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Abstract: Vibrating flip-flow screens (VFFSs) provide an effective solution for deeply screening moist
and fine-grained minerals, and an accurate dynamic model of VFFSs is critical for its dynamic analysis
and optimization, thereby improving the vibration stability and symmetry of VFFSs. In this paper,
uniaxial tension, uniaxial compression, plane tension, and shear stress relaxation experiments were
conducted on screen panel samples to illustrate that the third-order Ogden model and the generalized
Maxwell model can accurately describe the hyperelasticity and viscoelasticity of screen panels. Then,
the coupling method of finite element and discrete element was adopted to establish the simulation
model of the screen panel and material group coupling system, and the dynamics of the coupling
system under different loading conditions were explored. Finally, the dynamic model of the coupling
system of VFFSs mass, screen panel, and material group was proposed, and the non-dominated
sorting genetic algorithm II was applied to optimize the system’s dynamic response. The results
reveal that the use of optimized shear springs can reduce the relative amplitude change rate of the
main and floating screen frame by 44.30% while maintaining the periodic motion of the VFFSs under
operation conditions, greatly enhancing the stability of the VFFSs system.

Keywords: vibrating flip-flow screen; material group; coupling system; nonlinear dynamic model;
dynamic optimization

1. Introduction

Deep screening of moist fine minerals is an urgent problem to be solved in the mineral
separation industry [1,2]. However, conventional vibrating screens, used for classifying
viscous fine minerals, often encounters the phenomenon of the screen panel sticking and
rapid blockage of screen’s apertures, which seriously affects the screening performance [3,4].
Vibrating flip-flow screens (VFFSs) employ a periodically slackening and stretching elastic
screen panel during operation located in the floating screen frame connected to the main
screen frame. Large panel accelerations, essential for high screening efficiency and crucial
for processing fine and moist materials, are generated [5,6]. To achieve stable and efficient
screening performance, a better understanding and optimization of VFFS’s dynamics
is necessary.

Xiong et al. [7] assumed that a VFFS is a linear system and analyzed the impact of the
rotation speed of exciters, the incline angle and the slack length under non-loading material
conditions, and the vibration mechanism and the reasonable operation region of the VFFS
were revealed. Gong et al. proposed a nonlinear dynamic model of VFFS using a new
shear spring model that can accurately describe the amplitude and frequency-dependent
behavior of shear springs, and experimental tests were conducted to verify the reasonability
of the proposed dynamic model of VFFS [8]. Lin et al. took the influence of screen panel
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tension on VFFS system dynamics into account and established a dynamic model of VFFS
considering the screen panel’s dynamics, which were described by the Kevin–Voigt model,
and investigated the influence of related parameters on the system’s dynamics [9]. These
studies can accurately describe the dynamic response of VFFSs under non-loading material
conditions and reveal the operating mechanism of VFFSs. However, the influence of
random changes in material groups on the screen panel during the screening process on
the dynamic response of VFFSs was not considered in the above studies.

The dynamic interaction between the screen panel and material group produces
important effects on the dynamic response of the VFFS [10,11]. As the screen panel generates
complex forces after being impacted by the material group, it is difficult to collect test data.
Therefore, simulation analysis methods are usually used in this research area. Zhang et al.
assumed that the screen panel was composed of multiple rigid bodies and used a piecewise
linear-interpolation method to approximate the flexibility of the screen panel [12,13]. Then,
the discrete element method and multiple bodies dynamics (DEM-MBD) coupling method
were used to achieve bidirectional coupling between the material group and screen panel,
and the effects of the eccentric block mass, screen panel inclination, feed particle size,
and motor speed on screening performance were analyzed. Wang et al. [14] adopted the
DEM-MBD coupling method to simulate the screening process of a four-degree-of-freedom
flip-flow screen, investigated the motion law of the material group on the screen panel,
and analyzed the influence of different factors on the screening efficiency. Although this
simulation method can intuitively describe the interaction between the screen panel and the
material group, it cannot accurately predict the flexible motion of an operating screen panel.
Therefore, Xu et al. combined the finite element method and discrete element method
(FEM-DEM), used the FEM to simulate the movement of the screen panel, and established
the simulation model of the coupling system of the material group and screen panel using
the FEM-DEM coupling method [15]. Zhao et al. analyzed the screening effect of VFFSs
under different conditions of single-layer and double-layer screen panels using FEM-DEM
coupling [16]. Compared with the DEM-MBD coupling method, the FEM-DEM coupling
method could more accurately analyze the dynamic interaction between the screen panel
and material group. However, the constitutive model and parameters of the screen panel
material are based on empirical equations in the above research, and a constitutive model
that can accurately describe the hyperelasticity and viscoelasticity of the screen panel was
not proposed alongside experimental tests, with the result that the dynamic characteristics
of the screen panel cannot be accurately described.

