C
t0

Dϵ
t ς(t)|t=ν

C
t0

Dϵ
t g(t)|t=ν

. (11)

The proof of Theorem 2 is completed.

Theorem 3. If ς(t) and g(t) are continuous differentiable functions satisfying lim
t→t0

ς(t) = 0 and

lim
t→t0

g(t) = 0, then the following equation holds:

lim
t→t0

ς(t)
g(t)

= lim
t→t0

C
t0

Dϵ
t ς(t)

C
t0

Dϵ
t g(t)

(12)

where 0 < ϵ ≤ 1.

Proof. As lim
t→t0

ς(t) = 0 and lim
t→t0

g(t) = 0, we set ς(t0) = 0 and g(t0) = 0. According to

Theorem 2, this provides us with

lim
t→t0

ς(t)
g(t)

= lim
t→t0

ς(tb)− ς(t0)

g(tb)− g(t0)
= lim

t→t0

C
t0

Dϵ
t ς(t)

C
t0

Dϵ
t g(t)

. (13)

The proof of Theorem 3 is completed.

3. Fractional Reduced Differential Transform Method

Suppose that ς(t) is a continuous and differentiable function. This function can be repre-
sented as

ς(t) =
∞

∑
k=0

Vkϵ(t − t0)
kϵ, (14)

where 0 < ϵ ≤ 1, Vkϵ represents the spectrum of function ς(t).
Usually, we can only calculate finite items, not infinite ones. Thus, many items can be

omitted, and Equation (14) can be expressed as

ς(t) =
j

∑
k=0

Vkϵ(t − t0)
kϵ + o((t − t0))

kϵ. (15)

When t is within the neighborhood of t0, then o((t − t0))
kϵ is the kϵ-order infinitesimal of

(t − t0). Then, we can obtain the approximate ς̃ j(t) of ς(t):

ς̃k(t) =
j

∑
k=0

Vkϵ(t − t0)
kϵ. (16)

Obviously, the approximate error decreases with increasing j.
Based on the above hypothesis, we now study the expression of Vkϵ step-by-step when

0 < ϵ < 1.
When k = 0, we have

lim
t→t0

ς(t) = Vϵ0(t − t0)
0 + o((t − t0))

0
(17)
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and
V0 = lim

t→t0
ς(t) = ς(t0). (18)

When k = 1, this yields

ς(t) = ς(t0) + Vϵ1(t − t0)
ϵ1 + o((t − t0))

ϵ1. (19)

We can then obtain

Vϵ1 = lim
t→t0

ς(t)− ς(t0) + o((t − t0))
ϵ1

(t − t0)ϵ1 . (20)

According to Theorem 3, we now have

Vϵ1 = lim
t→t0

ς(t)− ς(t0) + o((t − t0))
ϵ1

(t − t0)ϵ1

= lim
t→t0

C
t0

Dϵ
t [ς(t)− ς(t0)]

C
t0

Dϵ
t [(t − t0)ϵ1]

+ lim
t→t0

o((t − t0))
ϵ1

(t − t0)ϵ1

= lim
t→t0

1
Γ(1 + ϵ)

C
t0

Dϵ
t ς(t).

(21)

When k = 2, we can obtain

ς(t) = lim
t→t0

ς(t0) + Vϵ1(t − t0)
ϵ1 + Vϵ2(t − t0)

ϵ2 + o((t − t0))
ϵ2, (22)

which yields

Vϵ2 = lim
t→t0

ς(t)− ς(t0)− Vϵ1(t − t0)
ϵ1 + o((t − t0))

ϵ2

(t − t0)ϵ2

= lim
t→t0

ς(t)− Vϵ1(t − t0)
ϵ1 − ς(t0)

(t − t0)ϵ2 + lim
t→t0

o((t − t0))
ϵ2

(t − t0)ϵ2 .
(23)

Per Theorem 3,

Vϵ2 = lim
t→t0

ς(t)− Vϵ1(t − t0)
ϵ1 − ς(t0)

(t − t0)ϵ2 + lim
t→t0

o((t − t0))
ϵ2

(t − t0)ϵ2

= lim
t→t0

C
t0

Dϵ
t [ς(t)− Vϵ1(t − t0)

ϵ1 − ς(t0)]
C
t0

Dϵ
t [(t − t0)ϵ2]

+ lim
t→t0

o((t − t0))
ϵ2

(t − t0)ϵ2

= lim
t→t0

[Ct0
Dϵ

t ς(t)− Vϵ1Γ(1 + ϵ)]

[ Γ(1+2ϵ)
Γ(1+ϵ)

(t − t0)ϵ]
.

