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Abstract: Superpixel segmentation is a popular preprocessing tool in the field of image processing.
Nevertheless, conventional planar superpixel generation algorithms are inadequately suited for
segmenting symmetrical spherical images due to the distinctive geometric differences. In this paper,
we present a novel superpixel algorithm termed context identity and contour intensity (CICI) that is
specifically tailored for spherical scene segmentation. By defining a neighborhood range and regional
context identity, we propose a symmetrical spherical seed-sampling method to optimize both the
quantity and distribution of seeds, achieving evenly distributed seeds across the panoramic surface.
Additionally, we integrate the contour prior to superpixel correlation measurements, which could
significantly enhance boundary adherence across different scales. By implementing the two-fold
optimizations on the non-iterative clustering framework, we achieve synergistic CICI to generate
higher-quality superpixels. Extensive experiments on the public dataset confirm that our work
outperforms the baselines and achieves comparable results with state-of-the-art superpixel algorithms
in terms of several quantitative metrics.

Keywords: superpixel segmentation; spherical image; context identity; contour intensity

1. Introduction

The concept of a superpixel was introduced by Ren et al. [1] in 2003, with the aim of
grouping similar pixels in a localized context of an image to extract coherent region-level
features. From then on, superpixel segmentation gradually became a popular preprocessing
tool for various advanced computer vision tasks so as to boost the running efficiency.
The emerging superpixel algorithms have found applications in diverse fields, including
semantic segmentation [2–4], object detection and tracking [5–8], robot vision [9], depth
estimation [10], etc. Some interesting superpixel segmentation algorithms are equally
worthy of attention, such as those based on metaheuristic techniques [11], agents [12], and
cellular automata [13].

With the advancement of imaging technology, 360◦ panoramic cameras have unlocked
novel visual representations of real-world scenarios. These cameras can capture virtual
reality (VR) images, providing users with a comprehensive observation of surrounding
information through a 360◦ horizontal and 180◦ vertical view. Nevertheless, most image
processing algorithms have traditionally been designed for planar images, posing signifi-
cant challenges in directly applying conventional approaches to spherical image analysis,
especially for superpixel segmentation. In recent years, the increasing significance of spheri-
cal image processing in VR has prompted researchers to investigate superpixel applications.
Zhao et al. introduce the spherical SLIC (SphSLIC) algorithm in their work [14]. They
initialize superpixel seeds using Hammersley sampling [15] to narrow the search range
for K-means clustering and employ cosine similarity as the distance metric between pixels
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and seeds. Both optimizations enhance the suitability of SphSLIC superpixels for spherical
images. Similarly, spherical mean shift (SphMS) and spherical ETPS (SphETPS) [16] are
proposed based on SphSLIC, with emphasis on distance metrics, neighborhood extent, and
boundary issues. Another representative work is spherical shortest path-based superpixels
(SphSPS) [17] proposed by Giraud et al., which trace the shortest path between a pixel and
a seed on a spherical image. It utilizes color information and contour weights along the
path to enhance segmentation accuracy and regularity. To meet the demand for real-time
performance, Silveira et al. optimized two planar image superpixel algorithms: simple
non-iterative clustering (SNIC) [18] and superpixel hierarchy (SH) [19]. They then propose
two novel spherical image superpixel algorithms, spherical SNIC (SSNIC) and spherical
SH (SSH) [20], which inherit the balanced performance of accuracy and efficiency.

Typically, spherical images are commonly subjected to equirectangular projection
(ERP) [21] or cube map projection (CMP) [22], followed by relevant calculations, and the
results are subsequently projected back onto the spherical image. Most of the current
studies primarily focus on ERP images after equirectangular projection. However, it is
worth noting that spherical images inherently represent a closed geometric sphere. When
these images undergo ERP, they artificially introduce open regions and significant dis-
tortions, particularly at the top and bottom sides. Directly applying planar superpixel
algorithms to ERP images cannot generate superpixels with continuous contour boundaries
in their original closed regions when projecting the result back onto the spherical image,
especially near its poles. As depicted in Figure 1a,c, simple linear clustering (SLIC) [23]
performed on planar images, and the spherical superpixel algorithm (SphSLIC) [14] spe-
cialized for spherical images on ERP projections, respectively, demonstrate their respective
segmentation results for comparison purposes on ERP images. In Figure 1b,d, the label
maps of SLIC and SphSLIC projected back onto the spherical image show the disparities.
Specifically, Figure 1b displays irregular superpixels in the black rectangular box, with open
and discontinuous contours in the black elliptical box, whereas Figure 1d demonstrates
superior performance.
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Figure 1. Segmentation result of superpixel algorithm for planar images and spherical images.

Some researchers have applied superpixel algorithms to spherical image processing.
Cabral et al. [24] introduced a superpixel algorithm for processing spherical images in
3D reconstruction. Hao et al. [25] developed a change detection algorithm that leverages
superpixels to mitigate resolution degradation issues. However, these approaches usually
overlook the inherent differences between spherical and planar images, resulting in super-
pixels that retain the aforementioned limitations and consequently impact performance.
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In addition, artificially processed spherical projection maps typically exhibit non-uniform
content distribution, with a concentration of content in the equatorial region [18]. Existing
superpixel algorithms tend to neglect this aspect and fail to adaptively adjust superpixel
sizes based on content sparsity, leading to inadequate segmentation in smaller regions.
Moreover, when different objects exhibit similar colors, clear contour boundaries may not
always be present, posing challenges to segmentation accuracy.

