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Abstract: We generalize the U(1) gauge transformations of electrodynamics by means of an analytical
extension of their parameter space and observe that this leads naturally to two gauge potentials, one
electric, one magnetic, which permit the writing of local Lagrangians describing elementary particles
with electric and magnetic charges. Gauge invariance requires a conformal transformation of the
metric tensor. We apply this approach, which borrows from Utiyama’s methodology, to a model
with a massless scalar field and a model with a massless spinor field. We observed that for spinor
models non-symmetrized Lagrangians can enable the existence of magnetic monopoles, but this is
not possible with symmetrized Lagrangian. Such restrictions do not occur for spinless fields, but the
model does not allow spin-one fields interacting with monopoles.

Keywords: magnetic monopole; two-potential formalism; gauge symmetry; conformal transformations

1. Introduction

The history of magnetism is very long and rich, with some of its earliest scientific
discussions attributed to the Greek Thales of Miletus during the 6th century BC. And yet,
even today, we do not have a full understanding of why there are two poles in magnets,
and it is not even clear whether isolated magnetic poles (or magnetic monopoles) exist,
despite much theoretical and experimental work on these questions [1–5]. In 1269, the
French scientist Pierre le Pèlerin de Maricourt, or Petrus Peregrinus of Maricourt, wrote his
Epistola de magnete, in which he described his observations on properties of magnets, such
as the presence of two opposite poles in magnets (Maricourt introduced the term polus),
the repulsion between two like poles, and the fact that cutting a magnet in two halves
results in two halves with two further opposite poles [6]. Another breakthrough came in
1864 with James Clerk Maxwell’s theory of electrodynamics, based on the discoveries by
many precursors such as Ampère and Faraday, and in which Maxwell simply assumed that
magnetic charges did not exist, but did not forbid them either [7]. At that time, and for a
few years thereafter, the general opinion among physicists was that magnetic monopoles
were not elementary particles that existed in reality. In 1894, however, Pierre Curie made
the, then bold, suggestion that monopoles could exist in nature, even though none had
been observed [8].

It is common to credit Paul Dirac for the first modern investigation of magnetic
monopoles, in 1931. For more references pre-dating Dirac’s contribution, see the reprint
book [9]. Not only did Dirac show that monopoles are compatible with quantum mechanics,
but he also demonstrated that the existence of monopoles would explain the observation
that electric charge is discrete (or ‘quantized’, as it is more commonly referred to); that is, a
magnetic charge g would imply that electric charges are given by [10]
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e =
2π

g
n. (1)

Seventeen years later, Dirac showed that a Lorentz-invariant Lagrangian containing monopoles
should be non-local [11]. About twenty years after that, Zwanziger wrote a local Lagrangian
with an additional, ‘magnetic photon’ field, by expanding on former ideas by Cabibbo
and Ferrari [12]. However, he also needed a constraint in order to reduce the degrees of
freedom to that of the on-shell photon, thereby requiring a space-like Lorentz-symmetry-
violating four-vector associated with the direction of the Dirac string, itself an unphysical
artifact [1,13–15]. (Hereafter, we shall not discuss ‘dyons’, hypothetical objects with both
electric and magnetic charges, investigated in Refs. [13,16], and proposed as a phenomeno-
logical alternative to quarks in Ref. [17]. Let us just mention that the Dirac quantization
condition is generalized, given two dyons with respective electric and magnetic charges
(e1, g1) and (e2, g2), to e1g2 − e2g1 = 4πn; limits on their charge and mass were recently
established after the first search for dyons at the Large Hadron Colliders [18].) An excellent
review on current monopole searches is Ref. [5].

At the time of writing, neither elementary magnetic monopoles nor dyons have been
observed yet. An analysis of 13 TeV proton–proton collisions by the MoEDAL Collaboration,
during the 2015–2017 Run 2 at the CERN Large Hadron Collider (LHC) led to mass limits
in the 1500–3750 GeV range for magnetic charges, and up to 5gD (where gD = 2π

e is the
minimum magnetic charge, called the ‘Dirac magnetic charge’, allowed by Equation (1)), for
monopoles with spin 0, 1/2, and 1 [19]. The MoEDAL Collaboration also performed a search
for dyons based on a Drell–Yan production and excluded dyons with a magnetic charge
up to 5gD and an electric charge up to 200e for mass limits in the range 870–3120 GeV, and
monopoles with magnetic charge up to 5gD with mass limits in the range 870–2040 GeV [18].
More recently, the ATLAS Collaboration (CERN) also reported on a search for magnetic
monopoles and high-electric-charge objects during the LHC’s Run 2 and found no highly
ionizing particle candidate [20]. Further limits, if not a discovery, should be obtained after
the LHC’s ongoing Run 3, which should be completed in 2026.

We can write the fully symmetric Maxwell equations with magnetic monopoles
as follows:

∇ · E = ρe,

∇ · B = ρm,

∇× B − ∂E
∂t

= Je,

∇× E +
∂B
∂t

= −Jm.

(2)

For the sake of simplicity, hereafter we utilize units such that c = 1. These equations can be
written as

∇ · (E + iB) = ρe + iρm, ∇× (E + iB) = i
∂

∂t
(E + iB) + i(Je + iJm),

which are invariant under the electric–magnetic duality transformation, defined as the
following complex phase rotations:

E + iB → eiθ(E + iB), ρe + iρm → eiθ(ρe + iρm), Je + iJm → eiθ(Je + iJm).

In this context of classical electromagnetism, this duality transformation was first observed
by Heaviside [21]. Afterwards, the concept of duality was extended and extensively
investigated in a wide array of the physics literature. The appearance of imaginary numbers
in the previous expressions might be seen as a hint for exploiting the analytical extension
of U(1) hereafter.
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The second expression of Equation (2) appears to be incompatible with B = ∇× A if ∇ ·
(∇× A) = 0. However, we can recover Equation (2) by utilizing a singular Dirac potential,

A(r) =
g

4π|r|
r × n

|r| − r · n
,

as a function of the position r, with the unit constant vector n, which is parallel to the Dirac
string. Other, more suitable, expressions of this potential are discussed in Ref. [1], along
with discussions of incidental subtleties.

The continuity equations for electric and magnetic densities and currents are given,
respectively, by

∇ · Je +
∂ρe

∂t
= 0, ∇ · Jm +

∂ρm

∂t
= 0,

or, in tensor notation, ∂µ Jµ
e = ∂µ Jµ

m = 0. In 1948, Dirac attempted to generalize electrody-
namics in terms of these four currents, Jµ

e and Jµ
m, as well as the field strength tensor Fµν

and its dual F̃µν. However, despite these equations being elegant and symmetric, their
expressions in terms of potentials require modified expressions of the field strength tensor
in terms of the potentials. These, in turn, involve complications such as the ‘Dirac veto’,
which states that the trajectory of electric charges in the presence of magnetic charges must
not intersect the Dirac string. The duality, that is, the interchange between electric and
magnetic objects, such that the possibility of attaching a Dirac string to an electric charge as
well as a magnetic charge, led to dual-invariant electrodynamics Lagrangians in terms of
two potentials: the four-vector Aµ and the pseudovector Ãµ [12–14]. Without going into
detail, let us mention the field strength tensor and its dual from Ref. [12],

Fµν = ∂µ Aν − ∂ν Aµ − εµναβ∂α Ãβ,

F̃µν = ∂µ Ãν − ∂ν Ãµ + εµναβ∂α Aβ,

which, whereas they do not require a Dirac string, pose the difficulty of introducing new
degrees of freedom, which can be dealt with in various ways. Further discussions on the
Cabibbo–Ferrari two potentials are given in Refs. [22–24]. Other constructions of models
with two potentials are based on a local Lagrangian formulation by Zwanziger, where the
electromagnetic field strength tensor and its dual can be written as [13,14]

Fµν = nα

[
nµ(∂α Aν − ∂ν Aα)−

1
2

εµνρσnρ
(
∂α Ãσ − ∂σ Ãα

)]
,

F̃µν = nα

[
nµ

(
∂α Ãν − ∂ν Ãα

)
− 1

2
εµνρσnρ(∂α Aσ − ∂σ Aα)

]
,

where the vector nµ is spatially parallel to the Dirac string but with the physics being
independent of nµ.

