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Abstract: This study presents the Hybrid COASaDE Optimizer, a novel combination of the Crayfish
Optimization Algorithm (COA) and Self-adaptive Differential Evolution (SaDE), designed to address
complex optimization challenges and solve engineering design problems. The hybrid approach
leverages COA’s efficient exploration mechanisms, inspired by crayfish behaviour, with the symmetry
of SaDE’s adaptive exploitation capabilities, characterized by its dynamic parameter adjustment. The
balance between these two phases represents a symmetrical relationship wherein both components
contribute equally and complementary to the algorithm’s overall performance. This symmetry
in design enables the Hybrid COASaDE to maintain consistent and robust performance across a
diverse range of optimization problems. Experimental evaluations were conducted using CEC2022
and CEC2017 benchmark functions, demonstrating COASaDE’s superior performance compared to
state-of-the-art optimization algorithms. The results and statistical analyses confirm the robustness
and efficiency of the Hybrid COASaDE in finding optimal solutions. Furthermore, the applicability of
the Hybrid COASaDE was validated through several engineering design problems, where COASaDE
outperformed other optimizers in achieving the optimal solution.

Keywords: hybrid COASaDE; crayfish optimization algorithm; self-adaptive differential evolution;
metaheuristic algorithms; optimization

1. Introduction

Optimization, a crucial concept in numerous scientific and engineering fields, aims
to improve the efficiency and functionality of systems, designs, or decisions [1]. This
interdisciplinary field merges principles from mathematics, computer science, operations
research, and engineering to enhance the performance of complex systems [2]. Optimization
endeavors to find the optimal values of an objective function within a specified domain,
often navigating through competing objectives and constraints [3].

The mathematical backbone of optimization is founded on calculus and linear alge-
bra, enabling the development of sophisticated techniques such as linear programming,
quadratic programming, and dynamic programming [4,5]. These methodologies have un-
dergone significant evolution, broadening the scope and applicability of optimization across
various sectors, including economics, logistics, network design, and machine learning [6].
However, optimization is most fundamental in algorithm design and analysis, where it
enhances efficiency and reduces computational complexity. This is especially critical for
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managing the large-scale data and complex computations prevalent in the digital era [7].
Similarly, in engineering, optimization plays a vital role in system design to maximize
efficiency and minimize costs, with notable applications in aerospace for flight trajectory
optimization and in electrical engineering for optimizing circuit designs [8,9].

Moreover, optimization has significantly integrated symmetry in its process, which
provides a framework for balancing various algorithmic components to achieve optimal
performance [10,11]. In the context of optimization algorithms, symmetry ensures a harmo-
nious integration of different processes such as exploration and exploitation, allowing each
phase to contribute equally and effectively to the search for optimal solutions [12,13]. This
balanced approach prevents the algorithm from becoming biased towards either extensive
searching (exploration) or intensive refining (exploitation), thereby maintaining consistent
performance across diverse problem landscapes [14]. By leveraging symmetry, optimiza-
tion algorithms can navigate complex high-dimensional spaces more efficiently, improving
their ability to find global optima while avoiding local traps. Consequently, symmetry is
integral to designing robust and versatile optimization algorithms capable of addressing a
wide array of engineering and computational challenges [15].

Global optimization techniques that rely on statistical models of objective functions
are tailored for tackling “expensive” and “black box” problems. In these scenarios, the
limited available information is captured by a statistical model. To handle the high cost
associated with such problems, the theory of rational decision-making under uncertainty is
particularly appropriate. The resulting algorithms are essentially sequences of decisions
made in the face of uncertainty, as informed by the statistical model [16].

Stochastic optimization algorithms are distinguished by their strategic use of random-
ness to tackle optimization challenges [17]. Unlike deterministic algorithms that follow a
strict rule set, stochastic algorithms incorporate probabilistic elements to enhance solution
space exploration, proving effective in complex high-dimensional problems with numerous
local optima [18,19].