(24)

Again, per Theorem 3 we have

Vϵ2 = lim
t→t0

[Ct0
Dϵ

t ς(t)− Vϵ1Γ(1 + ϵ)]

[ Γ(1+2ϵ)
Γ(1+ϵ)

(t − t0)ϵ]

= lim
t→t0

C
t0

Dϵ
t [

C
t0

Dϵ
t ς(t)− Vϵ1Γ(1 + ϵ)]

C
t0

Dϵ
t [

Γ(1+2ϵ)
Γ(1+ϵ)

(t − t0)ϵ]

= lim
t→t0

C
t0

D2ϵ
t ς(t)

Γ(1 + 2ϵ)
.

(25)
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When k = i(i ≥ 2), we can suppose that

Vϵi = lim
t→t0

C
t0

Diϵ
t ς(t0)

Γ(1 + iϵ)
. (26)

Let us now analyze what happens when k = i + 1.
When k = i + 1, we can obtain the following:

ς(t) = lim
t→t0

i

∑
k=0

Vϵi(t − t0)
ϵi + Vϵ(i+1)(t − t0)

ϵ(i+1) + o((t − t0))
ϵ(i+1) (27)

which has

Vϵ(i+1) = lim
t→t0

ς(t)−
i

∑
k=0

Vkϵ(t − t0)
kϵ − o((t − t0))

ϵ(i+1)

(t − t0)ϵ(i+1)

= lim
t→t0

C
t0

Dϵ
t [ς(t)−

i
∑

k=0
Vkϵ(t − t0)

kϵ]

C
t0

Dϵ
t [(t − t0)ϵ(i+1)]

= lim
t→t0

[Ct0
Dϵ

t ς(t)−C
t0

Dϵ
t

i
∑

k=1
Vkϵ(t − t0)

kϵ]

Γ(1+(i+1)ϵ)
Γ(1+iϵ)

C
t0

Dϵ
t [(t − t0)ϵ(i)]

...

= lim
t→t0

C
t0

D(i+1)ϵ
t ς(t)

Γ(1 + (i + 1)ϵ)
.

(28)

From the above step-by-step reasoning process, we have

lim
t→t0

ς(t) = lim
t→t0

∞

∑
k=0

C
t0

Dkϵ
t ς(t0)

Γ(1 + kϵ)
(t − t0)

kϵ (29)

It can be noticed that Vϵ(i) is calculated by C
t0

Diϵ
t ς(t0), the initial value of C

t0
Diϵ

t ς(t0) is t0,
and the above equation holds only when t → t0.

4. Analyzing the Approximate Error and Applicable Condition

According to Equation (29), in many cases we can only calculate finite items, not
infinite ones.

Function ς(t) in Equation (29) is usually approximated by n-order fractional expan-
sion ς̃n(t):

ς̃n(t) =
n

∑
k=0

C
t0

D(k)ϵ
t ς(t0)

Γ(1 + kϵ)
(t − t0)

kϵ. (30)

In particular, when n → ∞ we have the following relation:

ς(t) = lim
n→∞

ς̃n(t) =
∞

∑
k=0

C
t0

Dkϵ
t ς(t0)

Γ(1 + kϵ)
(t − t0)

kϵ. (31)

When n is taken as a bounded value, there must exist an approximate error between
ς̃n(t) and ς(t). The proposed method can only be applied if the maximum error is within
the allowable range.

Below, we analyze these approximate errors and the applicable condition.
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We define the absolute error as eς̃n(t) = |ς(t)− ς̃n(t)| and obtain

eς̃n(t) = |
∞

∑
k=n+1

C
t0

Dkϵ
t ς(t0)

Γ(1 + kϵ)
(t − t0)

kϵ|

≤
∞

∑
k=n+1

|
C
t0

Dkϵ
t ς(t0)

Γ(1 + kϵ)
(t − t0)

kϵ|.
(32)

According to the convergence properties of proportional sequences, when t satisfies
the condition

|

C
t0

D(k+1)ϵ
t ς(t0)

Γ(1+(k+1)ϵ) (t − t0)
ϵ(k+1)

C
t0

Dkϵ
t ς(t0)

Γ(1+kϵ)
(t − t0)kϵ

|

= |
Γ(1 + kϵ)C

t0
D(k+1)ϵ

t ς(t0)

Γ(1 + (k + 1)ϵ)C
t0

Dkϵ
t ς(t0)

(t − t0)
ϵ|

< 1, (k = 1, 2, 3, · · · ),

(33)

then the absolute error eς̃n(t) decreases with increasing order k. In other words, the conver-

gence radius rς̃(t) = min(|
Γ(1+(k+1)ϵ)C

t0
Dkϵ

t ς(t0)

Γ(1+kϵ)C
t0

D(k+1)ϵ
t ς(t0)

|) 1
ϵ .