Screen panels are made of a polyurethane rubber material, which exhibits obvious
hyperelasticity and viscoelasticity, and extensive research on the dynamic characteristics
of rubber materials has been conducted by many researchers. The Ogden model, with
its adjustable number of summation terms, offers great flexibility and is widely used in
describing the hyperelasticity of rubber materials. The generalized Maxwell model, which
consists of multiple Maxwell models in parallel with a spring, can effectively predict the
viscoelastic properties of rubber materials. Hamza et al. compared the tensile test data of
one rubber material with the Mooney–Rivlin model and Ogden mode and analyzed the
performance of the two models in describing the hyperelastic properties of rubber materials
under different deformation conditions [17]. Dal evaluated the hyperelastic constitutive
models of forty-four kinds of elastomers through a number of tensile tests and discussed the
fitting effects of these different experimental data [18]. Yang proposed a visco-hyperelastic
constitutive equation to describe the large deformation response of rubber material and
verified its accuracy by comparing the experimental and simulation results [19]. Cao
et al. used Hookean and generalized Maxwell models to describe the hyperelastic and
viscoelastic characteristics of rubber materials and investigated the influence of rubber
geometry on the dynamic characteristics of rubber bushings using FEM [20]. Therefore, the
above research indicates that the constitutive model, accurately describing the hyperelas-
ticity and viscoelasticity of rubber materials, can be identified using mechanical tests of
rubber materials.
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This paper applies the experimental test of mechanical properties of the screen panel
to identify its hyperelastic and viscoelastic constitutive models and related parameters,
which are suitable for finite element analysis of the screen panel. A simulation model of
the coupling system between the screen panel and material group is established using
the FEM-DEM coupling, the dynamic response of the coupling system between screen
panel and material group under different loading material conditions are analyzed, and
a dynamic model of the coupling system between screen panel and the material group is
proposed. Then, the dynamic model of the coupling system of the VFFSs mass, screen panel,
and material group is established; the influence of dynamic parameters on the system’s
dynamic response is analyzed; and the vibration mechanism of the coupling system of the
VFFSs is revealed. Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is
adopted to optimize the system’s dynamic response, and the optimal dynamic parameters
that can improve the stability of the system are revealed.

2. Constitutive Model of Screen Panel
2.1. Hyperelastic Constitutive Model

The material of the screen panel is polyurethane rubber, which exhibits hyperelastic
properties. The hyperelastic constitutive models of the rubber materials mainly include
Mooney–Rivlin, Ogden and reduced polynomial constitutive models based on phenomeno-
logical theory, as well as Arruda–Boyce and Van der Waals constitutive models according
to molecular thermodynamic statistics theory [21]. Based on the stress–strain relationship,
the constitutive relationship of polyurethane rubber hyperelastic material can be expressed
as a function of three invariants of deformation tensor using strain energy density function:

W = (I1, I2, I3) (1)

where I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ2
2 + λ2

2λ2
3 + λ2

1λ2
3, I3 = λ2

1λ2
2λ2

3, with Ii being the invariant
of deformation tensor and λi being principal stretch ratios.

The strain energy function of the Mooney–Rivlin model can be expressed as

W = C10(I1 − 3) + C01(I2 − 3) (2)

Here, C10 and C01 are the material constitutive model parameters. The Neo-Hooke
model and the Yeoh model are reduced polynomial models, and their strain energy func-
tions are N order degree functions of the first deformation tensor. The strain energy
functions are as follows:

W = ∑N
i=1 Ci0(I1 − 3)i (3)

Here, Ci0 is the material’s constitutive model parameters. When N = 1 and N = 3, it is the
Neo-Hooke model and the Yeoh model, respectively. The Ogden model takes the three
principal stretch ratios λ1,λ2,λ3 as independent variables, and the expression for the strain
energy function is

W = ∑N
i=1

2µi

α2
i

(
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3

)
(4)

where µi and αi are material parameters. The strain energy function expression for the
Arruda–Boyce model is

W = µi∑5
i=1

CI

λ2i−2
m

(
Ii
1 − 3i

)
(5)

Here, µi and λm are material constants determined by experimental data; generally, N = 5
is choosen, at which point all have fixed values, and these parameters are obtained through
thermodynamic statistical methods and have clear physical meanings.

In order to accurately indentify the hyperelastic constitutive model of screen panel, six
pure strain state mechanical tests need to be conducted. As the screen panel materials are
of incompressibility, uniaxial tension is equivalent to equal biaxial compression, uniaxial
compression and equal biaxial tension are equivalent, and plane tension is amount to
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plane compression [18]. Therefore, the hyperelastic constitutive model of the screen panel
material can be determined by uniaxial tensile, equal biaxial tensile, and plane tensile
tests [21]. However, the experimental conditions of equal biaxial tension are complex,
and its experimental results can be transformed by uniaxial compression test data. The
stress–strain relationship is {

σEb = σEc

(
√

1+εEc)
3

εEb =
√

1 + εEc − 1
(6)

where σEc and εEc are the principal stress and principal strain of uniaxial compression test,
respectively; σEb and εEb denote the principal stress and principal strain of the equivalent
biaxial tensile test, respectively.