The concept of hybridization in optimization combines multiple optimization strate-
gies to exploit the strengths of individual methods and mitigate their weaknesses, thereby
enhancing overall effectiveness [20]. This paper proposes the hybridization of the Cray-
fish Optimization Algorithm (COA) with the Self-adaptive Differential Evolution (SaDE)
technique [21]. COA, known for its global search capability, and SaDE, recognized for its
adaptability in adjusting mutation and crossover rates, can be synergized to form a robust
hybrid system. This hybrid approach is particularly advantageous in complex landscapes
such as engineering design problems, where it provides a dynamic balance between ex-
ploration and exploitation, and is adept at handling non-differentiable or discontinuous
objective functions in scenarios where traditional methods falter [22].

This hybrid model leverages the randomness of stochastic methods to circumvent the
“curse of dimensionality”, in which the solution space grows exponentially with increasing
dimensions, making exhaustive searches infeasible [23]. Furthermore, hybrid algorithms
can offer more reliable convergence to global optima by navigating efficiently through
multiple local optima, allowing them to adapt to various problem settings from machine
learning and artificial intelligence to logistics and financial modeling [2].

Hybrid optimization not only consolidates the stochastic elements of methods such as
Stochastic Gradient Descent (SGD), Genetic Algorithms (GAs) [24], Particle Swarm Opti-
mization (PSO) [25], and Ant Colony Optimization (ACO) [26], it also introduces versatility
in handling discrete and continuous optimization scenarios; discrete hybrid methods are
suitable for combinatorial problems such as scheduling, while continuous hybrid strategies
are ideal for continuous variable problems such as parameter tuning in machine learning
models and optimization in control systems [22]. Thus, the integration of various optimiza-
tion techniques into a hybrid framework holds the potential to revolutionize the efficiency
and applicability of optimization solutions across a broad spectrum of disciplines.
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2. Problem Statement

The Self-adaptive Differential Evolution (SaDE) algorithm, despite its powerful adap-
tive exploitation capabilities, often encounters challenges related to premature convergence.
This issue arises due to its intensive local search mechanisms; while efficient at refining
solutions, these can sometimes lead to the algorithm becoming trapped in local optima.
Conversely, the Crayfish Optimization Algorithm (COA) excels in global search thanks
to its explorative strategies inspired by the natural behavior of crayfish. However, COA’s
extensive search mechanisms can occasionally lack the precision required for fine-tuning
solutions to their optimal values, particularly in complex high-dimensional landscapes.

The selection of SaDE and COA for hybridization is driven by the complementary
strengths of these two algorithms. SaDE’s capability to dynamically adjust its parameters
during the optimization process makes it highly adaptable and effective at exploitation and
refining solutions to a high degree of accuracy. Meanwhile, COA’s robust exploration phase
ensures a comprehensive search of the solution space that mitigates the risk of premature
convergence and enhances the algorithm’s ability to locate global optima.

The decision to hybridize SaDE and COA was based on a thorough analysis of their
individual performance characteristics and the specific requirements of engineering de-
sign problems. Engineering optimization often involves navigating complex multimodal
landscapes with numerous constraints and conflicting objectives. In such scenarios, relying
solely on either exploration or exploitation is insufficient. SaDE’s adaptive mechanisms
provide a dynamic approach to parameter adjustment, which is critical for maintaining the
algorithm’s responsiveness to different stages of the optimization process. This adaptability
ensures that the exploitation phase is finely tuned to the evolving landscape of the problem.

COA’s exploration phase, inspired by the natural foraging behavior of crayfish, intro-
duces a diverse set of candidate solutions into the search space. This diversity is essential
for avoiding local optima and ensuring a broad search that can uncover high-quality so-
lutions across the entire solution space. The hybrid COASaDE optimizer leverages the
strengths of both algorithms, creating a balanced approach that enhances both exploration
and exploitation. This balance is crucial for addressing the complex and varied challenges
posed by engineering design problems while ensuring that the optimizer is both versatile
and robust.