The central objective of this paper is to provide a symmetry argument which leads
naturally to the addition of a second potential which will account for the existence of
magnetic charges, rather than imposing that second potential by hand. The resulting ap-
proach is covariant, valid in any curved spacetime, and should accommodate two-potential
Lagrangians of monopoles; note, however, that models that break Lorentz invariance, such
as Zwanziger’s Lagrangian with its Dirac string vector, might involve slight modifications
to the formalism. Hereafter, we apply an analytical extension of the parameter space of
electrodynamics’ U(1) gauge transformations and obtain thereof two potentials which
describe elementary particles with electric charge and magnetic charge, the resulting gauge
group being effectively the product of the compact Lie group U(1) with the non-compact
Lie group of dilations R+. Although the literature on duality is abundant, to the best
of our knowledge this is the first attempt to explain the appearance of the dual gauge
field by modifying the gauge symmetry group. We thus build gauge theories of magnetic
monopoles from first principles: along with the U(1)×R+ symmetry, so that in addition
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to the usual (electric) gauge field Aν, there appears a magnetic gauge field Cν, as in Refs.
[23,24]; we shall also require conformal invariance. Although this may suggest a similarity
with the Weyl approach to gravity, we shall explain how our approach differs from the
Weyl theory.

We examine the gauge invariance by means of Utiyama’s methodology [25–29]. This
approach considers infinitesimal gauge transformations and leads to a set of equations
under the assumption of independence of the gauge parameters and their derivatives. The
solutions of these equations determine the relevant objects that should be considered in
a deductive way, such as the covariant derivative and field strength. We illustrate this
approach with a massless scalar field as well as with a spinor field. We comment on the two-
potential monopole phenomenology at the end of Section 4.2. We observe that for spinor
models a non-symmetrized Lagrangian enables the existence of magnetic monopoles, but
this is not the case when we consider a symmetrized Lagrangian. These subtleties do not
affect the scalar case, where the magnetic monopole’s appearance is clear.

2. Analytical Extension of the U(1) Gauge Symmetry

Hereafter, we examine and motivate from symmetry arguments the following expres-
sions of E and B in terms of vector and scalar potentials, A0, A, C0, and C:

E = −∇A0 − ∂t A −∇× C,

B = ∇× A −∇C0 − ∂tC.
(3)

Clearly, their symmetry allows for point-like magnetically charged particles, just as we
usually have with the potentials A0 and A, only for electrically charged particles. In
Appendix A, we briefly discuss the gauge invariance conditions behind Equation (3), and
we write these field equations in terms of the gauge fields.

As we shall explain hereafter, the essence of this section lies in the generalization of
the U(1) symmetry by applying an analytical extension,

ϵ → ϵ − iα, (4)

so that, for instance, a scalar field would transform globally as

ϕ′ = eα+iϵϕ, ϕ†′ = eα−iϵϕ†, α, ϵ constant.

This amounts to the product of a usual (compact) U(1) phase transformation, e−iϵ, of the
field, by a (non-compact) dilation, eα, and, as we shall describe, the invariance of the
Lagrangian also requires specific conformal transformations related to this dilation factor.
As alluded to in the Introduction, this may suggest to some that we are actually constructing
Weyl’s invariant theories of gravity, but in Appendix B, we explain how our approach
is different.

In Sections 2.1 and 2.2, we examine the effects of the analytical extension of the U(1)
gauge transformations on the matter field, with their corresponding invariant Lagrangians,
and the analogue for the gauge fields, along with their related field strength tensors.

2.1. Matter Fields

In order to describe the appearance of the magnetic gauge field Cµ, let us consider the
Lagrangian of a massless complex scalar field, ϕ(x), with a quartic potential:

L =
√
−g
[

gµν∂µϕ†∂νϕ + λ
(

ϕ†ϕ
)2
]

. (5)

The quartic interaction is a well-studied non-trivial addition to the free theory terms; it
follows naturally the quadratic massive term (which vanishes here, in order to maintain
global conformal invariance). But first, let us describe its invariance under the global U(1)
transformation with analytical extension. We recover the invariance of L if, in addition to
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the transformation on ϕ, ϕ†, we also perform a transformation on the metric tensor; that is,
we also perform a rigid conformal transformation on the metric tensor:

ϕ′ = eα+iϵϕ, ϕ†′ = eα−iϵϕ†, g′µν = e−nαgµν,

where α and ϵ are constant, and n depends on the Lagrangian. Note that whereas the
general theory should be developed in a non-Minkowskian spacetime, the Minkowski case
can be seen as a gauge fixing of the metric tensor. For instance, if we start with a non-flat
metric gµν that is conformal to ηµν, then the parameter α can be chosen in such a way that
g′µν = ηµν. (We note that the conformal invariance of Maxwell equations in the presence of
magnetic monopoles has been verified in Ref. [30].) In this way, we see that

L′ =
√
−g′

[
g′µν∂µϕ†′∂νϕ′ + λ

(
ϕ†′ϕ′

)2
]

=
√
−g
[

e(2−n)αgµν∂µϕ†∂νϕ + e2(2−n)αλ
(

ϕ†ϕ
)2
]

.

For the scalar field described by Equation (5), it is clear that we recover the invariance of
the Lagrangian by choosing n = 2, and then, L′ = L.

In the late 1970s, Kyriakopoulos showed the invariance of the Maxwell equations
with monopoles under conformal transformations [30]. That work inspired us to study
the role played by conformal transformations in the candidate theories for magnetic
monopoles. In particular, one might ponder about its influence at the level of a fundamen-
tal symmetry, such as gauge symmetry. One could wonder if the duality transformation,
E + iB → eiθ(E + iB), would also imply an analogous relation for the potentials involving
complex numbers, e.g., Aµ → A(e)

µ + iA(m)
µ . If that was the case, we could argue that

the U(1) symmetry was thereby extended to a symmetry containing a real-phase factor
and a complex phase. Moreover, this somewhat curious idea of extending the parameter
space with an imaginary factor appears to explain in a natural way the otherwise ad hoc
appearance of the additional, so-called ‘magnetic’, potential. In this way, one could see the
gauge transformation parameter as being generalized to produce an extended symmetry
group such as U(1)× R+. Magnetic monopoles have not been observed yet in the forms
proposed in the literature. Hereafter, we suggest a formulation from first principles (gauge
theory) aiming to predict monopoles and to offer a possible explanation for the reason why
these particles remain elusive to detection.

Now, let us extend the U(1) gauge theory for this type of transformation and see how
the magnetic potential results from the analytical extension in Equation (4). We begin with
a Lagrangian of N scalar fields ϕA, with A = 1, . . . , N:

L = L
(

gµν, ϕA, ∂µϕA
)

.

(Were we working with other tensor fields, the standard derivative should be replaced by a
spacetime covariant derivative.) We apply the transformation

ϕ′A = UA
BϕB =

(
eTaϵa(x)

)A

B
ϕB, A, B = 1, . . . , N; a = (1), (2), . . . , dim(G), (6)

where G is the gauge group, ϵa(x) are real spacetime functions, and T A
a B are representation

matrices of Ta, the generators of G, with commutation relations [Ta, Tb] = f c
a bTc. In order to

avoid confusion, the group indices a are displayed between parentheses, as in Equation (6).
The Lagrangian is assumed to be invariant under transformations of the fields: δL = 0.

Henceforth, we will work with an abelian group; that is, such that f c
a b = 0, with

ϵ(1) = ϵ, ϵ(2) = α,
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(where the i factor is incorporated within the Lie algebra representation of T2) so that the
transformed fields read

ϕ′A =
(

eTaϵa
)A

B
ϕB =

(
eT(1)ϵ+T(2)α

)A

B
ϕB, ϵ(x), α(x) ∈ R,

in which Ta now denotes the representation matrices of the corresponding Lie algebra
element on the ϕ field. This should not cause confusion in the remainder of this paper.