Therefore, experimental tests of uniaxial tension, uniaxial compression, and plane
tension were adopted for the screen panel sample to determine its optimal hyperelastic
constitutive model. All experiments were conducted on the MTS-E43.104 electronic uni-
versal testing machine, with different fixtures used for each test. According to the testing
standards ISO 527-2 standard [22], each test was conducted three times, with a testing
environment temperature of 24 ◦C. The tests for uniaxial tension, uniaxial compression, and
plane tension were conducted with speeds of 10 mm/min, 10 mm/min, and 5 mm/min,
respectively, as shown in Figure 1.
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Figure 1. Mechanical test of screen panel samples.

In order to minimize the influence of experimental errors, each test was carried out
several times to obtain the average value, and the stress and strain for each test (uniaxial
tension, uniaxial compression, and plane tension) were recorded, as shown in Figure 2.

Different constitutive models show the various description performances of the me-
chanical properties of rubber materials. Many researchers investigated the effect of several
hyperelastic models on describing the hyperelasticity of rubber materials using experi-
mental results, and results show that the Mooney-Rivlin (M-R) model, Neo-Hooke (N-H)
model, Yeoh model, third-order Ogden model, and Arruda-Boyce (A-B) model exhibit a
good description of the rubber materials’ hyperelasticity [23]. Here, these models were
adopted to approximate the hyperelastic test results of screen panel materials, and the least
square method was used to evaluate the overall effect of the above five hyperelastic models
on describing the hyperelasticity of the screen panel (Figure 3).
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tension, (c) plane tension, and (d) error analysis.

In regard to the uniaxial tensile test, the Mooney–Rivlin, Neo-Hooke, and Arruda–
Boyce models show a good prediction only in the small strain stage, while the Yeoh model
has a better approximating effect in the large stain stage, and the third-order Ogden model
performs well in the overall strain of the sample. In detail, the fitting errors for the Mooney–
Rivlin, Neo-Hooke, Yeoh, third-order Ogden, and Arruda–Boyce models are 22%, 61%,
39%, 3%, and 61%, respectively. For the biaxial tensile test, it can seen that the errors
between the experiments and the Mooney–Rivlin, Neo-Hooke, Yeoh, third-order Ogden,
and Arruda–Boyce models are 7%, 35%, 13%, 7%, and 35%, respectively. This means that
the Mooney–Rivlin and third-order Ogden models can well match the experimental results
in the entire strain stage. In addition, the simulation results of the Yeoh model are slightly
smaller than the overall experimental data. With the strain increase, the deviation between
the experimental data and simulation results produced by Neo-Hooke and Arruda–Boyce
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models increases gradually; regarding the plane tensile test, the errors between experiments
and the Mooney–Rivlin, Neo-Hooke, Yeoh, third-order Ogden, and Arruda–Boyce models
produced 20%, 12%, 18%, 19%, and 12%, respectively. It can be found that the Mooney–
Rivlin and Yeoh models perform well in the small-strain stage. The Neo-Hooke and
Arruda–Boyce models exhibit an excellent description in the small- and medium-strain
stage. The third-order Ogden model has good prediction both in the small-strain and
large-strain stages. In addition, when selecting a suitable hyperelastic constitutive model
for the rubber materials, the effectiveness of the model in describing the results of uniaxial
and equibiaxial tensile tests needs to be given priority consideration. Here, combined with
the overall experimental error analysis (Figure 3d), the third-order Ogden model shows the
best fit to the measured results of uniaxial tensile, biaxial tensile, and plane tensile tests, as
well as its model parameters αi and µi (see Table 1).

Table 1. Parameters for third-order Ogden model.

i αi µi

1 2.4300 −8.1590
2 2.7945 6.0753
3 −1.6756 6.8498

2.2. Viscoelastic Constitutive Model

The screen panel material not only shows hyperelasticity but also exhibits viscoelastic-
ity. Classical integer constitutive models, such as the Maxwell model, Kelvin–Voigt model,
and generalized Maxwell model, are commonly used to describe the viscoelastic properties
of rubber materials. However, the Maxwell model is insufficient to grasp the creep process
of viscoelastic materials, and the Kelvin–Voigt model cannot accurately capture the stress
relaxation process of the viscoelastic materials [24]. The generalized Maxwell model, com-
posed of multiple Maxwell models with multiple relaxation times, can accurately describe
the stress relaxation, creep process, and mechanical behavior of the viscoelastic material.
This model has been widely used in finite element analysis of the viscoelastic materials [25],
and its constitutive model can be defined by the dimensionless stress relaxation modulus
of the Prony series.

gR(t) = 1 − ∑N
i=1 gi

ve(1 − e
− t

tr−i ) (7)

Here, tr−i and gi
ve are the relaxation time and elastic modulus ratio coefficient of each

Maxwell viscoelastic element, respectively; N denotes the order of the generalized Maxwell
model. These parameters are obtained by the least square method using the shear relaxation
test data of the viscoelastic materials [19].