Based on these considerations, a structurally optimized superpixel segmentation
algorithm is proposed, termed context identity and contour intensity (CICI). In this work,
we have adopted the fundamental framework of simple non-iterative clustering (SNIC). The
key idea revolves around optimizing the conventional framework, with particular emphasis
on enhancing the initialization phase and refining the similarity measurement stage. In the
initialization phase, we consider the distinctive geometric attributes of spherical images
and the context identity, thereby redefining the merging and emerging operations for seeds.
By utilizing the proposed inter-pixel similarity measurement, we then employed a contour
intensity constraint to efficiently discriminate between two pixels with different labels. The
integration of the aforementioned strategies proves effectiveness not only in the context of
spherical images but also extends to yielding accurate clustering results for planar images.
This further exemplifies that our proposal encompasses a comprehensive optimization
strategy for the framework rather than being solely an algorithmic refinement.

In the context of prior research, our contributions can be summarized as follows:

• An efficient seed-sampling method is proposed by defining a neighborhood range and
regional context identity, which could optimize both the quantity and distribution of
seeds, leading to evenly distributing seeds across the panoramic surface.

• A subtle inter-pixel correlation measurement is put forward to enhance boundary
adherence across different scales, thereby integrating the contour intensity to pixel-
superpixel correlation measurements.

• A context identity and contour intensity strategy is introduced to enhance the overall
performance within a non-iterative clustering framework. Extensive experiments on
two datasets were conducted, confirming its feasibility and comparable results.

The outline of this work is organized as follows: In Section 2, the preliminaries on
SNIC superpixel algorithm are reviewed in brief. In Section 3, the implementation of CICI
method is explained systematically. Experiments and analyses are explicated in Section 4.
Finally, we give the conclusions in Section 5.

2. Preliminaries on SNIC

In this section, we will introduce the SNIC algorithm in detail. Since the proposed
CICI can be regarded as a variant of SNIC, we briefly introduce the latter before entering
into the subject. Given a visual image I = {pi}N

i=1 consisting of N pixels and a pre-defined
number of superpixel K, SNIC first divides I into K uniform grids, each approximately
covering an area of N/K and the initial seeds are placed at the center of each grid with
an interval s =

√
N/K. Let us denote by Ci = [li, ai, bi] and Pi = [xi, yi] the CIELAB color

and Euclidean position vector of each pixel pi ∈ I, respectively. The color and spatial
information of k − th seed sk are denoted as Cs

k and Ps
k, respectively (note that the index k

in Cs
k and Ps

k is the index of the seed sk rather than the index of pixel pk). SNIC measures
the correlation of a pixel and a seed by calculating the feature distance di,k between pi and
sk, and then assigning labels according to the global minimal distance as follows:

D(pi, sk) =

√
∥Ci − Cs

k∥
2
2

s
+

∥Pi − Ps
k∥

2
2

m
(1)

where s =
√

N/K and the parameter m are pre-set to control the compactness of superpix-
els. A greater m enhances the significance of spatial distance, resulting in more compact
superpixels. Conversely, when color differences play a more dominant role, superpixels
become more sensitive to color changes, leading to diminished compactness. The afore-



Symmetry 2024, 16, 925 4 of 19

mentioned process is shared between SNIC and SLIC algorithms. On the other hand, a key
distinction lies in the utilization of a priority queue in SNIC instead of multiple iterations in
SLIC, which enables the former to effectively reduce the time complexity of the process. The
non-iterative label assignment steps of the SNIC algorithm can be summarized as follows:

Step 1: Initialize a minimum priority queue Q to store the vector nodes corresponding
to all pixels and seeds, and a label map L = {L(pi)}N

i=1 to store the label of each pixel
within image I. For each vector node e, it records the color and spatial information, as
well as the pixel-seed distance calculated by Equation (1), which acts as the key value for
sorting in Q. For each seed sk, a vector node es

k =
{

Ps
k, Cs

k, k, d
}

is defined and pushed onto
Q. Since each seed is initially an image pixel, it acquires an initial label k and establishes
that d = 0.

Step 2: Pop the element ei with the minimum d from Q if it exists. If the pixel pi
corresponding to ei = {Pi, Ci, k, D(pi, sk)} is not labeled, then assign L(sk) = k to it and
dynamically update the seed sk with Ci and Pi of pi.

Step 3: Traverse the 8-neighboring pixel pj of pi successively. Determine if pj has been
labeled. Then create a set ej =

{
Pj, Cj, k, D

(
pj, sk

)}
for pixel pj if it is not labeled. ej that

corresponds to pj is then pushed onto Q.
Step 4: Repeat steps 2 and 3 until Q is empty, and then output the label map L.