Here, again, the spacetime metric also transforms as

g′µν = enαgµν, g′µν = e−nαgµν,

where n is determined according to the form of the Lagrangian. (For instance, for the massless
complex scalar field Lagrangian

L =
√
−g
(

gµν∂µϕ†∂νϕ
)
→ L′ =

√
−g′

(
g′µν∂µϕ′†∂νϕ′

)
=
√
−ge(−2n+n+2)α

(
gµν∂µϕ†∂νϕ

)
and the Lagrangian will be invariant if n = 2. Similarly, if L =

√−g
(

gµν∂µϕ†∂νϕ
)3, then

the Lagrangian will be invariant if n = −6.)
Next, if we take the group parameters, α(x) and ϵ(x), to be spacetime dependent,

we necessitate gauge fields in order to preserve gauge invariance. Since we have two
independent parameters, we shall introduce two gauge fields,

A(1)
µ = Aµ, A(2)

µ = Cµ,

with the transformation law: δAa
µ = ∂µϵa, for a = (1), (2). As usual, these additional fields

restore the invariance of the Lagrangian lost due to the derivatives ∂µϵa.
We insert these fields within the initial Lagrangian, L = L

(
gµν, ϕA, ∂µϕA), which

results in an invariant Lagrangian:

LI = LI

(
gµν, ϕA, ∂µϕA, Aa

µ

)
.

The variation under infinitesimal transformations is written as [25]

δLI =
∂LI

∂ϕA δϕA +
∂LI

∂∂µϕA δ∂µϕA +
∂LI
∂gµν δgµν +

∂LI
∂Aa

µ
δAa

µ

=

[
∂LI

∂ϕA T A
(1) BϕB +

∂LI

∂∂µϕA ∂µ

(
T A
(1) BϕB

)]
ϵ

+

[
T A
(2) B

(
∂LI

∂ϕA ϕB +
∂LI

∂∂µϕA ∂µϕB
)
+

∂LI
∂gµν Tµν

ρσgρσ

]
α

+
∂LI

∂∂µϕA T A
(a) BϕB∂µϵa +

∂LI
∂Aa

µ
∂µϵa.

If LI is invariant under these transformations with ϵ, α, ∂µϵ, and ∂µα considered as inde-
pendent parameters, then we obtain the symmetry equations:

T A
(1) B

(
∂L

∂ϕA ϕB +
∂L

∂∂µϕA ∂µϕB
)
= 0,

T A
(2) B

(
∂L

∂ϕA ϕB +
∂L

∂∂µϕA ∂µϕB
)
+

∂L
∂gµν Tµν

ρσgρσ = 0,

∂L
∂∂µϕA T A

(a) BϕB +
∂LI
∂Aa

µ
= 0.
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The last equation is satisfied as long as the dependence of the Lagrangian with deriva-
tives of the fields ϕA and the gauge field is expressed via covariant derivatives,

DµϕA = ∂µϕA − T A
a BϕB Aa

µ,

which implies that the gauge-invariant Lagrangian should be extended as

LI = LI I

(
gµν, ϕA, DµϕA

)
.

The transformation law of this object is described by

δDµϕA = δ
(

∂µϕA − T A
a BϕB Aa

µ

)
= T A

a BDµϕBϵa,

which ensures that this object is covariant under the symmetry group with generators Ta,
with a = (1), (2), . . . , dim(G).

Naturally, a question that occurs at this point is whether the resulting models reflect
the expected magnetic–electric duality. We respond in the affirmative in Appendix C, for
any curved spacetime, by making use of the Levi–Civita form defined in terms of the
well-known Levi–Civita symbols. In addition, while recovering the duality property we
will encounter another motivation for exploiting the analytical extension of the parameter
space, Equation (4), which underlies our approach.

2.2. Gauge Fields

Here, we analyze the Lagrangian L0 of the free gauge fields. For the functional depen-
dence of L0, as usual, we expect it to depend on the gauge fields and their first derivatives.
In addition, since we are dealing with vector fields, the presence of the metric tensor is
almost mandatory, otherwise we would not be able to build scalar quantities out of vector
fields. Nonetheless, since the metric is not flat a priori, the derivative of the gauge fields
should take into account the curvature of the spacetime; in other words, the derivative
of the gauge fields should actually appear in L0 by means of the spacetime covariant
derivative. In summary, we propose the functional dependence of L0 as

L0 = L0

(
gµν, Aa

µ,∇ν Aa
µ

)
.

where ∇ν Aa
µ = ∂ν Aa

µ − Γρ
νµ Aa

ρ, with Γρ
νµ being the Christoffel symbols. As a matter of

consistency with the remainder of the theory, this Lagrangian should be invariant under
the gauge transformation of the metric and the gauge fields. Accordingly,

δL0 =
∂L0

∂gµν δgµν +
∂L0

∂Aa
µ

δAa
µ

+
∂L0

∂∇ν Aa
µ

δ∂ν Aa
µ − ∂L0

∂∇ν Aa
µ

δΓρ
νµ Aa

ρ −
∂L0

∂∇ν Aa
µ

Γρ
νµδAa

ρ.

The transformation law for the Christoffel symbols can be straightforwardly evaluated and
results in

δΓρ
µν = −n

1
2

gρσ
(
∂µαgνσ + ∂ναgµσ − ∂σαgµν

)
.

When we impose invariance of the Lagrangian, δL0 = 0, and assume the independence
of the parameters ϵ and α and their derivatives, we find the equations
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∂L0

∂gµν ngµν = 0,

∂L0

∂A(1)
λ

− 1
2

 ∂L0

∂∇ν A(1)
µ

+
∂L0

∂∇µ A(1)
ν

Γλ
νµ = 0,

∂L0

∂A(2)
λ

− 1
2

 ∂L0

∂∇ν A(2)
µ

+
∂L0

∂∇µ A(2)
ν

Γλ
νµ

− 1
2

(
∂L0

∂∇ν Aa
µ
+

∂L0

∂∇µ Aa
ν

)[
−n

1
2

gρσ
(

δλ
µ gνσ + δλ

ν gµσ − δλ
σ gµν

)]
Aa

ρ = 0,

∂L0

∂∇ν Aa
µ
+

∂L0

∂∇µ Aa
ν
= 0.

Note that the last three equations consider the symmetry of the lower indices of the Levi–
Civita connection and the symmetry of the second derivatives, i.e., ∂µ∂ν = ∂ν∂µ. By
substituting the last equation into the previous two equations, we can simplify these three
equations as follows:

∂L0

∂gµν ngµν = 0,
∂L0

∂Aa
λ

= 0,
∂L0

∂∇ν Aa
µ
+

∂L0

∂∇µ Aa
ν
= 0.

The solutions to the last equations show us that

L0 = L0

(
gµν, Fa

νµ

)
,

where
Fa

νµ ≡ ∇ν Aa
µ −∇µ Aa

µ = ∂ν Aa
µ − ∂µ Aa

µ

are the field strengths for both A(1)
λ = Aλ and A(2)

λ = Cλ. In other words, L0 does not
depend explicitly on the gauge fields, but depends on the metric and on the field strengths
Fa

νµ. But there is also an extra condition for the Lagrangian of the free gauge field. The first

of the equations can be rewritten in terms of a new object T(0)
µν ≡ 1

2
1√−g

∂L0
∂gµν , leading to

T(0) ≡ gµνT(0)
µν = 0.

This expression tells us that the energy–momentum tensor T(0)
µν associated with L0 has to

be traceless.

3. Conserved Current

Finally, we can evaluate the existence of conserved currents, as expected by the
Noether’s theorem. We consider the full Lagrangian of our system, taking into account
the contributions of the Lagrangians for the matter fields ϕA in interaction with the gauge
fields and L0:

LT

(
gµν, ϕA, ∂µϕA, Aa

µ, ∂µ Aa
µ

)
= LI

(
gµν, ϕA, DµϕA

)
+ L0

(
gµν, Fa

νµ

)
.