In light of the diverse and complex nature of engineering design problems, a hybrid
approach that balances exploration and exploitation is essential. Many metaheuristic
algorithms have been proposed over the years, each with its own unique strengths and
weaknesses. However, the strategic combination of COA’s explorative power and SaDE’s
adaptive exploitation creates a synergistic effect that enhances the overall performance of
the optimization process. This hybrid model is particularly well-suited for engineering
applications, where both global search capabilities and local refinement are crucial for
efficiently finding high-quality solutions.

In addition, the hybridization of SaDE and COA is a strategic choice aimed at overcom-
ing the limitations of each algorithm when used in isolation. By combining their strengths,
the Hybrid COASaDE optimizer provides a powerful tool for solving complex engineering
design problems, demonstrating superior performance and reliability across a wide range
of benchmark tests and real-world applications.

2.1. Paper Contribution

The primary contributions of this paper are summarized as follows:

• Novel hybrid optimization algorithm: We propose the Hybrid COASaDE optimizer, a
strategic integration of the Crayfish Optimization Algorithm (COA) and Self-adaptive
Differential Evolution (SaDE). This hybridization leverages COA’s explorative effi-
ciency, characterized by its unique three-stage behaviour-based strategy, and SaDE’s
adaptive exploitation abilities, marked by dynamic parameter adjustment. The novelty
of this approach lies in the balanced synergy between COA’s broad search capabilities
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and SaDE’s fine-tuning mechanisms, resulting in an optimizer that excels at both
exploration and exploitation.

• Enhanced balance between exploration and exploitation: The Hybrid COASaDE
algorithm effectively addresses the balance between exploration and exploitation, a
common challenge in optimization. It begins with COA’s exploration phase, which
extensively probes the solution space to avoid premature convergence. As potential
solutions are identified, the algorithm transitions to SaDE’s adaptive mechanisms,
which fine-tune these solutions through self-adjusting mutation and crossover pro-
cesses. This seamless transition ensures that the algorithm can robustly navigate
complex high-dimensional landscapes while maintaining a balanced and effective
search process throughout the optimization.

• Engineering applications: The applicability and effectiveness of the Hybrid COASaDE
optimizer are validated through several engineering design problems, including
welded beam, pressure vessel, spring, speed reducer, cantilever, I-beam, and three-bar
truss designs. In each case, Hybrid COASaDE achieves high-quality solutions with
improved convergence speeds. This demonstrates the optimizer’s versatility and
robustness, making it a valuable tool for a wide range of engineering applications.

2.2. Paper Structure

The rest of this paper is organized as follows. The Introduction outlines the research
problem, significance, and main contributions. The Related Work section reviews existing
optimization algorithms, focusing on COA and SaDE. Next, overviews of COA and SaDE
detail their respective strategies and mechanisms. The Proposed Hybrid COASaDE Opti-
mizer section introduces the integration of COA and SaDE. The Mathematical Model of
Hybrid COASaDE section provides detailed mathematical formulations. The Experimental
Results section presents benchmark evaluations and comparisons. The Diagram Analysis
section includes convergence curves, search history plots, and statistical analyses. The
Engineering Problems section demonstrates the optimizer’s application to engineering
design problems. Finally, the Conclusion summarizes our findings and suggests future
research directions.

3. Related Work

Optimization techniques have seen extensive evolution across various disciplines,
significantly driven by developments in mathematics, computer science, operations re-
search, and engineering [27]. These advancements have led to critical enhancements in
linear programming, quadratic programming, and dynamic programming, facilitating
complex problem-solving across such diverse fields as economics, logistics, and machine
learning [3,5,28].