3. Method

The detailed introduction of the proposed CICI framework is presented in this section,
and the overall processing flow is depicted in Figure 2.
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Figure 2. Schematic diagram of the proposed CICI framework. (a) Input ERP image; (b) Contour
intensity map of (a); (c) Context identity map; (d) Initial seeds distribution; (e) Optimized seeds
distribution; (f) ERP image segmentation results; (g) Spherical image of the initial seeds; (h) Spherical
image of optimized seeds; (i) Spherical image segmentation label map.

Specifically, for an input ERP image in Figure 2a, CICI starts by extracting the corre-
sponding contour map in Figure 2b. This process is implemented by the structured forest
edge detection algorithm [26] to compute the regional context identity. A set of seeds is
then generated through the Fibonacci sampling method [27], followed by the optimization
of positions and existences, which is shown in Figure 2d,e. Finally, the refined seeds as
well as the contour-perceptive distance metric are employed for superpixel segmentation
within a non-iterative clustering framework.



Symmetry 2024, 16, 925 5 of 19

3.1. Sampling Strategies for Spherical Image

It is tough to directly initialize all seeds on the spherical image, according to previous
research. Conventional approaches usually adopt a three-step strategy: converting the
spherical image into an ERP image, sampling, and mapping back to the spherical image.
It should be noted that there are an equal number of seeds on each latitude line of the
spherical image. However, the radius of the latitude circle decreases when approaching
the poles, resulting in a higher seed density near these regions. As shown in Figure 3a, if
we initialize seeds on the ERP image in a SNIC-like manner, it would be unattainable to
achieve a uniform distribution of seeds on the spherical image.

Currently, there are various sampling methods for spherical images, including geodesic
sampling, Hammersley sampling, and Halton sampling [15]. The geodesic sampling
method enables an approximately uniform distribution of seeds on spherical images. How-
ever, it is limited to generating only a specific number of subdivision-level-based sampling
points rather than a specified number of seeds. On the other hand, despite Hammersley
and Halton samplings supporting a fixed number of seeds, these seeds are randomly and
uniformly distributed, as illustrated in Figure 3b,d.

To overcome the limitations of the aforementioned sampling methods, we introduce
Fibonacci sampling that enables us to generate approximately uniform seeds on a spherical
image with adjustable numbers. The procedure begins with the distribution of K seeds on
the ERP image, and the coordinates (xi, yi) of these seeds are calculated as follows:

(xi, yi) =

(
i
φ

,
i
K

)
, i = 0, 1, 2, . . . , K − 1 (2)

where φ = (1 +
√

5)/2. Next, these seeds are mapped back to the spherical image by
the following: 

X = sin(ϕ) · cos(θ)
Y = sin(θ) · sin(ϕ)
Z = cos(ϕ)

(3)

where θ = 2πx and ϕ = arccos(1 − 2y). (x, y) and (X, Y, Z) are the coordinates of the seeds
on the ERP and spherical image, respectively. Figure 3c demonstrates the distribution result.
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3.2. Optimized Initialization by Context Identity

This part presents a novel strategy for seed distribution based on Fibonacci sampling,
which is shown in Figure 4. The local region context identity is computed based on the prior
contour image, providing insight into the complexity of the region’s content. It is worth
mentioning that context identity is reflected by content density, and there is no difference in
its essence. To dynamically adjust the number of seeds in the local area according to content
complexity, a five-step implementation is employed, which can be briefed as follows:
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Step 1: Initialize seeds using Fibonacci sampling to achieve a uniform distribution on
the spherical image (assuming the number of seeds is K).

Step 2: Determine the range of the region {Ri}K
i=1 where the seeds {sk}K

k=1 are located.

Ri =

{
[x, y]

∣∣∣∣xi −
S

λsinϕ
≤ x ≤ xi +

S
λsinϕ

, yi −
S
λ
≤ y ≤ yi +

S
λ

}
(4)

where S = w/
√

Kπ is the initial size of each superpixel, ϕ = yπ/h is the pole angle on
y − th row of the ERP image corresponding to the spherical image, w and h are the image
width and height, respectively, λ is a factor that regulates the overlap degree of adjacent
areas, and λ = 1.5 is taken in this paper.

Step 3: Calculate the context identity of region Ri where seed Ci is located. We utilize
the structured forest edge detection algorithm to extract the contour of the original image,
and the contour map is used as input in the form of a grayscale map. The context identity
of region Ri is calculated by the following:

Di =
PCi

PNi

(5)

where PCi represents the number of pixels in region Ri, with grayscale values less than
Vth, with a default value of 150, and PNi is the total number of pixels in Ri. The context
density of the whole image is Dall , and the average context density of all regions {Ri}K

i=1 is
D, which are calculated by the following:

Dall =
PCall

N
, D =

1
K

K

∑
i=1

Di (6)

where PCall is the number of pixels in the image with grayscale values less than Vth.
Step 4: The content complexity of all regions in the image can be divided into different

levels according to the density information, which then guides the adjustment of seed
number in the region. Define Dmax = max

{
Dall , D

}
and Dmin = min

{
Dall , D

}
; if Di ≥
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Dmax, it indicates that the content complexity of the area is high; if Dmin < Di < Dmax, the
content complexity is moderate; if Di ≤ Dmin, the content complexity is low.

Step 5: Adjust the number of seeds in regions according to the determined complexity
level in Step 4.