The variation in LT can be expressed as the sum of a “volume” term and a “surface” term:

δLT = V + ∂νSν,

where

V ≡ δLT

δϕA δϕA +
∂LT
∂gµν δgµν − ∂µ

δLT
δAa

µ
ϵa, Sν ≡ ∂LI

∂DνϕA δϕA +
∂L0

∂Fa
νµ

δAa
µ +

δLT
δAa

ν
ϵa.



Symmetry 2024, 16, 914 9 of 24

According to Utiyama, since the choice of the spacetime volume of evaluation of the
action integral is arbitrary, the “volume” and “surface” terms should vanish independently
under the symmetry condition, i.e., V = 0, ∂νSν = 0. We are led to

∂ν

(
∂LI

∂DνϕA T A
a BϕB +

δLT
δAa

ν

)
= 0,

∂LI

∂DµϕA T A
a BϕB +

∂LT
∂Aa

µ
= 0.

We define the currents as
Jµ
a ≡ ∂LT

∂Aa
µ

,

and from the latter equation, we see that this is equal to

Jµ
a = − ∂LI

∂DµϕA T A
a BϕB,

while the former establishes that
∂ν Jν

a = ∂ν
δLT
δAa

ν
.

We conclude that Jµ
a is a conserved quantity under the validity of the field equations,

δLT
δAa

ν
= 0.

4. Applications: Massless Scalar Field and Spinor Field
4.1. Massless Scalar Field with a Quartic Potential
Gauge Invariance and Interaction

Consider the Lagrangian in Equation (5) for a massless complex scalar field with a
quartic potential:

L =
√
−g
[

gµν∂µϕ†∂νϕ + λ
(

ϕ†ϕ
)2
]

.

With the notation of Section 2, we have

ϕA =

(
ϕ1

ϕ2

)
=

(
ϕ

ϕ†

)
,

with the analytically extended U(1) transformations, Equation (4),

ϕ′ = eα+iϵϕ, ϕ†′ = eα−iϵϕ†,

or, in their infinitesimal form,

ϕ′ = (1 + α + iϵ)ϕ, ϕ†′ = (1 + α − iϵ)ϕ†.

Thus, the analytical extension of U(1) implies two parameters,

ϵ(1) = ϵ, ϵ(2) = α,

and it follows from
δϕA = ϕ′ − ϕ = T A

a BϕBϵa

that

δϕ =
(

T 1
(1) 1ϕ + T 1

(1) 2ϕ†
)

ϵ +
(

T 1
(2) 1ϕ + T 1

(2) 2ϕ†
)

α,

δϕ† =
(

T 2
(1) 1ϕ + T 2

(1) 2ϕ†
)

ϵ +
(

T 2
(2) 1ϕ + T 2

(2) 2ϕ†
)

α.
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We can express this in matrix notation by using

T A
(1) B =

(
i 0
0 −i

)
, T A

(2) B =

(
1 0
0 1

)
,

which form a 2-dimensional abelian Lie algebra.
As discussed in Section 2, the above transformation acts on the metric as, on the

one hand,
δgµν = T ρσ

µν gρσα,

and, on the other hand,

g′µν = (1 − 2α)gµν ⇒ δgµν = −2αgµν,

which upon comparison, shows that

T ρσ
µν = −2δ

ρ
µδσ

ν .

As discussed in Section 2, if we consider only the local transformations of the fields
and the metric tensor

ϕ′ = eα+iϵϕ, ϕ†′ = eα−iϵϕ†, g′µν = e−2αgµν,

where α = α(x) and ϵ = ϵ(x), then the Lagrangian transforms as

δL =
√
−ggµνϕ†ϕ∂µ(α − iϵ)∂ν(α + iϵ) +

√
−ggµνϕ†∂νϕ∂µ(α − iϵ) +

√
−ggµνϕ∂µϕ†∂ν(α + iϵ),

showing that the invariance is lost. We can recover the invariance by adding gauge
potentials, Aa

µ, which interact with the matter fields through the covariant derivative:

DµϕA = ∂µϕA − T A
(a) BϕB Aa

µ.

For the current situation,
A(1)

µ = Aµ, A(2)
µ = Cµ,

so that the covariant derivatives are given by

Dµϕ = ∂µϕ − iAµϕ − Cµϕ, Dµϕ† = ∂µϕ† + iAµϕ† − Cµϕ†.

(In the literature, in standard electrodynamics, it is usual to present the coupling constant
such that the covariant derivative reads Dµ = ∂µ − ieAµ. In Utiyama’s approach, this is not
the case. However, the compatibility between the notation can be obtained as long as we
map Aµ → eAµ. For the case of the field Cµ, the mapping would read Cµ → qmCµ, where
qm stands for the magnetic-like coupling, or the magnetic charge. Throughout this paper,
we will keep Utiyama’s notation.).

Then, the Lagrangian in Equation (5) for the interacting fields becomes

LI =
√
−g
[

gµνDµϕ†Dνϕ + λ
(

ϕ†ϕ
)2
]

.

It is straightforward to check that this Lagrangian is gauge-invariant even for non-infinitesimal
transformations.

Now, we consider the natural extension of the Maxwell Lagrangian

L0 = L0

(
gµν, Fa

νµ

)
=
√
−ggµρgνσFa

µνFaρσ =
√
−ggµρgνσ

[
F(1)

µν F(1)
ρσ + F(2)

µν F(2)
ρσ

]
,
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where the gauge fields are decoupled as

F(1)
µν ≡ ∂µ Aν − ∂ν Aµ, F(2)

µν ≡ ∂µCν − ∂νCµ.

The corresponding energy–momentum tensor is

Tαβ =
−2√−g

∂L0

∂gαβ
= gαβgµρgνσ

[
F(A)

µν F(A)
ρσ + F(C)

µν F(C)
ρσ

]
− 4gνσ

[
F(A)

αν F(A)
βσ + F(C)

αν F(C)
βσ

]
,

and its trace is null:
T = gαβTαβ = 0.

We conclude this section by examining the full Lagrangian and its conserved current;
that is, we combine the previous Lagrangians:

LT = LI + L0 =
√
−g
[

gµνDµϕ†Dνϕ + λ
(

ϕ†ϕ
)2
]
+
√
−ggµρgνσ

[
F(A)

µν F(A)
ρσ + F(C)

µν F(C)
ρσ

]
.

The field equations for the gauge field are obtained from

∂ν
∂LT

∂
(

∂ν Aa
µ

) − ∂LT
∂Aa

µ
= ∂ν

(√
−ggµρgνσFaρσ

)
− Jµ

a = 0,

which, for a = 1, leads to a Maxwell-like equation for Aµ,

∂ν

[√
−ggµρgνσF(A)

ρσ

]
− Jµ

A = 0, ∇νFµν(A) = Jµ
A/
√
−g,

and likewise with a = 2 for the gauge field Cµ,

∂ν

[√
−ggµρgνσF(C)

ρσ

]
− Jµ

C = 0, ∇νFµν(C) = Jµ
C/
√
−g.

The current Jµ
A for our situation is

Jµ
A ≡ ∂LT

∂Aµ
=

∂LI
∂Aµ

= i
√
−ggρµ

[
ϕ†De

ρϕ − ϕDe
ρϕ†
]
,

where
De

ρϕ ≡ ∂ρϕ − iAρϕ, De
ρϕ† ≡ ∂ρϕ† + iAρϕ†.

This is the usual “electric” current obtained in scalar electrodynamics. The current Jµ
C

is similar:
Jµ
C = −

√
−ggρµ

[
ϕ†Dm

ρ ϕ + ϕDm
ρ ϕ†

]
,

with
Dm

ρ ϕ ≡ ∂ρϕ − Cρϕ, Dm
ρ ϕ† ≡ ∂ρϕ† − Cρϕ†.