The authors of [29] introduced an enhanced version of the Quantum-inspired Differ-
ential Evolution global optimization (QDE) algorithm called EMMSIQDE. EMMSIQDE
incorporates a novel differential mutation strategy to improve search and descent capabili-
ties, and employs a multipopulation mutation evolution mechanism to maintain population
diversity and independence. Additionally, a feasible solution space transformation strat-
egy is utilized to optimize the solution mapping process. Comparative evaluations on
multidimensional unimodal and multimodal functions demonstrated that EMMSIQDE
outperforms DE, QDE, QGA, and MSIQDE in terms of optimization ability, scalability,
efficiency, and stability.

In [30], the authors introduced WOASCALF, a novel hybrid algorithm combining the
Whale Optimization Algorithm (WOA) and the Sine Cosine Algorithm (SCA) with Levy
flight distribution to address optimization problems, in particular for high-dimensional
problems. WOA excels in exploration but has weaknesses in exploitation, while SCA also
faces exploitation issues. The hybrid WOASCALF algorithm leverages the strengths of
both algorithms and to improve search agent movement through Levy flight. Evaluations
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using 23 benchmark functions and three real-world engineering problems showed that
WOASCALF outperforms other algorithms in exploration ability.

An enhanced Particle Swarm Optimization (PSO) algorithm named TO-PSO, which
uses a quasi-random sequence (QRS) for population initialization to improve the con-
vergence rate and diversity, was proposed in [31]. By incorporating a low-discrepancy
sequence, namely, the torus sequence, into PSO for swarm initialization, this approach
aims to more effectively address optimization problems. Evaluations on fifteen well known
unimodal and multimodal benchmark test problems demonstrated that TO-PSO signifi-
cantly outperforms traditional PSO, Sobol Sequence-initialized PSO (SO-PSO), and Halton
sequence-initialized PSO (HO-PSO) in terms of cost function value, convergence rate, and
diversity.

The authors of [32] introduced the Whale Optimization with Seagull Algorithm
(WSOA), a hybrid algorithm designed to address the computational accuracy and pre-
mature convergence issues of the Seagull Optimization Algorithm (SOA). By combining
the contraction-surrounding mechanism of the WOA with the spiral attack behaviour
of SOA and incorporating a Levy flight strategy, the WSOA enhances the balance be-
tween exploration and exploitation. Evaluations using 25 benchmark test functions and
comparisons with seven well known metaheuristic algorithms demonstrated WSOA’s
superior performance. Additionally, four engineering examples validated its effectiveness
and feasibility.

In [33], the authors proposed a Memory-based Hybrid Crow Search Algorithm
(MHCSA) combining the Crow Search Algorithm (CSA) and PSO to address CSA’s limita-
tions in memory representation and balancing exploration and exploitation. By initializing
the memory element with PSO’s best solution (pbest) and enhancing CSA’s individuals’ po-
sitions using both the global best (gbest) and pbest of PSO, the MHCSA improves diversity
and search abilities. Adaptive functions replace CSA’s fixed flight length and awareness
probability to better balance exploration and exploitation. When tested on seventy-three
benchmark functions and seven engineering design problems, MHCSA demonstrated
superior performance, while eliminating early convergence and improving both accuracy
and stability, ranking first among CSA, PSO, and other robust methods.

In [34], the authors introduced MBFPA, a hybrid metaheuristic algorithm combining
the Butterfly Optimization Algorithm (MVO) and Flower Pollination Algorithm (FPA)
based on a mutualism mechanism. While effective, MVO often faces issues with local opti-
mality and premature convergence. The MBFPA enhances exploration through FPA and
improves exploitation via symbiosis organism search in the mutualism phase, thereby ac-
celerating convergence. Meanwhile, its adaptive switching probability balances exploration
and exploitation. When evaluated on 49 standard test functions, MBFPA outperformed
six basic and five hybrid metaheuristic algorithms. Additionally, it successfully solved
five classic engineering problems, demonstrating feasibility, competitiveness, and strong
application prospects.