3.3. Optimized Correlation Measurement

This part presents an optimized correlation measurement. The correlation measure-
ment between pixels plays an important role in the quality of the superpixel segmentation
algorithm. In this paper, the distance measurement is improved by using the contour
information in the contour map, so that the algorithm can accurately segment regions with
less apparent boundaries.

The distance D(pi, si) between pixel pi and seed si is shown as follows:

D(pi, si) =
(

Dlab + η · Dxyz
)
· (1 + θ · Dc) (7)

where Dlab is a measure of color difference between pixels, Dxyz stands for measuring the
spatial position between pixels, η is the parameter that controls the distance weight, Dc
is a new metric component introduced by the contour diagram to indicate whether there
is a contour between pixels, and θ is a weight parameter that controls the weight of the
contour item. When θ = 0, D(pi, si) is similar to the distance metric of SNIC, each of the
three metric components is described below:

Distance measurement Dlab. The color component of pixel pi is
[
lpi , api , bpi

]
. The color

component of seed si is [lsi , asi , bsi ], then Dlab is defined as follows:

Dlab =

√(
lsi − lpi

)2
+

(
asi − api

)2
+

(
bsi − bpi

)2 (8)

Spatial distance metric Dxyz. The position mark of pixel pi on the spherical image is
[Xpi , Ypi , Zpi ]. Similarly, the coordinate of seed si on the spherical image is [Xsi , Ysi , Zsi ].
Therefore, Dxyz is defined as follows:

Dxyz =

√(
Xsi − Xpi

)2
+

(
Ysi − Ypi

)2
+

(
Zsi − Zpi

)2 (9)

Contour term component Dc. The contour term is solved on the contour diagram of the
original image. On the ERP image, traverse the shortest path P(pi, si) between pixel pi
in the contour map and seed si, as shown in Figure 5. If the gray value Φ(pj) of pixel
pj ∈ P(pi, si) on the shortest path is less than Vth, (Vth = 150). Then it means that there is a
contour line between pi and si. Therefore, Dxyz is defined as follows:

Dc =

{
1, if ∃ pj ∈ P(pi, si), s.t. Vth ≥ Φ

(
pj
)

0, if ∀ pj ∈ P(pi, si), s.t. Vth < Φ
(

pj
) (10)
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The definition of distance measure and the calculation method of the contour term are
described in detail. The visual effect of the algorithm after adding contour items is shown
in Figure 6. It can be clearly seen that the algorithm has a qualitative improvement in the
segmentation effect of the region with a small color difference after adding the contour
term to the distance measurement.
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3.4. Boundary Neighborhood

The presented algorithm is designed based on the non-iterative framework of SNIC,
which is extensively described in Section 2. Once an element ei is popped from the priority
queue in the non-iterative framework, a label is first assigned to its corresponding pixel pi.
The neighboring pixels of pi are then traversed within the 8 neighborhoods. If a label pj
has not been assigned, further operations are executed. It is worth mentioning in Figure 7a
that pixels p6, p7, and p8 do not belong to the 8-neighborhood pixels of pixel p0. In a
planar image, the relative positions between pixels align with those in real-world scenarios.
Nevertheless, since spherical image projection transformation is employed for ERP images,
artificial boundaries are formed along their left and right sides. Consequently, while these
boundary pixels appear distant from each other on ERP images, they are actually adjacent
in both real-world and spherical representations.
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Therefore, when applying non-iterative framework to ERP images, more care should
be applied to the neighborhood range of the boundary pixels on both sides of the ERP
image. As shown in Figure 7b, when traversing the pixels in the 8-neighborhood of pixel
p0, this work considers p6, p7, and p8 as the 8-neighborhood pixels of p0. Similarly, p0, p1,
and p5 are the 8-neighborhood pixels of p7.

The optimization strategies of each part of the algorithm in this paper are introduced
in detail. Each optimization strategy plays a different role in the CICI algorithm. A
pseudocode summary of the framework is presented in Algorithm 1. Additionally, a CICI
step flow diagram will increase the feasibility of algorithm implementation. See Figure 8.

Algorithm 1: CICI spherical superpixel segmentation framework

Input: the EPR image I, the contour map G, the expected superpixel number K
Output: Assigned label map L = {L(pi)}N

i=1
/*Initialization*/
Initialize cluster seeds {si}K

i=1 by Fibonacci sampling.
Initialize a priority queue Q with a small root.
Divided the area of each seed {Ri}K

i=1
/*Seeds redistribution*/
for each region Ri do

Calculate the context identity Di of the current region Ri.
end for
Calculate the context identity Dall and the regional average context identity D of I
Adjust the number of initial seeds to K′ according to the context identity.
Determine Dmax and Dmin.
for each region Ri do

if Di ≥ Dmax then
Add two new seeds to area Ri.

else if Dmin < Di < Dmax then
Keep the seeds in region Ri unchanged.

else if Di ≤ Dmin then
Delete the seeds in area Ri.

end if
end for
fork ∈ [1, 2, . . . , K′] do

Create element ek through seeds and push in priority queue Q.
end for
/*label map update*/
while Q is not empty do

Pop the element ei from queue Q.
if pi is not labeled before then

Assign the label to pi.
Update the corresponding cluster.
for traversing pixel pi new 8-neighborhood pixel pj do

if pj is not labeled before then

Update the distance D
(

pj, sk

)
and create the corresponding node ej.