Test specifications. The screen panel sample (size 20 mm × 20 mm × 5 mm) was tested
on an electronic universal testing machine (MTS, Type E43.104, accuracy ±1%, Eden Prairie,
MN, USA). In order to test the stress of the screen panel sample after shear deformation,
a constant displacement input was applied to the actuator bearing system, which was
connected with the screen panel sample through a fixture. Another fixture was installed
on the load cell to measure the output force. The test results produced Figure 4b: at the
beginning of the test, the sample was subjected to a rapidly increasing shear force in a
short time. Then, the shear force gradually decreased with an increase in time, and finally
reached a steady state.
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Then, the variation of force F(t) with time t can be obtained by the shear stress relax-
ation test, and the corresponding shear modulus G(t) can be written as

G(t) = F(t)/2(a × b)/γ (8)

where a and b are the length and width of the stress relaxation sample, respectively;
The normalized shear relaxation function gR(t) can be expressed as

gR(t) =
G(t)
G(0)

=
F(t)/2(a × b)/γ

F(0)/2(a × b)/γ
=

F(t)
F(0)

(9)

The gR(t)-t data of the shear stress relaxation test can be obtained from Equation (9),
substituting it into Equation (7), and the constitutive parameters of the generalized Maxwell
model can be obtained using the least square method (see Table 2). The comparison between
the simulation results of the model and the experimental results produces Figure 5.

Table 2. Parameters for the generalized Maxwell model.

N gi
ve tr−i

1 0.173 49.4
2 0.127 2015.6
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The results indicate that the second-order generalized Maxwell model can accurately
match the experimental results. When the fitting order is greater than 2, the description
effect will not improve significantly, but the complexity of the model increases, leading



Symmetry 2024, 16, 913 8 of 21

to increased computational difficulty. Therefore, the second-order generalized Maxwell
model is selected to describe the viscoelasticity of the screen panel.

3. Dynamic Analysis of the Coupling System of VFFS and Material Group
3.1. Simulation Modeling of the Coupling System of the Screen Panel and Material Group

To investigate the dynamic characteristics of the coupled system consisting of the
screen panel and the material group, Abaqus 2020 software was chosen to simulate the dy-
namics of the screen panel and material group coupling system, as Abaqus has a powerful
capability to analyze the static and dynamic stress/displacement of complex engineering
problems [16].

Considering the calculation time and the accuracy of simulation results, the size of the
simulation model of the investigated screen panel was set as 150 mm × 328 mm × 4 mm,
and the screen’s aperture size was 8 mm × 25 mm. The third-order Odgen model was used
to describe the hyperelasticity of the screen panel material, and the generalized Maxwell
model was used to describe the viscoelasticity of the screen panel material. We adopted
hexahedral elements, with the element type being reduced integral to divide mess, so the
simulation model of the screen panel without loading materials can be established. Then,
the particle-generation technology in the display dynamics analysis was used to generate
the material group on the screen panel via encoding, and the dynamic simulation model of
the coupling system between the screen panel and the material group was established [26]
(see Figure 6).
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3.2. Dynamics of Screen Panel under Different Conditions

According to the establishment process of the simulation model of the screen panel
without loading materials, a harmonic displacement excitation was applied to the screen
panel, and the third-order Ogden model and generalized Maxwell model were used to
describe the hyperelasticity and viscoelasticity of the screen panel, respectively. Related
model parameters (see Tables 1 and 2) and the relationship between the force and displace-
ment of the screen panel can be obtained (Figure 7a). Then, we established the coupling
system of the screen panel and material group, with particle parameters being set (den-
sity: 2860 kg·m−3; elastic modulus: 1200 MPa; Poisson’s ratio: 0.25; friction coefficient
between particles, screen panel, and baffle: 0.45, 0.48, and 0.63 [26]; particle number: 800;
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particle radius: 4.5 mm, 7.5 mm, and 12.5 mm), and the relationship between the force and
displacement of screen panel with loading materials produced Figure 7b.
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It can be observed in Figure 7 that the force on both ends of the screen panel is small,
and the fluctuation is obvious in the no-loading state. However, when loading materials
on the screen panel, the force obviously increases and reaches a stable state. This means
that the materials on the screen panel have a significant effect on the dynamics of the
screen panel.

3.3. Dynamic Analysis of Screen Panel with Loading Materials

To investigate the effect of the number of the material groups on the dynamic charac-
teristics of the screen panel, 100, 400, 600, and 800 particles were generated on the screen
panel, respectively, and the displacement and force of the screen panel under different
numbers of particles were recorded. As the force signal of the screen panel is unstable,
it needs to be filtered. Then, the hysteresis loops of the screen panel and material group
coupling system under different loading material conditions can be obtained, as shown
in Figure 8.
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Figure 8 illustrates that an increase in numbers of particles causes the hysteresis loop
to rotate in the counterclockwise direction, and the overall slope of the hysteresis increases,
which means that the dynamic stiffness of the screen panel increases. In addition, with
the increase in the number of particles, the area (energy consumption) of the hysteresis
loop increases obviously, which means that the damping of the screen panel and material
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group coupling system increases. The results mean that the screen panel exhibits significant
dynamic stiffness and damping under material-loading conditions.

So as to accurately analyze the influence of the number of particles on the dynamic
stiffness and damping of the coupling system of the screen panel and material group,
according to Equations (10) and (11), the dynamic stiffness K and hysteresis angle θ of
the coupling system of the screen panel and material group under different numbers of
particles can be obtained from its simulated hysteresis loops (Figure 9). The results illustrate
that the dynamic stiffness and damping of the screen panel and material group coupling
system increase with the increase in the number of particles on the screen panel.