Notice the absence of the factor i. We shall interpret this current as a ‘magnetic current’.
In this example, if we ignore the contribution of the term λ(ϕ†ϕ)2, we have the

standard massless scalar field. It is well known that the field equation in curved spacetime,
without the gauge fields that we introduced in our approach, is not covariant under
conformal transformations. In that context, one solves this problem by adding an extra
term to the Lagrangian of the type ξRϕ†ϕ, where R is the scalar curvature—the conformal
symmetry demands ξ to be 1/6. In the present approach, however, the addition of this term
is not necessary, as discussed in Appendix D. In fact, the presence of the gauge potentials in
the covariant derivative is enough to guarantee the invariance of the field equation under
internal (gauge) and spacetime (conformal) transformations.
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4.2. Example: Free Spinor Field

Consider the Lagrangian of a free massless spinor field ϕ, tentatively described by the
non-symmetrized spinor Lagrangian

L = i
√
|η|ψγa∂aψ,

√
|η| = 1.

Note that we use the same index ‘a’ for the flat or tangent spacetime coordinates; this
should not cause confusion because we will write the group index in parentheses. Now, if
we consider such a fermionic system in a curved spacetime, we substitute

∂a → hµ
a∇µ,

√
|η| → h = det ha

µ, Γµ =
i
2

ωµabΣab, Σab =
i
4

[
γa, γb

]
,

where ωµab is the spin connection, so that the Lagrangian becomes

L = ihψγah µ
a ∇µψ.

In terms of the notation introduced in Section 2, we now take

ϕA =

(
ϕ1

ϕ2

)
=

(
ψ
ψ

)
,

so that the spinor field transforms as

ψ′ = eα+iϵψ, ψ
′
= eα−iϵψ,

or, in terms of the infinitesimal generators of the transformation,

ψ′ = (1 + α + iϵ)ψ, ψ
′
= (1 + α − iϵ)ψ.

We proceed as in Section 4.1 and utilize the two group parameters

ϵ(1) = ϵ, ϵ(2) = α,

so that the field transformations

δϕA = ϕ′ − ϕ = T A
a BϕBϵa

result in

δψ =
(

T 1
(1) 1ψ + T 1

(1) 2ψ
)

ϵ +
(

T 1
(2) 1ψ + T 1

(2) 2ψ
)

α,

δψ =
(

T 2
(1) 1ψ + T 2

(1) 2ψ
)

ϵ +
(

T 2
(2) 1ψ + T 2

(2) 2ψ
)

α.

Again, we may express the generators of transformation as the following matrices:

T A
(1) B =

(
i 0
0 −i

)
, T A

(2) B =

(
1 0
0 1

)
.

For the metric, we have on one hand,

δh a
µ = T ν a

µ b h b
ν α,

and, on the other hand,

h′ a
µ = e−nαh a

µ ≈ (1 − nα)h a
µ ⇒ δh a

µ = −nαh a
µ ,
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so that, by comparison, we observe that

T ν a
µ b = −nδ ν

µ δ a
b .

Next, following once more the approach described in Section 2, we consider the
following local transformations of the fields and the metric tensor:

ψ′ = eα+iϵψ, ψ
′
= eα−iϵψ, h′aµ = e−nαha

µ,

where α = α(x), ϵ = ϵ(x). So, here again, without covariant derivatives, we find

δL = −hψγah µ
a ψ∂µϵ + ihψγah µ

a ψ∂µα

so that, as expected, the invariance is still lost.
As we did in Section 4.1, we easily recover the invariance by adding gauge potentials

Aa
µ which interact with the matter fields through the covariant derivative

DµϕA = ∇µϕA − T A
a BϕB Aa

µ.

More explicitly, we apply the two gauge fields

A(1)
µ = Aµ, A(2)

µ = Cµ,

so that the covariant derivatives read

Dµψ = ∇µψ − iAµψ − Cµψ, Dµψ = ∇µψ + iAµψ − Cµψ,

or, if we redefine the gauge fields in order to display explicitly the coupling constant for
each interaction,

Dµψ = ∇µψ − iqe Aµψ − qmCµψ, Dµψ = ∇µψ + iqe Aµψ − qmCµψ.

Then, the new Lagrangian for the interacting fields becomes

LI = ihψγah µ
a Dµψ,

and it is straightforward to check that this Lagrangian is gauge-invariant even for non-
infinitesimal transformations.

Here, again, as we did in Section 4.1, we combine the previous Lagrangians to obtain
the total Lagrangian of our system:

LT = LI + L0 = ihψγah µ
a Dµψ + hgµρgνσ

[
F(A)

µν F(A)
ρσ + F(C)

µν F(C)
ρσ

]
.

We find the equations for the gauge fields from

∂ν
∂LT

∂
(

∂ν Aa
µ

) − ∂LT
∂Aa

µ
= ∂ν

(
hgµρgνσFaρσ

)
− Jµ

a = 0,

which, with a = (1), leads to an equation for Aµ:

∂ν

[
hgµρgνσF(A)

ρσ

]
− Jµ

A = 0, ∇νFµν(A) = Jµ
A/
√
−g,

and the analogue for Cµ when a = (2),

∂ν

[
hgµρgνσF(C)

ρσ

]
− Jµ

C = 0, ∇νFµν(C) = Jµ
C/
√
−g.
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The current Jµ
A is the usual electric current,

Jµ
A ≡ ∂LT

∂Aµ
=

∂LI
∂Aµ

= ihψγah ν
a

∂

∂Aµ
(Dνψ) = qehψγah µ

a ψ,

and Jµ
C is a ‘magnetic’ current,

Jµ
C ≡ ∂LT

∂Cµ
=

∂LI
∂Cµ

= ihψγah ν
a

∂

∂Cµ
(Dνψ) = −iqmhψγah µ

a ψ,

which is the electric current multiplied by −i qm
qe

.
As regards monopole phenomenology and experiments, the recent study of Ref. [19]

analyses the Drell–Yan production of monopoles with the calculations of Ref. [31], which
did not exploit Zwanziger’s local two-potential formalism, but an effective U(1) gauge
field theory based on conventional models. It is similar for the recent study by Song and
Taylor [32], as well as the experiments reviewed in Refs. [2,5]. Laperashvili and Nielsen
examined phenomenological aspects of the electric and magnetic fine structure constants
with Zwanziger two potentials, by obtaining the renormalization group equations with
a non-symmetrized Dirac Lagrangian [33]. This non-symmetrized Lagrangian was also
employed by Terning and Verhaaren more recently to cancel spurious poles in observable
scattering amplitudes, including for a Dirac dyon [34]. Of interest is that that paper lists the
propagators with two potentials. These authors also used the two-potential approach, but
restricted their studies to the gauge sector interacting with dark photons, in Refs. [35,36].

We conclude this section by pointing out the absence of magnetic current, with the
present formalism, when we apply a symmetrized spinor Lagrangian:

L = ih
1
2

(
ψγah µ

a ∇µψ − h µ
a ∇µψγaψ

)
.

Indeed, if we consider local transformations of the fields and the metric tensor

ψ′ = eα+iϵψ, ψ
′
= eα−iϵψ, h′ a

µ = e−nαh a
µ ,

with the spacetime-dependent parameters α = α(x), ϵ = ϵ(x), then the transformed
Lagrangian reads

L′ = ih′
1
2

(
ψ
′
γae′µa ∇µψ′ − e′µa ∇µψ

′
γaψ′

)
= e(−3n+2)αL − e(−3n+2)αhψγah µ

a ψ∂µϵ.

From the first term on the right-hand side, the closest we come to an invariant Lagrangian
is by choosing n = 2

3 , for which we still find an additional term,

L′ = L − hψγah µ
a ψ∂µϵ,

so that the invariance is lost. Note that there is no dependence on the derivative of α
because the Lagrangian was symmetrized. This has as a consequence that there will be no
magnetic charge/current, since only the field Aµ needs to be introduced.

We can interpret this result from two different perspectives. On the one hand, if we
observe magnetic monopoles produced through processes involving spinor fields, such
as leptons and quarks, this may mean that physically, the non-symmetrized Lagrangian
is the one that should be considered. On the other hand, if we do not observe magnetic
monopoles with the same spinor fields, this could be an indication that the symmetrized
Lagrangian is the physical one.