Push ej onto Q.
end if

end for
end if
end while
Return the label map L.
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4. Experiments

In this section, the proposed CICI is evaluated to substantiate its superiority. Firstly,
two datasets are introduced along with the benchmarks, including the Spherical Panorama
Segmentation Dataset (SPSDataset75) [16] and the Berkeley Segmentation Data Set 500
(BSDS500) [28]. The qualitative and quantitative performance is then systematically tested
and demonstrated from specific aspects to the overall evaluation. Subsequently, the compu-
tational efficiency is analyzed. The software and all algorithms are performed on an Intel
Core i7 4.2 GHz with 16 GB RAM, without any parallelization or GPU processing.

4.1. SPSDataset75

The SPSDataset75 comprises 75 ERP images, accompanied by corresponding manual
annotated ground truth, which usually serves as a comprehensive benchmark for evaluating
spherical image segmentation quantitatively. A portion of the visual representations is
illustrated in Figure 9, wherein each ERP image has a size of 1024 × 512.
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4.1.1. Qualitative Result Analysis

The proposed algorithm CICI is qualitatively compared and analyzed with several up-
to-date spherical superpixel algorithms, including SphSLIC [14], SphSPS [17], SSNIC [20],
SLIC [23], and SNIC [18]. To ensure the optimal performance of the comparative algorithm,
the experimental parameters are set to their default values as specified in the literature. The
iterative algorithms were configured with a maximum iteration count of 10, and the initial
number of superpixels was set to 500.

To demonstrate the regularity of the algorithm in generating superpixels at the polar
regions of the spherical image, the viewpoints in the local are present. As can be seen in the
details image of Figure 10, the contours of wall junctions lack clarity and there is minimal
color contrast between adjacent regions. It is also difficult for observers to distinguish
the boundary of the contour in the region. On the other hand, the proposed CICI can
accurately capture the true contour boundary of wall junctions, resulting in a more regular
segmentation result within the polar region of the spherical image.

Despite the regular distribution in polar regions, the segmentation results of SphSLIC,
SphSPS, and SSNIC exhibit poor performance in accurately delineating the contour bound-
aries of wall junctions. If the conventional SNIC is directly applied to spherical images,
there are irregular superpixels in polar regions. As shown in Figure 10, the contours at the
wall junctions are inaccurately segmented where the color of the box and the wall is nearly
identical. In this scenario, CICI outperforms other algorithms by accurately segmenting
toilet boundaries even when boundary colors are not distinct. It achieves adaptability
and regularity in superpixel shapes on spherical images by adjusting their sizes based on
content density distribution. Conversely, SphSLIC, SphSPS, and SSNIC generate uniformly
sized superpixels but fail to capture finer details in content-dense areas, resulting from a
lack of adaptive adjustment.

4.1.2. Quantitative Evaluation by Metrics

In qualitative analysis, it is obvious that the segmentation effect of CICI is better. In
order to objectively evaluate the performance of the algorithm, five common evaluation
metrics are used in the quantitative analysis [29]: boundary recall (BR), precision recall
(PR), under-segmentation error (UE), achievable segmentation accuracy (ASA), F-measure,
and the execution time of the algorithm. Quantitative evaluations are listed in Appendix A.
In order to further illustrate the influence of CICI’s strategies, the initialization-optimized
SNIC (IO-SNIC) based on seed distribution and the distance-optimized SNIC (DO-SNIC)
based on an improved measurement are designed to be the baselines, respectively. Similarly,
in the literature on the SphSLIC algorithm, two distance measures are proposed: the Avg-
SphSLIC algorithm based on Euclidean distance and the Cos-SphSLIC algorithm based on
cosine similarity. In the literature of the SphSPS algorithm, the path color term is added to
the distance metric, so the method of adding the path color term is denoted as C-SphSPS.
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Figure 11 quantitatively analyzes the ten SOTA methods. It is obvious that CICI
performs the best in all four metrics. Both the boundary fitting degree and the segmentation
accuracy are in the leading position. When the number of superpixels is the same, it can be
seen from Figure 11a that CICI has the best boundary fit, followed by IO-SNIC, indicating
that the seed optimization strategy plays an important role in the boundary fit of CICI. The
reason is that this optimization strategy makes CICI generate smaller superpixels in the
content-dense region and segment more contour boundaries. In Figure 11b, the curves
of CICI and IO-SNIC gradually coincide with the increase in the number of superpixels,
which indicates that the number of superpixels generated by CICI in the region with simple
content is reduced by the seed optimization strategy. Figure 11c,d show that the contour
intensity strategy has a large contribution so that the algorithm can accurately fit the real
image boundary.
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recall; (b) Precision recall; (c) Under-segmentation error; (d) Achievable segmentation accuracy;
(e) F-measure; (f) Execution time. The expected number of superpixels ranges from 250 to 1500.