K =
1
n∑n

i=1
Fmax,i − Fmin,i

Xmax,i − Xmin,i
(10)

θ = arcsinD (11)

D =
1
n∑n

i=1
Ei

π(Fmax,i − Fmin,i)(Xmax,i − Xmin,i)/4
(12)

where Xmax,i, Xmin,i, Fmax,i, and Fmin,i represent the maximum displacement, minimum
displacement, maximum force, and minimum force of each hysteresis loop, respectively.
Ei is the area of the hysteresis loop, and n stands for the number of hysteresis loops in the
stable state.
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3.4. Dynamic Model of the Screen Panel and Material Group Coupling System

The above study shows that the screen panel has obvious dynamic stiffness and
damping characteristics, which are related to the number of particles. In order to describe
the dynamic characteristics of the coupling system of the screen panel and material group as
well as to analyze its influence on the dynamics of the VFFS system, the Kelvin–Voigt model
was chosen to describe the dynamics of the screen panel under loading material conditions.

The elastic force in the dynamic model of the screen panel and material group coupling
system is denoted by a commonly used linear spring, and the relation between the elastic
force Fez generated in the model and excitation displacement x is represented by the
following equation:

Fez = kezx (13)

where kez represents the elastic stiffness, which can be obtained from Equation (10). Because
the kez measured under different loading material conditions is changing, and is related to
the number of particles, kez is fitted as a function of the particle number nk:

kez = kez(nk) (14)
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The viscous force is represented by the commonly used linear damper, and the rela-
tionship between the viscous force Fvz and the excitation displacement x can be expressed
by the following equation:

Fvz = Cdz
.
x (15)

Here, Cdz is the damping coefficient of the hysteresis loop under different loading material
conditions. As parameter Cdz will change under different loading material conditions,
similarly, Cdz need to be fitted as a function of the particle number nk:

Cdz = 2D
√

kez(nk)m (16)

where m is the mass connected by the screen panel, and D represents the damping under
different loading material conditions and is related to the number of particles in the
following equation:

D = D(nk) (17)

3.5. Dynamic Model of VFFSs under Loading Material Conditions

The above proposed dynamic model of the coupling system of the screen panel and
material group is applied to the dynamic model of the VFFSs without considering the
function of the screen panel and materials, and the coupling system dynamics of the VFFSs
mass, screen panel, and material group can be established (Figure 10). Here, a nonlinear
rubber shear spring model proposed in [8] is used to describe the dynamic behavior of the
rubber shear spring.
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The x-axis and y-axis are parallel and perpendicular to the direction of the screen
panel, respectively. As the vibration in y direction produces little effect on the perfor-
mance of VFFSs [8], here, only the dynamics in x-axis direction are analyzed using the
following equations:{

(m1 + m2)
..
x1 + m2

..
x2 + c1

.
x1 + k1x1 = F0cos(ωt)

m2
..
x1 + m2

..
x2 + FE + FF + FV + Fez + Fvz = 0

(18)

where x1 and x2 stand for the displacement of the main screen frame and its relative
displacement to the floating screen frame, respectively; F0 = mrω2 is the excitation force,
with m, r, and ω being the mass, the eccentricity, and the angular frequency of the eccentric
block. m1 and m2 represent the mass of the main and the floating screen frame, respectively;
k1 and c1 are the stiffness and damping coefficient of support springs, respectively; Fez and
Fvz stand for the elastic force and viscous force of the screen panel under loading material
condition, respectively; and FE = 24Fe, FF = 24Ff , FV = 24Fv are the elastic, the friction,
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and the viscous forces of all rubber shear springs installed on the VFFSs. The elastic force
Fe of a rubber shear spring element is expressed as Fe = kex2, with model parameter ke
being the elastic stiffness of each hysteresis loop. The friction force Ff of a rubber shear
element can be described as [8]:

for x2 = xs
Ff = Ff s (19)

for x2 > xs

Ff = Ff s +
x2 − xs

a2(1 − ε) + (x2 − xs)

(
Ff max − Ff s

)
(20)

for x2 < xs

Ff = Ff s +
x2 − xs

a2(1 + ε)− (x2 − xs)

(
Ff max + Ff s

)
(21)

with xs, Ff s, and ε = F f s/Ff max representing a reference displacement, a force, and the
instantaneous friction coefficient, respectively [27,28]. The model parameters Ff max and
a2 represent the maximum friction force and the corresponding displacement for each
hysteresis loop. The viscoelastic force Fv of a rubber shear spring element is written by a
function of a α-order fractional derivative:

Fv = bDαx(t) = b
dαx(t)

dtα
(22)

with model parameters α ∈ (0, 1) and b > 0 representing the order of the derivative and
the coefficient of the viscoelastic force [29,30]. In accordance with Riemann–Liouville, the
expression for the fractional derivative is formulated as follows:

dαx(t)
dtα

=
1

Γ(1 − α)

d
dt

∫ t

α

x(t)
(t − τ)α dτ (23)

where Γ is a gamma function.
Since the elastic, frictional, and viscous forces of the shear spring are nonlinear, seg-

mented, and fractional derivative functions, it is difficult to solve Equation (18) using a
conventional method. Therefore, the Newmark-β method is used here, which needs to be
transformed into the matrix form:

M
..
Xn + C

.
Xn + KXn = Fn (24)

where M, K, and C represent matrices of mass, stiffness, and damping coefficients of the
VFFS system, respectively; and Fn and Xn are the force and displacement vector of the VFFS
system, respectively.