Note that we may not find magnetic monopoles with spinors, but this does not mean
they could not be produced with scalar fields. We may argue that we have not observed
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monopoles yet because the only elementary scalar particle observed so far is the Higgs
boson, which decays very fast. If the new generation of accelerators can provide a high
flux of Higgs particles, perhaps we may be able to observe magnetic monopoles through
that channel.

5. Concluding Remarks

This paper pursues a well-known attempt to circumvent the non-local nature of Dirac-
type Lorentz-invariant Lagrangian descriptions of magnetic charges. That idea, originally
due to D. Zwanziger, involves not one but two gauge potentials, the second one being
ascribed to the magnetic charge (of the monopole or dyon). This leads to local Lorentz-
invariant Lagrangian descriptions of magnetic charge. Such models were examined quite
recently in Ref. [34]: its authors investigated the existence of spurious poles and showed,
among other things, that the amplitude for single-photon production of magnetically
charged particles by electrically charged particles is equal to zero.

The purpose of the present paper was to propose an elegant motivation, based on
symmetry arguments, for the existence of the second ‘magnetic’ gauge potential. As far
as we know, that is not found in the literature. We proposed that the magnetic potential
appears via an analytical extension of the usual U(1) group underlying standard electromag-
netism with electric charges only, resulting in a non-compact two-dimensional group. We
implemented this extension via the Utiyama methodology, which considers infinitesimal
gauge transformations and provides conditions due to the independent gauge parameters
and their derivatives. These conditions allow us to deduce relevant objects such as the
covariant derivative and field strength.

As examples of this approach, we examined a model with a massless scalar field
and a model with a massless spinor field. For spinor models, we pointed out that a non-
symmetrized Lagrangian enables the existence of magnetic monopoles, but that this is not
the case with a symmetrized Lagrangian. These subtleties do not occur with the scalar
field. Also, we examine massless spinor fields, and if we add a mass term, in order to
describe real leptons and quarks, we find that our model is no longer invariant, since we
cannot find a value for n that makes both the kinetic and massive terms invariant. The
masslessness of the fermions is not necessarily a problem since the electroweak interaction
associated with the SU(2) × U(1) gauge symmetry also demands the same condition before
spontaneous symmetry breaking, through which the generation of mass for quarks and
leptons is provided by the Higgs mechanism. The same could be applied in the present case.

Another example that could eventually be considered is the spin-one field. How-
ever, the standard kinetic term of the Lagrangian,

√−gFµνFµν is not invariant under our
extended gauge group. This means that the magnetic monopoles will not interact with
spin-one fields. Physically, charged spin-one fields could be associated with the vector
bosons W±. From this perspective, no experiment involving these particles would be useful
to detect magnetic monopoles in the context of our proposal.

To sum up, the detection of magnetic monopoles in the context of the present work
is more likely to be achieved with experiments involving scalar fields, which essentially
means that they should consider a flux of Higgs particles. As stated before, this may
eventually be achieved with a new generation of accelerators. The investigation of how this
measurement could be made in experiments, such as MoEDAL and others, is something
to be implemented in future works. In this regard, an extension to non-abelian groups
accommodating magnetic monopoles could also be attempted. We intend to implement
this in a separate paper.

When dealing with particles of the standard model, one usually starts with a U(1)⊗
SU(2) gauge group in order to deal with the electroweak interactions (or eventually with
U(1)⊗ SU(2)⊗ SU(3) if we also include the strong interaction), where the particles have
no masses. This massless character is essential in order to preserve the SU(2) symmetry.
The particles then acquire mass through the Higgs mechanism, which generates mass
for both the leptons and the gauge bosons. In the literature, several models predict the
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existence of mass for the magnetic monopole. This may eventually happen in our model
as well. However, in order to properly address this point, we should extend our analysis
to unify our extended group with the SU(2) group. We expect that the use of the Higgs
mechanism may eventually result in a mass for the gauge boson associated with the
magnetic monopole. This analysis lies beyond the scope of this paper, but at this point it
is not possible to know if the magnetic boson will acquire mass or not and even less to
estimate an order of magnitude for it. Some experimental constraints establish a lower
limit of a few TeVs for the mass of the monopole. It would be interesting to check if this
will be the case for our model, and also if we will face problems with the mass hierarchy or
some fine tuning. We intend to consider this elsewhere.
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Appendix A. Conditions on Gauge Fields

Equation (3) is gauge-invariant as long as the new gauge fields A′
µ and C′

µ satisfy

A′
µ = Aµ + ∂µ f , C′

µ = Cµ + ∂µg, (A1)

where
Aµ = (A0, A), Aµ = (A0,−A),

and likewise for Cµ, as we apply the flat spacetime metric (+,−,−,−).
If we replace the electric and magnetic fields in terms of the potentials in the field

equations, we find

−∇2 A0 − ∂t∇ · A = ρe

∇(∂t A0 +∇ · A)−∇2 A + ∂2
t A = Je

−∇(∂tC0 +∇ · C) +∇2C − ∂2
t C = −Jm

−∇2C0 − ∂t∇ · C = ρm

(A2)

We have replaced six components of E and B with eight components of Aµ and Cµ.
The extra degrees of freedom can be eliminated by gauge fixing terms. For instance, if we
use the Lorenz gauge condition for both fields,

∂t A0 +∇ · A = 0, ∂tC0 +∇ · C = 0,

or, in shorter form,
∂µ Aµ = 0, ∂µCµ = 0, (A3)
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which reduces Equation (A2) into

□A0 = ρe, □A = Je, □C = Jm, □C0 = ρm, (A4)

with the d’Alembertian given by □ ≡ −∇2 + ∂2
t . Let us mention that there is residual gauge

freedom for the gauge transformation in Equation (A1); that is, the gauge fields A′ and C′

also obey Equation (A3) as long as the functions f (x) and g(x) in Equation (A1) obey

□ f = 0, □g = 0.

Appendix B. Weyl Theory versus Our Approach

Hereafter, we provide a brief discussion of the Weyl invariant theory of gravity [37,38]
adapted for our purpose. Indeed, the fact that we gauge R+ might suggest that we apply
the Weyl invariant approach to gravity, and we wish to clarify that our approach is different.
In Weyl theory, the spacetime connection is not the Levi–Civita connection, given by the

Christoffel symbols,
{

λ
µρ

}
, but the so-called Weyl connection (

W
Γ), which does not satisfy

the metricity condition

∇µgρσ = ∂µgρσ −
W
Γ

λ

µρgλσ −
W
Γ

λ

µσgρλ = nσµgρσ ̸= 0.

In Weyl theory, σµ is a geometrical vector field so that it is part of the spacetime geometry,
just like the metric tensor and the connection [37]. The Weyl connection is related to the
Levi–Civita connection by

W
Γ

λ

µρ =
{

λ
µρ

}
− n

1
2

gλτ
(
σµgρτ + σρgµτ − στ gµρ

)
.

We can see that the non-metricity condition chosen above is satisfied with this defini-
tion of the connection:

W
∇µgρσ = ∂µgρσ −

[{
λ
µρ

}
− n

1
2

gλτ
(
σµgρτ + σρgµτ − στ gµρ

)]
gλσ

−
[{

λ
µσ

}
− n

1
2

gλτ
(
σµgστ + σσgµτ − στ gµσ

)]
gρλ

=
E
∇µgρσ + n

1
2

δτ
σ

(
σµgρτ + σρgµτ − στ gµρ

)
+ n

1
2

δτ
ρ

(
σµgστ + σσgµτ − στ gµσ

)
= nσµgρσ,

where we have used the fact that
E
∇µgρσ = ∂µgρσ −

{
λ
µρ

}
gλσ −

{
λ
µσ

}
gρλ = 0, which is the

standard covariant derivative of Einstein’s general relativity, built with the Levi–Civita
connection, and vanishes identically.