The F-measure value is the harmonic mean of BR and PR. Figure 11e shows the
F-measure curves of all algorithms under different numbers of superpixels. When the
number of superpixels is the same, the higher the F-measure value and the more effective
the algorithm is. The F-measure value increases gradually when the number of superpixels
increases from 250 to 500 and decreases gradually when the number of superpixels exceeds
500. The time consumption of the CICI mainly comes from the content perception strategy
because there are trigonometric functions in the relevant calculation, which increases the
computational cost. The algorithm in this paper has better application value than other
algorithms. Although it is not at the top, CICI has more prominent advantages when
considering other indicators, and its performance in terms of efficiency and accuracy is
more balanced.

In summary, the proposed algorithm, CICI, has a significant performance improvement
compared with the existing algorithms. The four indicators are increased by 17.78%, 13.4%,
8.85%, and 51.77% in turn (compared with the best existing algorithm under each indicator),
and the F-measure is also increased by 15.19%. Through the above analysis, it is proven
that the proposed algorithm has better performance.

4.2. BSDS500

In order to demonstrate that CICI is not only competitive on spherical panoramic
images but also that the segmentation framework composed of the two optimization
strategies can achieve excellent results on planar images, we deploy the optimization
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strategy on SNIC and conduct quantitative and qualitative experiments on the BSDS500
dataset. BSDS500 contains 500 images with a size of 481 × 321 or 321 × 481. The data set
was provided by the computer vision group at the University of Berkeley. The 500 images
consist of 200 training images, 100 validation images, and 200 test images. It is a common
benchmark in image segmentation and detection. The sections are shown in Figure 12.
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4.2.1. Qualitative Result Analysis

Figure 13 illustrates the visual performance of five methods evaluated on the BSDS500
with K = 100. SNIC is considered to be the ancestor of superpixel algorithms. IBIS [30],
SCALE [31], and BACA [32] are all famous superpixel algorithms from the last two years.
CICI inherits the compactness of SNIC while paying more attention to weak boundaries
in images. Compared with CICI, the boundary perception of IBIS and BACA is slightly
inadequate. The overall visual comfort of SCALE is slightly stronger, but compared with
CICI, the segmentation accuracy is poor, mainly when the foreground and background
colors are similar.
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From the perspective of the overall segmentation effect, CICI and BACA can adaptively
match the size and number of superpixel blocks according to the characteristics of the
image itself, which is thanks to the strategy based on context identity. On this basis, the
boundary degree fit of CICI is more competitive.

4.2.2. Quantitative Evaluation by Metrics

In order to objectively compare the performance of different superpixel algorithms,
BR, UE, ASA, and CO are selected for quantitative evaluation. The number of superpixels
ranges from 50 to 500. The four comparison algorithms selected in the experiment have
been excellent in the past two years and have been compared with the commonly used
superpixel algorithms like SLIC [23], SEEDS [33], ERS [34], LSC [35], FLIC [36], etc., so
it is not necessary to go into details again. It is worth mentioning that because the four
algorithms differ little from each other, we enumerate real values rather than plot curves.
BR represents the boundary recall rate, which actually describes the degree of fit between
the superpixel contour and the object boundary. A larger BR means that the superpixel
boundary is closer to the true boundary of the image. It can be seen from Table 1 that
CICI is in the first tier of the dataset. When the number of superpixels does not exceed
400, it is always at the leading level. In Table 2, the UE values of the five algorithms
continue to decrease as the number of superpixels increases. According to its definition,
the performance of UE is negatively related to segmentation accuracy. The UE value of
CICI reaches 0.0338 when k = 500, which is the best among the five algorithms. Combined
with the comprehensive analysis in Table 3, CICI outperforms all other algorithms in UE
and ASA, indicating that the generated superpixels are almost overlapping with a ground
truth value object, which enables it to achieve good results in some practical segmentation
applications. In the experiment of some algorithms, it pursues the considerable BR and loses
its shape quality (poor visual regularity), that is, CO. However, in the actual segmentation
task, the balance between precision and regularity is also the focus of research.

Table 4 shows the compactness performance of five algorithms on the data set. The
larger the value of the indicator, the more uniform and regular its segmentation shape, and
CICI’s indicator can correspond to its uniform segmentation visual display.

Table 1. Comparison of five algorithms in terms of boundary recall (↑) on BSDS500.

Algorithm
Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

CICI 0.7843 0.8592 0.8878 0.9008 0.9138 0.9229 0.9343 0.9366 0.9380 0.9442
SNIC 0.7069 0.8112 0.8561 0.8779 0.9038 0.9134 0.9221 0.9335 0.9415 0.9505
IBIS 0.6545 0.7622 0.7954 0.8408 0.8633 0.8755 0.8919 0.9139 0.9176 0.9286

BACA 0.9340 0.8153 0.8498 0.8659 0.8758 0.8818 0.8964 0.9071 0.9102 0.9155
SCALE 0.7183 0.8074 0.8489 0.8791 0.9000 0.9155 0.9278 0.9380 0.9471 0.9532

Table 2. Comparison of five algorithms in terms of under-segmentation error (↓) on BSDS500.