The COA, despite its simplicity and innovation, suffers from reduced search efficiency
and susceptibility to local optima in later stages. To address these issues, a modified version
called MCOA, was proposed in [35]. The MCOA incorporates an environmental renewal
mechanism to guide crayfish to better environments based on water quality factors along
with a learning strategy based on ghost antagonism to avoid local optima. Performance
evaluations using the IEEE CEC2020 benchmark function, four constrained engineering
problems, and feature selection problems demonstrated significant improvements. The
MCOA showed a 55.23% improvement in average fitness value and a 10.85% increase
in accuracy for feature selection problems. The combination of these enhancements sub-
stantially boosts MCOA’s optimization performance, offering valuable advancements in
solving complex spatial and practical problems.

A modified COA incorporating a Gaussian Distribution (GD) parameter to assess
and enhance population and fitness diversity was proposed by the authors of [36]. Their
proposed method aims to improve solution quality and robustness in complex optimization
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environments. The performance of the proposed method was validated by optimizing
27 unimodal and multimodal benchmark functions, showing that the proposed method is
more effective and efficient than the traditional COA in fewer iterations.

All of these studies underscore the necessity for enhancing optimization algorithms in
order to address their inherent limitations, with a particular focus on the Crayfish Optimiza-
tion Algorithm (COA). These investigations highlight the critical need for improved search
efficiency, preventing premature convergence, and bolstering exploration capabilities to
achieve more robust and effective optimization performance. The modifications and hybrid
approaches proposed in these studies demonstrate significant advancements in overcoming
the shortcomings of traditional algorithms, paving the way for more efficient and reliable
solutions to complex optimization problems.

3.1. Overview of COA

The Crayfish Optimization Algorithm (COA) [37] is an innovative metaheuristic algo-
rithm inspired by the foraging behavior of crayfish in nature. At its core, COA is structured
around three distinct behavioral stages, each mimicking a specific aspect of the crayfish’s
life cycle: the summer resort stage for exploration, the competition stage for resource alloca-
tion, and the foraging stage for exploitation. The summer resort stage symbolizes the search
for a cooler habitat, guiding the algorithm to explore diverse regions of the solution space
to prevent premature convergence. The competition stage, in which crayfish contest for
resources, reflects the algorithm’s ability to intensify the search in promising areas. Finally,
the foraging stage, akin to crayfish seeking food, represents the fine-tuning of solutions in
the algorithm. A unique feature of the COA is its temperature-based mechanism, which
controls the transitions between these stages, enabling the algorithm to adaptively balance
exploration and exploitation based on the problem’s landscape [37].

3.2. Overview of Self-Adaptive Differential Evolution (SaDE)

Self-adaptive Differential Evolution (SaDE) [38] is a variant of the traditional Differen-
tial Evolution (DE) algorithm augmented with a self-adapting mechanism to dynamically
adjust its strategy parameters during the optimization process [38]. This enhancement
addresses a crucial challenge in DE, namely, the selection of appropriate control parameters
such as the scaling factor and crossover rate, which significantly influences the algorithm’s
performance. SaDE introduces a learning strategy that allows it to adaptively modify
these parameters based on the ongoing success rate of trial vectors in the population. By
analyzing the performance feedback from previous iterations, SaDE can effectively tune its
mutation and crossover strategies, thereby improving its ability to navigate through com-
plex optimization landscapes [38]. This self-adaptive nature empowers SaDE to maintain a
delicate balance between exploration and exploitation, thereby enhancing its efficiency and
effectiveness in finding global optima, particularly in complex multimodal optimization
scenarios. The adaptability of SaDE makes it a robust and versatile choice for a wide array
of optimization problems, allowing it to serve as a foundation for the development of more
sophisticated and efficient metaheuristic algorithms [39].