Equation (32) also indicates that the absolute error increases rapidly with time t.
Defining the relative error as Reς̃n(t) =

|ς(t)−ς̃n(t)|
ς(t) ∗ 100%, we obtain

Reς̃n(t) =

|
∞
∑

k=n+1

C
t0

Dkϵ
t ς(t0)

Γ(1+kϵ)
(t − t0)

kϵ|

|
∞
∑

k=0

C
t0

Dkϵ
t ς(t0)

Γ(1+kϵ)
(t − t0)kϵ|

∗ 100%. (34)

By simple deduction, it can also be seen that the relative error increases with time t.
The above analysis shows that the approximate error increases with time t, that the

mentioned approach can be studied in a certain time range, and that the time range depends
on the allowable error, the fractional order, and the specific system.

5. Examples

In this section, we provide some examples to verify our analysis.

Example 1. Suppose that ς(t) = Eϵ(tϵ) as a Mittag-Leffler function, which can be expressed by a
fractional expansion as

ς(t) =
∞

∑
k=0

tkϵ

Γ(1 + kϵ)
. (35)

From Equation (34), the n-order approximate expansion is expressed as

ς̃n(t) =
n

∑
k=0

1
Γ(1 + kϵ)

tkϵ. (36)

We define y1 = ς(t), y2 = ς̃n(t), where n = 4, and use numerical simulation. The numerical
simulation results are shown in Figure 1 with ϵ = 0.5, Figure 2 with ϵ = 0.2, and Figure 3 with
ϵ = 0.8. The results of the numerical simulations show that the absolute error and the relative error
have high accuracy within a certain time range, but quickly diverge beyond this time range and may
become misleading.
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Example 2. Suppose that ς(t) =
∞
∑

k=0

t2kϵ+1

Γ(1+2kϵ)
; then, the n-order approximate expansion is ex-

pressed as

ς̃n(t) =
n

∑
k=0

t2kϵ+1

Γ(1 + 2kϵ)
. (37)

Similarly, we let y1 = ς(t), y2 = ς̃n(t) where n = 4 and use numerical simulation. The numerical
simulation results are shown in Figure 4 with ϵ = 0.5, Figure 5 with ϵ = 0.2, and Figure 6 with
ϵ = 0.8. The results of the simulations again show that the absolute error and the relative error both
have high accuracy within a certain time range, but quickly diverge and become misleading outside
of this time range.

The numerical simulations in the above examples verify our theoretical analysis. The afore-
mentioned method can only be applied within a certain time range. Beyond this range, it may be
misleading.
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Figure 1. The absolute error (a,b) and relative error (c) in Example 1 with ϵ = 0.5.
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Figure 2. The absolute error (a,b) and relative error (c) in Example 1 with ϵ = 0.2.
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Figure 3. The absolute error (a,b) and relative error (c) in Example 1 with ϵ = 0.8.
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Figure 4. The absolute error (a,b) and relative error (c) in Example 2 with ϵ = 0.5.



Symmetry 2024, 16, 912 12 of 14

0 0.2 0.4 0.6 0.8 1
t

0

1

2

3

4

5
y1

y2

(a)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
y1

y2

(b)

0 0.2 0.4 0.6 0.8 1
t

0

5

10

15

20

25

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

(c)

Figure 5. The absolute error (a,b) and relative error (c) in Example 2 with ϵ = 0.2.
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Figure 6. The absolute error (a,b) and relative error (c) in Example 2 with ϵ = 0.8.

6. Conclusions

In this paper, we have presented a detailed analysis of the fractional reduced differen-
tial transform method. Theoretical analysis and numerical simulations both show that this
method can only be applied within a certain time range and that an applicable condition
exists. Thus, for this method, we first need to know the time range and the applicable
condition. The mentioned approach can only be studied within this applicable condition
(time range); beyond this time range, the obtained solutions may be misleading.
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