We can check that the Weyl connection is gauge-invariant under the transformation

gρσ = enαgρσ, gρσ = e−nαgρσ, σµ = σµ + ∂µα,

as follows:
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W
Γ

ρ

µν =
{

ρ
µν

}
− n

1
2

gρτ
(

σµgντ + σνgµτ − στ gµν

)
=

1
2

gρσ
(

∂µgνσ + ∂νgµσ − ∂σgµν

)
− n

1
2

gρτ
(

σµgντ + σνgµτ − στ gµν

)
=
{

ρ
µν

}
− n

1
2

gρτ
(
σµgντ + σνgµτ − στ gµν

)
=

W
Γ

ρ

µν.

Likewise, we see that the non-metricity condition is gauge-invariant, since

W
∇µgρσ = ∂µgρσ −

W
Γ

λ

µρgλσ −
W
Γ

λ

µσgλρ

= ∂µ

(
enαgρσ

)
−

W
Γ

λ

µρenαgλσ −
W
Γ

λ

µσenαgλρ

= nenαgρσ∂µα + enα

(
∂µgρσ −

W
Γ

λ

µρgλσ −
W
Γ

λ

µσgλρ

)
= ngρσσµ.

Thus the non-metricity condition preserves its form, so that it is covariant.
We must emphasize that in Weyl theory, σµ is a geometric field, so that it has to be

included in the dynamics of the gravitational field. If we now compare this to our approach,
note that we began our analysis by supposing that we have a Riemannian manifold, which
means that we have a manifold equipped with a metric tensor (for distances), a Levi–Civita
connection (to define parallel transport), which is free of torsion but presents curvature.
This connection allows us to define a covariant derivative, and in our case, the metric and
the connection are related by the metricity condition

∇µgρσ = ∂µgρσ −
{

λ
µρ

}
gλσ −

{
λ
µσ

}
gρλ = 0.

If we perform a local conformal transformation of the metric tensor, the Levi–Civita
connection and Christoffel symbols transform as follows:

gρσ = enαgρσ, gρσ = e−nαgρσ

as well as {
ρ
µν

}
=

1
2

gρσ
(

∂µgνσ + ∂νgµσ − ∂σgµν

)
=

1
2

e−nαgρσ
(
∂µ(enαgνσ) + ∂ν

(
enαgµσ

)
− ∂σ

(
enαgµν

))
=
{

ρ
µν

}
+ n

1
2

gρσ
(
∂µαgνσ + ∂ναgµσ − ∂σαgµν

)
,

so that the connection is clearly not gauge-invariant.
Likewise, we examine what happens to the metricity condition:

∇µgρσ = ∂µgρσ −
{

λ
µρ

}
gλσ −

{
λ
µσ

}
gρλ

= ∂µ

(
enαgρσ

)
−
[{

λ
µρ

}
+ n

1
2

gλτ
(
∂µαgρτ + ∂ραgµτ − ∂ταgµρ

)]
enαgλσ

−
[{

λ
µσ

}
+ n

1
2

gλτ
(
∂µαgστ + ∂σαgµτ − ∂ταgµσ

)]
enαgρλ = enα∇µgρσ.

We see, firstly, that the covariant derivative of the metric is covariant under the conformal
transformation. Secondly, if the metricity condition is valid prior to the transformation, then the
transformed covariant derivative of the metric tensor also satisfies the metricity condition:
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∇µgρσ = 0 ⇒ ∇µgρσ = 0.

From the point of view of a gauge theory for the conformal group, the gauge field
Cµ introduced to recover the gauge invariance of the original theory is not of geometrical
nature. Therefore, it can be treated as a matter field whose dynamics takes place in a
curved spacetime. If we assume that the matter fields have an insignificant contribution
to the spacetime matter content (which can be the case if we are treating a system of two
interacting particles), then we can neglect the effect of that field on the spacetime curvature
and we can treat our system as a field theory on a curved spacetime whose curvature is
determined by other matter content. Because we still consider a conformal transformation
of the metric, it would be interesting to consider a gravitational Lagrangian that is also
conformally invariant; however, the contribution of the matter content described by our
Lagrangians may still be ignored from the point of view of spacetime dynamics.

Appendix C. Duality of the Model

One of the main features of magnetic monopole models is their duality. Thus, in this
appendix, we establish the duality property of our model. As our model involves a curved
spacetime, we shall provide a proof that is valid in any curved spacetime. In addition, we
will encounter yet another justification for our use of analytical extension.

For this, let us first turn our attention to duality in a flat spacetime. First, define

F ≡ E + iB, ϱ ≡ ρe + iρm, J ≡ Je + iJm.

Then, we find, from Equation (2),

∇ · (E + iB) = ρe + iρm, so that ∇ · F = ϱ,

and

∇× (E + iB) +
1
i

∂

∂t
(E + iB) = i(Je + iJm), so that ∇× F +

1
i

∂F
∂t

= iJ.

If we transform the quantities above using the following prescription

F → eiθ F, ϱ → eiθϱ, J → eiθ J, (A5)

where θ is a constant, we observe that

∇ · F = ϱ → ∇ ·
(

eiθ F
)
= eiθϱ ⇒ ∇ · F = ϱ,

∇× F +
1
i

∂F
∂t

= iJ → ∇×
(

eiθ F
)
+

1
i

∂
(
eiθ F

)
∂t

= ieiθ J ⇒ ∇× F +
1
i

∂F
∂t

= iJ,

which proves the duality property in flat spacetime.
We now turn to the duality in curved spacetimes, such as the ones utilized in this

work. We begin with the inhomogeneous Maxwell equations for both gauge fields Aµ and
Cµ introduced in Equation (3) in curved spacetime:

∇νFµν(A) = jµ
A, ∇νFµν(C) = jµ

C.

Hereafter, we apply the compact notation

Fµν
a =

{
Fµν(A), Fµν(C)

}
.
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We shall define the dual fields in our curved spacetimes as per the prescription in
Felsager’s book [39]:

F∗µν
a ≡ 1

2
εµνρσFaρσ =

1
2

(
− 1√−g

)
ϵµνρσFaρσ, (A6)

where εαβγδ is the Levi–Civita form and ϵµνρσ is the Levi–Civita symbol, denoted, respec-
tively, by slightly different symbols, and

F∗
aµν ≡ 1

2
εµνρσFρσ

a =
1
2
√
−gϵµνρσFρσ

a . (A7)

The four-dimensional Levi–Civita symbol defined by ϵαβρσ = +1 if (α, β, ρ, σ, ) is an even
permutation of (0, 1, 2, 3); it is −1 for an odd permutation, and 0 otherwise [40].

The Levi–Civita form εαβγδ and Levi–Civita symbol ϵµνρσ are related by

εαβγδ =
√
−gϵαβγδ, εαβγδ = − 1√−g

ϵαβγδ,

and are such that εµνρσεµνρσ = −ϵµνρσϵµνρσ.
In particular, the covariant and contravariant representations of the Levi–Civita form

are related by εαβγδ = gµαgνβgργgσδεµνρσ. Finally, let us recall an important property of

the four-dimensional Levi–Civita form, εαβγδερσγδ = 2
(

δα
ρ δ

β
σ − δα

σδ
β
ρ

)
, which allows us to

evaluate the dual of the duals:

(F∗
a )

∗
τκ =

1
2

ετκµνF∗µν
a =

1
2

ετκµν
1
2

εµνρσFaρσ = Faτκ ,

and
(F∗

a )
∗τκ =

1
2

ετκµνF∗
aµν =

1
2

ετκµν 1
2

εµνρσFρσ
a = Fτκ

a .

We can check that the Bianchi identity is valid in this curved spacetime version,

∇µFaρσ +∇ρFaσµ +∇σFaµρ = 0, (A8)

where we exploited the relation Γρ
µν = Γρ

νµ, valid for a Riemannian manifold. Equivalently,
we can see that ενµρσ∇µFaρσ = 0.