4. Hybrid COASaDE Optimizer

This section introduces the COASaDE Hybrid Optimizer, which combines the Crayfish
Optimization Algorithm (COA) with Self-Adaptive Differential Evolution (SaDE). The
hybridization approach in our study strategically integrates COA and SaDE to leverage
their distinctive strengths and address complex optimization challenges effectively.

The integration process merges the explorative efficiency of COA, known for its unique
three-stage behavior-based strategy, with the adaptive exploitation abilities of SaDE, char-
acterized by dynamic parameter adjustment. The hybrid algorithm initiates with COA’s
exploration phase by extensively probing the solution space to prevent premature conver-
gence. As potential solutions are identified, the algorithm transitions to employing SaDE’s
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adaptive mechanisms, which fine-tune these solutions through self-adjusting mutation and
crossover processes.

This methodology ensures a comprehensive exploration followed by an efficient
exploitation phase, with each algorithm complementing the other’s limitations. The pri-
mary challenge in this hybridization lies in achieving a seamless transition between the
algorithms while maintaining a balance that allows the strengths of COA and SaDE to
synergistically enhance the search process while mitigating their respective weaknesses.

4.1. COASaDE Mathematical Model

1. Population Initialization:

The algorithm initializes the population within the search space boundaries using
uniformly distributed random numbers. This ensures diverse starting points for the search
process, which increases the chance of finding the global optimum, as shown in Equation (1):

X(0)
i = lb + (ub − lb) · r, r ∼ U (0, 1) (1)

where X(0)
i is the i-th individual’s position in the initial population, lb and ub are the

lower and upper boundaries of the search space, and r is a vector of uniformly distributed
random numbers.

2. Evaluation:

Each individual’s fitness is evaluated using the objective function. This step determines
the quality of the solutions, guiding the search process, as shown in Equation (2):

f (0)i = f (X(0)
i ) (2)

where f (·) is the objective function and f (0)i is the fitness of the i-th individual.

3. Mutation Factor and Crossover Rate Initialization:

The algorithm initializes the mutation factor and crossover rate uniformly for all
individuals. This provides a balanced exploration and exploitation capability initially, as
shown in Equation (3):

F(0)
i = 0.5, CR(0)

i = 0.7 (3)

where F(0)
i is the mutation factor and CR(0)

i is the crossover rate for the i-th individual.

4. Adaptive Update:

The mutation factor and crossover rate are updated adaptively based on past success,
enhancing the algorithm’s ability to adapt to different optimization landscapes dynamically,
as shown in Equations (4) and (5):

F(t)
i = max(0.1, min(0.9,N (F(t)

i , 0.1))) (4)

CR(t)
i = max(0.1, min(0.9,N (CR(t)

i , 0.1))) (5)

where N (µ, σ) represents a normal distribution with mean µ and standard deviation σ.

5. COA Behavior:

The algorithm applies COA-specific behaviours such as foraging and competition
based on temperature, which helps to diversify the search process and avoid local optima,
as shown in Equations (6) and (7):

C(t) = 2 − t
T

(6)

X(t)
i =

{
X(t−1)

i + C(t) · r · (xf(t) − X(t−1)
i ), if temp > 30

X(t−1)
i − X(t−1)

z + xf(t), otherwise
(7)
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where C(t) is the decreasing factor, r ∼ U (0, 1) is a random vector, xf(t) is the food position,
and Xz is a randomly chosen individual’s position.

6. SaDE Mutation and Crossover:

Differential Evolution’s mutation and crossover mechanisms are applied to generate
trial vectors, promoting solution diversity and improving the exploration capabilities of
the algorithm, as shown in Equations (8) and (9):

V(t)
i = X(t)

r1 + F(t)
i · (X(t)

r2 − X(t)
r3 ) (8)

U(t)
i =

V(t)
i,j , if rj ≤ CR(t)

i or j = jrand

X(t)
i,j , otherwise

(9)

where r1, r2, r3 are distinct indices different from i, V(t)
i is the mutant vector, U(t)

i is the trial
vector, rj ∼ U (0, 1) is a random number, and jrand is a randomly chosen index.