An appropriate selection of the stable control parameter can allow the Newmark
algorithm to solve Equation (24), resulting in the following equations [8]:

Xn = Xn−1 + ∆t
.
Xn−1 +

1
2

∆t2
..
Xn−1 (25)

.
Xn =

.
Xn−1 + ∆t

(
(1 − β)

..
Xn−1 + β

..
Xn

)
(26)

where Xn,
.
Xn, and

..
Xn are the vector forms of displacement, velocity, and acceleration in

the system, respectively; β is an independent parameter of the characteristics of the control
method. The algorithm is conditionally stable for β ≥ 1/2 with the critical time step
∆tcrit = 1/

(
ωmax

√
β/2

)
, where ωmax represents the highest undamped natural frequency

of the system. The algorithmic damping can be eliminated by letting β = 1/2, which occurs
for β > 1/2. When the initial displacement and velocity of the system are known, the
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dynamic response of the investigated VFFSs can be achieved, as illustrated in the following
flowchart (Figure 11):
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3.6. Analysis of Dynamic Response of VFFSs under Loading Material Condition

According to the research results of Section 3.4, the stiffness coefficient kez and damping
coefficient cdz of the coupling system of the screen panel and material group can be chosen
as 7.2 kN/m and 50 N·s/m, respectively, and other related parameters of the dynamic
model of the VFFSs are shown in Table 3. The initial values of displacement and velocity
of the dynamic system of the VFFSs are both 0. According to the steps of the flowchart
(Figure 11), the dynamics of x1 and x2 in the time region for an operating VFFS with a
frequency of 70 rad·s−1 can be obtained, as shown in Figure 12.

Table 3. Parameters for the dynamic model of VFFSs [8].

Symbol Parameter Value Unit

ke −0.0031 x0
3 + 0.192 x0

2 − 4.504 x0 + 207.77 N/mm
Ffmax 0.0077 x0

3 − 0.519 x0
2 + 16.322 x0 − 10.547 N

a2 −0.0047 x0
2 + 0.583 x0 − 0.561 mm

α 0.16 -
b 9.9 N·sA/mm

m1 4130 kg
m2 1309 kg
k1 3,606,700 N/m
c1 36614 N·s/m
m 242.24 kg
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on the screen panel causes the amplitude of the dynamic response of VFFS without load-
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Figure 12. Simulation results of dynamic response of VFFS under loading material conditions: (a) x1

and (b) x2.

It can be seen in Figure 12 that the dynamic response of x1 and x2 in the time region
gradually reaches a stable state after experiencing an unstable state for a period of time.
Here, only the steady-state data were used for the theoretical analysis, and the amplitude
of x1 and x2 for an excitation frequency can be obtained. After the calculation of a set of
data is completed, changing the angular frequency and considering the effect of materials
on the screen panel, the dynamic response of x1 and x2 in the frequency region produce
Figure 13.
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Figure 13 illustrates that the stiffness produced by materials on the screen panel results
in the resonance zone moving to the right, and the damping generated by materials on
the screen panel causes the amplitude of the dynamic response of VFFS without loading
materials to decrease. This means that elastic and damping forces generated by the screen
panel under loading material conditions have a significant influence on the dynamic
response of x1 and x2 in the frequency region.

3.7. The Influence of Model Parameters on the Dynamic Response of VFFS under Loading
Material Conditions

The parameters kez and Cdz in the dynamic model of the screen panel reflect the size of
the elastic force and damping force of the screen panel under loading material conditions.
Changing the size of kez and Cdz while keeping other parameters constant, the influence of
the elastic force and the damping force of the screen panel on the dynamic response of x1
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and x2 in the system under different loading material conditions can be obtained, as shown
in Figure 14.
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and (d) x2.

Figure 14a,b show that an increase in the elastic force of the screen panel results in an
increasing anti-resonance frequency and resonance frequency of the dynamic response of x1
and x2 in the frequency region, and the peak in the resonance region increases and moves to
the right. This means that the amplitudes of x1 and x2 decrease significantly for a constant
excitation angular frequency in the near-resonance region. Figure 14c,d illustrate that with
the increase in the damping force, the resonance frequency of the dynamic response of x1
and x2 in the frequency region increases, and the peak in the resonance region decreases and
moves to the right. This is because a decrease in the amplitude of x2 results in an increasing
stiffness of the shear spring [7], resulting in the resonance of the system increasing. In
summary, the elastic force and viscous force of the screen panel have a significant effect on
the dynamic response of VFFSs under loading material conditions.