With this in mind, let us consider the covariant derivative of the dual electromagnetic
tensor, defined in Equation (A6):

∇µF∗µν
a =

1
2
∇µεµνρσFaρσ −

1
2

εµνρσ∇µFaρσ =
1
2
∇µεµνρσFaρσ. (A9)

Since ∇µgρσ = 0, we find that ∇µεµνρσ = 0 in all coordinate systems, and we conclude
from Equation (A9) that ∇µF∗µν

a = 0, which is valid for both a = (A) and a = (C); that is,

∇µF∗µν

(A)
= 0, ∇µF∗µν

(C) = 0. (A10)

(We understand F∗µν

(A)
≡ F∗µν(A), and so on.) Consequently, we can express the field

equations
∇νFµν

(A)
= jµ

A, ∇νFµν

(C) = jµ
C,

without any loss of generality, as follows:

∇νFµν

(A)
+∇νF∗µν

(C) = jµ
A, ∇νFµν

(C) +∇νF∗µν

(A)
= jµ

C. (A11)
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With the following definitions,

Fµν ≡
(

Fµν

(A)
+ F∗µν

(C)

)
+ i
(

Fµν

(C) + F∗µν

(A)

)
, J µ ≡ jµA + ijµ

C,

we find, by using Equation (A11),

∇νFµν = J µ.

In order to observe the duality property of our model, we perform the duality trans-
formation analogous to Equation (A5),

Fµν → F ′µν = eiθFµν, J µ → J ′µ = eiθJ µ.

Then, the field equation for the duality-transformed objects coincides exactly with the
original field equations; that is, ∇νF ′µν = J ′µ, which becomes ∇ν

(
eiθFµν

)
= eiθJ µ,

eiθ∇νFµν = eiθJ µ, which leads to ∇νFµν = J µ, as proposed.
As already mentioned, this structure motivates our foundational application of the

analytical extension, so that the duality may be seen as a guide for the existence of two
potentials. Note that

Fµν ≡
(

Fµν

(A)
+ F∗µν

(C)

)
+ i
(

Fµν

(C) + F∗µν

(A)

)
= gµρgνσ

(
F(A)

ρσ + iF(C)
ρσ

)
+ i

1
2

εµνρσ
(

F(A)
ρσ − iF(C)

ρσ

)
.

From the expressions F(A)
ρσ = ∂ρ Aσ − ∂σ Aρ and F(C)

ρσ = ∂ρCσ − ∂σCρ, with the definition
Zρ ≡ Aρ + iCρ, we find

Fµν = gµρgνσ
(
∂ρZσ − ∂σZρ

)
+ i

1
2

εµνρσ
(

∂ρZ†
σ − ∂σZ†

ρ

)
= Fµν

(Z) + iF∗†µν

(Z) ,

which shows consistency.
As an example, let us define the electric and magnetic fields’ charge densities and vector

currents in terms of the following components of the electromagnetic field strength tensor:

Ei ≡ Fi0
(A) + F∗i0

(C), ρe ≡ −j0A,

Bi ≡ Fi0
(C) + F∗i0

(A), ρm ≡ −j0C,

ji
e ≡ jiA, ji

m ≡ jiC,

so that the 0i component of the analytically extended electromagnetic tensor is

F 0i ≡
(

F0i
(A) + F∗0i

(C)

)
+ i
(

F0i
(C) + F∗0i

(A)

)
= −Ei − iBi,

which, with the analytically extended four-current

J µ = jµA + ijµ
C,

leads to
∇νF 0ν = ∇iF 0i = J 0, ∇i

(
Ei + iBi

)
= ρe + iρm.

Clearly, this is compatible with Equation (2).
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Appendix D. Is the Term ξRϕ†ϕ Necessary?

In the literature, the study of the massless scalar field in the context of conformal
invariance demands the inclusion of a term of the type ξRϕ†ϕ in the Lagrangian, where
R is the scalar curvature and ξ is a constant parameter. This discussion can be found, for
instance, in Wald’s book [41]. In summary, the field equation for the massless scalar field in
a d-dimensional curved spacetime is given by

□ϕ = gµν∇µ∇νϕ = 0.

Note that the covariant derivative above is the spacetime covariant derivative, ∇µ =
∂µ − Γµ, where Γµ is the Levi–Civita connection.

Now, we analyze if the transformed equation satisfies the same equation:

(□ϕ)′ =
(

gµν∇µ∇νϕ
)′

= g′µν∇′
µ∇′

νϕ′ = e2αgµν
(

∂µ∇νϕ′ − Γ′σ
µν∇σϕ′

)
.

Since the connection transforms as

Γ′ν
ρµ = Γν

ρµ −
(

δν
µ∂ρα + δν

ρ∂µα − gνσgρµ∂σα
)

,

we have

(□ϕ)′ = e3α
[
□ϕ + (4 − d)gµν∇µα∇νϕ + ϕ(3 − d)gµν∇µα∇να + ϕ□α

]
.

This shows that this equation is not covariant; that is, □ϕ = 0 does not lead to (□ϕ)′ = 0
necessarily.

In order to solve this problem, it is usual to introduce the term ξRϕ in the field equation
(which corresponds to the term ξRϕ†ϕ in the Lagrangian). This term is motivated by several
arguments stemming from quantum corrections to renormalization conditions (see, for
instance, [42,43]). We consider the equation

gµν∇µ∇νϕ − ξRϕ = 0,

and reproduce the same steps of the calculation above, i.e.,

(□ϕ − ξRϕ)′ = g′µν∇′
µ∇′

νϕ′ − ξR′ϕ′.

With the transformation law for the scalar curvature,

R′ = e2α
[
R + 2(d − 1)gµν∇µ∇να − (d − 2)(d − 1)gµν∇µα∇να

]
,

we end up with

(□ϕ − ξRϕ)′ =e3α
{
□ϕ − ξRϕ − (d − 4)gµν∇µα∇νϕ

− ϕ[(d − 3)− ξ(d − 2)(d − 1)]gµν∇µα∇να

+ϕ[1 − 2ξ(d − 1)]□α}.

In d = 4 dimensions, we obtain

(□ϕ − ξRϕ)′ = e3α
[
□ϕ − ξRϕ − ϕ(1 − 6ξ)gµν∇µα∇να + ϕ(1 − 6ξ)□α

]
.

This equation is not covariant for arbitrary values of ξ. However, by choosing ξ = 1
6 the

equation is made covariant, since(
□ϕ − 1

6
Rϕ

)′
= e3α

(
□ϕ − 1

6
Rϕ

)
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so that if □ϕ − 1
6 Rϕ = 0, then the equation is satisfied in its same form for any gauge fixing.

We conclude that with the addition of the term ξRϕ, the field equation becomes covariant
whenever we fix the parameter ξ to be 1/6.

At this point, it is important to highlight that these considerations are made under the
assumptions that the field equation contains only the spacetime covariant derivative and
not the gauge covariant derivative involved in our model.

Now, we analyze the field equation for the massless scalar field in our model after
introducing the gauge fields. The Lagrangian

L =
√
−ggµνDµϕ†Dνϕ

leads to the following field equation:

gµνDνDµϕ† = 0,

where
Dν ≡ ∇ν − I A

(a) BϕB Aa
µ = ∇ν + iAν + Cν.

We emphasize the presence of the spacetime covariant derivative and the presence of the
gauge fields Aν, Cν in this equation.

Now, we analyze the transformed equation:(
gµνDνDµϕ†

)′
= g′µνD′

ν

(
Dµϕ†

)′
= g′µν

(
∇′

ν + iA′
ν + C′

ν

)(
eα−iϵDµϕ†

)
= e3α−iϵ

[
2gµν∂ναDµϕ† + 2gµν∂ναDµϕ† − gµν4∂ναDµϕ† + gµνDνDµϕ†

]
= e3α−iϵgµνDνDµϕ†

This shows that the transformed equation is covariant, and hence, it is satisfied in any gauge:(
gµνDνDµϕ†

)′
= e3α−iϵ

(
gµνDνDµϕ†

)
= 0.

We conclude that there is no need to modify this equation by introducing an extra
term like ξRϕ† due to lack of symmetry with respect to gauge transformations. Perhaps,
by quantum corrections or renormalizability conditions, this equation may be modified
and a term like ξRϕ† may eventually emerge. However, this is beyond the scope of the
present work.
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