Algorithm
Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

CICI 0.0720 0.0508 0.0420 0.0414 0.0391 0.0372 0.0355 0.0349 0.0344 0.0338
SNIC 0.1133 0.0707 0.0575 0.0517 0.0455 0.0432 0.0420 0.0401 0.0373 0.0360
IBIS 0.1377 0.0954 0.0819 0.0701 0.0640 0.0597 0.0553 0.0513 0.0499 0.0473

BACA 0.0853 0.0578 0.0475 0.0458 0.0430 0.0403 0.0394 0.0384 0.0382 0.0369
SCALE 0.1294 0.0897 0.0755 0.0667 0.0600 0.0579 0.0547 0.0537 0.0512 0.0500

Table 5 shows the average number of superpixels actually segmented by five algo-
rithms in 500 pictures on BSDS500. It is obvious that BACA has the smallest number of
actual segmentations, which sacrifices a certain degree of segmentation accuracy. SCALE
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behaves exactly as the user-expected number and is controllable. CICI also performs well
on the actual segmentation number of images; it achieves a balance of complexity and
accuracy. It is worth noting that the best-performing algorithms are shown in red, followed
by blue and green.

Table 3. Comparison of five algorithms in terms of achievable segmentation accuracy (↑) on BSDS500.

Algorithm
Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

CICI 0.9040 0.9317 0.9411 0.9442 0.9477 0.9499 0.9527 0.9539 0.9545 0.9558
SNIC 0.8677 0.9140 0.9293 0.9351 0.9425 0.9448 0.9476 0.9496 0.9525 0.9543
IBIS 0.8578 0.9004 0.9118 0.9234 0.9297 0.9337 0.9378 0.9424 0.9439 0.9462

BACA 0.8788 0.9113 0.9268 0.9313 0.9360 0.9380 0.9428 0.9456 0.9460 0.9477
SCALE 0.8730 0.9092 0.9227 0.9307 0.9350 0.9405 0.9434 0.9453 0.9476 0.9489

Table 4. Comparison of five algorithms in terms of compactness (↑) on BSDS500.

Algorithm
Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

CICI 0.4002 0.4907 0.5569 0.5796 0.5849 0.5920 0.6496 0.7095 0.7196 0.7295
SNIC 0.3486 0.4321 0.4819 0.5046 0.5434 0.5536 0.5700 0.5920 0.6039 0.6233
IBIS 0.3315 0.3996 0.4365 0.4735 0.5008 0.5211 0.5332 0.5572 0.5691 0.5818

BACA 0.3917 0.4805 0.5429 0.5673 0.5753 0.5833 0.6357 0.6887 0.6983 0.7090
SCALE 0.3845 0.4313 0.4624 0.4859 0.5000 0.5228 0.5346 0.5486 0.5615 0.5717

Table 5. Comparison of five algorithms in terms of generated superpixel number on BSDS500.

Algorithm
Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

CICI 42 88 142 161 186 212 254 300 309 340
SNIC 40 96 150 187 260 294 330 400 442 504
IBIS 40 93 125 182 223 256 291 372 392 435

BACA 38 87 130 158 188 211 262 302 314 345
SCALE 50 100 150 200 250 300 350 400 450 500

5. Conclusions

In this study, we propose a context identity and contour intensity (CICI) framework
for superpixel segmentation in spherical images. Firstly, we optimize the number and
placement of seeds using local context identity. Additionally, we incorporate a contour
intensity prior strategy into the correlation measurement to effectively enhance segmen-
tation accuracy. Furthermore, we compare CICI with several state-of-the-art superpixel
algorithms on SPSDataset75. Qualitative analysis demonstrates that the proposed CICI
achieves content-adaptive adjustment in superpixel size and delivers superior segmenta-
tion accuracy. To further demonstrate the effectiveness of our optimization strategy, we
integrate CICI with SNIC, evaluate its performance on the BSDS500 dataset and yield
satisfactory results.

Future research will primarily focus on applying CICI to advanced computational vision
tasks. In virtual reality (VR) and augmented reality (AR), CICI can bring many potential
advantages, including improved rendering efficiency, reduced data transfer and processing
costs, and enhanced user interaction experiences, which are described in detail as follows:

(1) The CICI segmentation results are used to optimize the rendering process of virtual
reality and augmented reality scenes. By reducing the number of primitives that need to
be rendered, the storage and transmission costs are effectively reduced while maintaining
visual quality.
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(2) In AR applications, CICI can assist in extracting and identifying significant feature
points or areas in the environment, enhancing user interaction experiences. For instance,
identifying and tracking specific objects or landmarks can facilitate natural interaction
between virtual information and the real world.
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Appendix A

Table A1. Quantitative comparison of ten algorithms in terms of six index on SPSDataset75.