4. Dynamic Optimization of the VFFSs Coupling System
4.1. The Influence of External Conditions on the Dynamic Response of x2

The shear spring is the dominant component for the dynamic response of VFFSs
system [8], and its stiffness is easily effected by the temperature. An experimental test of a
rubber shear spring showed that a decrease in temperature from 35 ◦C to 10 ◦C results in
an increase in the elastic stiffness of a rubber shear spring element of about 5%. Through
loading materials on the screen panel, m1 and m2 may increase by about 5% and 15%. The
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effects of changing these parameters on the dynamic response x2 of an operating VFFS
(ω = 70 rad·s−1) are shown in Figure 15, respectively.
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Figure 15. Phase portrait of x2 using the baseline rubber shear spring while changing (a) the rubber
shear spring elastic stiffness ke, and (b) main screen frame mass m1 and floating screen frame mass m2.

Figure 15 illustrates that the operating VFFSs remains in a periodic-1 motion although
the parameters (ke, m1 and m2) are changed. However, the range of amplitude in x2 caused
by parameters ke by 5% and m1 and m2 by 5% and 15% are significant with [7.31 mm,
9.58 mm] and [9.58 mm, 14.72 mm], respectively. The corresponding maximum change
rates in amplitude are 23.70% (Figure 15a) and 53.65% (Figure 15b). The results illustrate
that the changes in parameters ke, m1 and m2 caused by external conditions show an
over-proportional effect on the amplitude of x2.

4.2. Multi-Objective Optimization Design of Dynamic Response of VFFSs

A multi-objective optimization problem (MOP) of mechanical design can be described
as follows [31,32]:

min
k∈Q

{F(k)} with fi : Q → R1, F : Q → Rk and F(k) = [ f1(k), · · · , fk(k)]

with fi representing the objective functions, and k ∈ Q standing for a q-dimensional vector
of design variables. The domain Q ⊂ Rq is described by equality and inequality constraints:

Q =
{

k ∈ Rq∣∣hj(k) = 0, j = 1, · · · , m, and gi(k) ≤ 0, i = 1, · · · , l
}

The concept of dominance [33] defines the optimal solutions of a MOP: for ∄k ∈ Q,
which dominates k̂ in the sense that fi(k) ≤ fi

(
k̂
)
(i = 1, 2, · · · , k) and F(k) ̸= F

(
k̂
)

, a

point k̂ ∈ Q is called a Pareto point (Pareto optimal solution) of Equation (4). All Pareto
optimal solutions are called a Pareto set [34]:

p := {x ∈ Q : k is a pareto point of (4)}

The image of p is called the Pareto front.
The elastic stiffness ke of the rubber shear spring (RSS) is the most dominant parameter

for the dynamic response of VFFSs [8] with nonlinear characteristics. Here, regarding
ke = 207.77 − 4.504x0 + 0.192x2

0 − 0.0031x3
0 of the baseline RSS as a reference, we take the

optimized nonlinear stiffness k′e of the shear spring as the optimization factor to design the
optimization scheme of a dynamic system of VFFSs.

The goal of this study is to minimize the influence of external conditions on the rate of
change of the amplitude of x2, which is critical for a VFFS’s lifetime and screen performance.
However, reducing the rate of change of displacement amplitude by changing the nonlinear
stiffness characteristics ke of RSS may result in changed quality of the dynamics, which
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could change to higher periodic, quasi-periodic (toroidal), or even chaotic motions. Hence,
two objective functions, including the rate of change of the displacement amplitude as
a robustness measure and the complexity of the dynamics as a measure to control the
vibrations, are equations in this study; for details, see Table 4.

Table 4. Optimization plan for dynamic system of VFFSs.

Optimising factors:
k′e = 207.77 + ax0 + bx2

0 + cx3
0

Optimisation variables: a, b, c Variable range:
Ω =

{
x ∈ R3

∣∣a, b, c ≥ 0
}

Objective function Equation Function description

Relative amplitude change
rate of main float screen

frame γ

γ = |Aa−Ab |
Aa

×100%

Aa and Ab are the average
value of all the amplitudes of
x2 in the steady state with
Aa = 1

n ∑n
i ai and

Ab = 1
n ∑n

j bj, respectively.
Here, ai is the amplitude of x2
during the ith period in the
steady state without external
conditions changed, and bj
represents the amplitude of
the jth period in the steady
state of x2 with external
conditions changed.

Complexity of system’s
motion state N N = number(F) F: One-dimensional vector of

resonance frequency

4.3. Multi-Objective Optimization Results and Analysis of Dynamic Response of VFFSs

A method of NSGA-II implemented in Matlab 2023a was used to find combinations
of solutions for both objective functions, with the parameters listed in Table 5. The opti-
mization was conducted iteratively while considering both the computational time and the
accuracy of solutions using a value of function tolerance (10−4) as a termination criterion.
To compare the performance of the baseline RSS with that of the optimized RSSs, parame-
ters ke, m1, and m2 with changed parameters were used at a VFFSs operating frequency of
70 rad·s−1, as discussed in Section 4.1). The generated Pareto is shown in Figure 16.

Table 5. NSGA-II parameters.