Algorithm
Expected Superpixel Number

250 500 750 1000 1250 1500

BR

SLIC 0.5637 0.6893 0.7607 0.8049 0.8510 0.8651
SNIC 0.5678 0.6887 0.7558 0.8003 0.8483 0.8792

SSNIC 0.4512 0.6065 0.7072 0.7793 0.8324 0.8728
IO-SNIC 0.6338 0.8207 0.9160 0.9585 0.9789 0.9878
DO-SNIC 0.5297 0.6626 0.7443 0.8036 0.8468 0.8810
SphSPS 0.5952 0.6983 0.7629 0.8102 0.8450 0.8728

C-SphSPS 0.5863 0.6887 0.7526 0.8016 0.8362 0.8649
Cos-SphSLIC 0.4108 0.5404 0.6277 0.6971 0.7509 0.7960
Avg-SphSLIC 0.4513 0.5788 0.6651 0.7341 0.7878 0.8292

CICI 0.6922 0.84677 0.9255 0.9621 0.9798 0.9877

PR

SLIC 0.6211 0.5755 0.5505 0.5264 0.5008 0.4933
SNIC 0.6313 0.5771 0.5504 0.5242 0.4993 0.4766

SSNIC 0.6008 0.5776 0.5556 0.5361 0.5167 0.4984
IO-SNIC 0.7012 0.6825 0.6460 0.6064 0.5706 0.5408
DO-SNIC 0.6563 0.6058 0.5704 0.5440 0.5199 0.4993
SphSPS 0.6365 0.5914 0.5622 0.5373 0.5176 0.4996

C-SphSPS 0.6365 0.5917 0.5626 0.5383 0.5174 0.5009
Cos-SphSLIC 0.5645 0.5445 0.5283 0.5147 0.5012 0.4881
Avg-SphSLIC 0.5747 0.5490 0.5327 0.5161 0.5006 0.4866

CICI 0.7363 0.6945 0.6499 0.6087 0.5723 0.5418

UE

SLIC 0.3951 0.3199 0.2808 0.2586 0.2356 0.2289
SNIC 0.3762 0.3044 0.2738 0.2503 0.2296 0.2155

SSNIC 0.4109 0.3244 0.2794 0.2495 0.2294 0.2129
IO-SNIC 0.3464 0.2599 0.2182 0.1937 0.1769 0.1639
DO-SNIC 0.2987 0.2156 0.1745 0.1494 0.1351 0.1222
SphSPS 0.3614 0.2919 0.2579 0.2346 0.2178 0.2057

C-SphSPS 0.3472 0.2843 0.2532 0.2329 0.2173 0.2065
Cos-SphSLIC 0.4422 0.3662 0.3247 0.2942 0.2726 0.2551
Avg-SphSLIC 0.4649 0.3854 0.3412 0.3102 0.2865 0.2689

CICI 0.2206 0.1458 0.1174 0.1022 0.0924 0.0863
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Table A1. Cont.

Algorithm
Expected Superpixel Number

250 500 750 1000 1250 1500

ASA

SLIC 0.7727 0.8233 0.8478 0.8612 0.8749 0.8790
SNIC 0.7832 0.8312 0.8512 0.8653 0.8779 0.8862

SSNIC 0.7669 0.8230 0.8507 0.8680 0.8796 0.8889
IO-SNIC 0.8131 0.8637 0.8870 0.9002 0.9091 0.9161
DO-SNIC 0.8332 0.8843 0.9081 0.9221 0.9301 0.9372
SphSPS 0.7952 0.8409 0.8618 0.8756 0.8854 0.8925

C-SphSPS 0.8033 0.8449 0.8642 0.8766 0.8858 0.8919
Cos-SphSLIC 0.7459 0.7979 0.8245 0.8426 0.8554 0.8657
Avg-SphSLIC 0.7335 0.7872 0.8151 0.8339 0.8480 0.8580

CICI 0.8828 0.9247 0.9399 0.9480 0.9531 0.9563

F-
measure

SLIC 0.5910 0.6272 0.6387 0.6365 0.6305 0.6283
SNIC 0.5978 0.6280 0.6369 0.6334 0.6285 0.6181

SSNIC 0.5153 0.5916 0.6223 0.6352 0.6375 0.6344
IO-SNIC 0.6657 0.7452 0.7577 0.7428 0.7209 0.6989
DO-SNIC 0.5862 0.6329 0.6458 0.6488 0.6442 0.6373
SphSPS 0.6151 0.6404 0.6474 0.6461 0.6420 0.6354

C-SphSPS 0.6104 0.6365 0.6438 0.6441 0.6392 0.6343
Cos-SphSLIC 0.4755 0.5424 0.5737 0.5921 0.6011 0.6051
Avg-SphSLIC 0.5056 0.5639 0.5915 0.6061 0.6121 0.6132

CICI 0.7135 0.7631 0.7636 0.7456 0.7225 0.6997

Execution
Time (lg

(ms))

SLIC 3.29 3.32 3.29 3.29 3.29 3.29
SNIC 3.26 3.27 3.28 3.28 3.28 3.29

SSNIC 3.32 3.32 3.33 3.34 3.33 3.34
IO-SNIC 3.31 3.32 3.32 3.32 3.35 3.32
DO-SNIC 3.43 3.39 3.40 3.39 3.39 3.40
SphSPS 3.74 3.74 3.69 3.75 3.66 3.71

C-SphSPS 3.73 3.68 3.68 3.67 3.68 3.68
Cos-SphSLIC 3.18 3.24 3.23 3.23 3.24 3.22
Avg-SphSLIC 3.26 3.26 3.31 3.32 3.33 3.30

CICI 3.46 3.45 3.45 3.43 3.45 3.43
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