Population
Size

Select
Function

Crossover
Fraction

Mutation
Function

Crossover
Function

Pareto Front
Fraction

150 Tournament 0.8 Adaptive
feasible intermediate 0.20

Figure 16 indicates that the Pareto front consists of four isolated points, which are
described as points A, B, C, and D, respectively. The solution in point A has a low com-
plexity of motion but a large rate of the change of amplitude; solutions in points B and C
increase the complexity of motion but slightly decrease the rate of the change of amplitude
compared with the solution in point A; the solution in point D shows a slight rate of change
of amplitude but indicates that the complexity of motion is further increased.

Since only one solution of the Pareto front is required for the design of the shear spring,
VFFS designers can evaluate the Pareto set of solutions according to their experience and
the requirements of each optimization problem and choose one as the final solution for the
specific problem. Next, the performance of four virtual rubber shear springs, RSS (A), RSS
(B), RSS (C), and RSS (D), with parameters according to the Pareto optimal solutions in A, B,
C, and D (Figure 16), was studied by simulating the dynamics of a VFFSs at ω = 70 rad·s−1

equipped with those springs (see Figure 17).
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It can be observed in Figure 17a that the motion state of VFFSs equipped with RSS
(A) is maintained to be a periodic-1 motion. Figure 17b–d indicates, however, that by
implementing RSS (B), RSS (C), or RSS (D), respectively, the VFFS’s dynamics is attributed
to more complex quasi-periodicity with toroidal attractors formed in phase space. The
results illustrate that the motion state of the VFFSs equipped with the baseline RSS can be
maintained by using RSS (A) but that the complexity of the motion state of the system is
gradually increased by using RSS (B), RSS (C), and RSS (D).

For comparing the performance of the baseline rubber shear spring (BRSS) and the
optimized RSSs on γ2 (the rate of change of amplitude of x2) caused by external conditions,
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the effects of change in parameters ke, m1 and m2 on γ2 of an operating VFFSs equipped
with different RSSs are calculated, cf. Figure 18. Here, parameters ke, m1, and m2 also
increase by 5%, 5%, and 15%, respectively, and the excitation angular frequency 70 rad·s−1

are considered, cf. Section 4.3.
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Figure 18. The rate of change of amplitude of x2 using different RSSs caused by external conditions.

Figure 18 depicts the rate of change of amplitude of x2 caused by the change in
parameters Ke, m1, and m2 decrease from 51.84% (the baseline RSS) to 7.54%, 6.92%, 6.72%,
and 0.061% using RSS (A), RSS (B), RSS (C), and RSS (D), respectively. The results illustrate
that if the operation stability of an industrial VFFS can be reduced, RSS (D) can be employed,
which has the best performance with regard to the rate of change in amplitude, followed
by RSS (C), RSS (B), and RSS (A), which perform essentially identical.

As the dynamic stiffness is the dominant parameter for the dynamics of VFFSs [8], the
dynamic stiffness characteristics of the baseline and the four optimized RSSs for different
excitation amplitudes are described and compared in the following, as shown in Figure 19.
Its dynamic stiffness is defined as Equation (10).
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Figure 19. Dynamic stiffness characteristics of the baseline and optimized RSSs for different ampli-
tudes, with angular frequency ω of the investigated VFFS being 70 rad·s−1.

Figure 19 shows that an increase in amplitude results in a decrease in the dynamic stiff-
ness of the baseline RSS. However, the dynamic stiffness of the optimized RSSs increases
with the increase in amplitude, and the dynamic stiffness of RSS (D) increases fastest, fol-
lowed by RSS (C), RSS (B), and RSS (A). These results illustrate that the baseline RSS shows
softening characteristics, and the optimized RSSs show hardening characteristics, respec-
tively. RSS (A) with suitable hardening characteristics can improve the amplitude stability
of the VFFSs caused by external conditions while maintaining the periodic−1 motion.
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5. Conclusions

In this paper, by applying mechanical tests (uniaxial tension, uniaxial compression,
plane tension, and shear stress relaxation) to the screen panel samples, the hyperelastic and
viscoelastic constative models of screen panel material were identified. Compared with
other models (Mooney–Rivlin, Neo-Hooke, Yeoh, Arruda–Boyce, Kevin–Voigt model), the
third-order Ogden model and the Generalized Maxwell model can accurately describe the
hyperelasticity and viscoelasticity of the screen panel, respectively.

Then, a new dynamic model of the coupling system of the VFFSs mass, screen panel,
and material group is proposed, and the dynamics of the VFFSs under different loading
conditions are revealed: with the increase in the elastic force of the screen panel, anti-
resonance frequency and resonance frequency of the VFFSs dynamic system increase, and
the peak in the resonance region increases and moves to the right. An increase in the
damping force results in an increasing resonance frequency of the dynamic system, and the
peak in the resonance region decreases and moves to the right. This means that the elastic
force and viscous force of the screen panel produce a significant effect on the dynamic
response of VFFS under loading material conditions.

Finally, the NSGA-II is applied to optimize the dynamic response of the VFFSs system,
and the results reveal that the use of optimized shear springs (RSS (A)) with suitable hard-
ening characteristics can reduce the relative amplitude change rate of the main and floating
screen fame by 44.30% while maintaining periodic-1 motion of the VFFSs, which greatly
improve the vibration stability of the VFFSs system under loading material condition.
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