7. Selection:

The fitness of the trial vectors is evaluated and individuals are updated if the new
solution is better. This step ensures that only improved solutions are carried forward,
enhancing convergence towards the optimum, as shown in Equations (10) and (11):

f (U(t)
i ) ≤ f (X(t)

i ) =⇒ X(t+1)
i = U(t)

i , f (t+1)
i = f (U(t)

i ) (10)

f (U(t)
i ) > f (X(t)

i ) =⇒ X(t+1)
i = X(t)

i , f (t+1)
i = f (X(t)

i ) (11)

where X(t+1)
i is the updated position of the i-th individual and f (t+1)

i is its fitness.

8. Final Outputs:

The best solution found is returned as the final result along with the convergence
curve indicating the algorithm’s performance over time, as shown in Equations (12) and (13):

best_position = X(T)
i∗ , where i∗ = arg min

i
f (T)i (12)

best_fun = f (best_position) (13)

where best_position is the best solution found, best_fun is its fitness, and cuve_f(t) is the
best fitness at each iteration t.

The Hybrid Crayfish Optimization Algorithm with Self-Adaptive Differential Evo-
lution (COASaDE) combines the Crayfish Optimization Algorithm’s behavior with the
evolutionary strategies of Differential Evolution (DE). The algorithm begins by initializing
the population, mutation factor, and crossover rate. It then evaluates the initial popula-
tion’s fitness to determine the best solution. As the iterations proceed, when the iteration
count exceeds a predefined stabilization period, the mutation factor and crossover rate are
adaptively updated based on past success. The COA parameters, including the decreasing
factor and temperature, are updated as well. Depending on the temperature, either the
COA foraging/competition behaviour or DE mutation and crossover are performed. The
algorithm evaluates new positions and updates the individuals when improvements are
found. The global best position and fitness are updated at each iteration. The process
continues until the stopping criterion is met, at which point the algorithm returns the best
fitness and position along with the convergence information. The flowchart visualizes these
steps, starting from initialization and moving through population evaluation, parameter
updates, behavioural checks, mutation/crossover processes, evaluation of new positions,
and updating global bests before concluding with the final results. Each decision point
and process in the flowchart is linked to specific equations that define the algorithm’s
operations. Please see Algorithm 1.
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Algorithm 1 Pseudocode for the Hybrid COASaDE algorithm.

1: Initialize parameters: population X, mutation factor F, crossover rate CR, and fitness
values (see Equation (1)).

2: Evaluate initial population and determine the best fitness and position (see Equation (2)).
3: while stopping criterion not met do
4: if iteration count > stabilization period then
5: Adaptively update F and CR (see Equations (4) and (5)).
6: end if
7: Update COA parameters: C and temperature (see Equation (6)).
8: for each individual i do
9: if high temperature then

10: Perform COA foraging or competition behavior (see Equation (7)).
11: else
12: Perform DE mutation and crossover (see Equations (8) and (9)).
13: end if
14: Evaluate new position and update if better.
15: end for
16: Update global best position and fitness.
17: end while
18: Return best fitness and position, and convergence information (see Equations (12) and (13)).

4.2. Exploration Phase of Hybrid COASaDE

The exploration phase of COASaDE is critical for navigating the search space and
uncovering potential solutions. This phase leverages the exploration capabilities of COA
combined with the adaptive mutation and crossover mechanisms of SaDE to effectively
balance exploration and exploitation. The algorithm employs diverse strategies, including
the foraging, summer resort, and competition stages, to facilitate varied movement patterns
among candidate solutions while adapting to environmental cues for efficient search space
exploration. Adaptive parameter adjustment plays a significant role in this phase by
dynamically fine-tuning the mutation factors (F) and crossover rates (CR) for a subset of
the population. This adjustment ensures that the algorithm adapts to changing conditions
and maintains an effective balance between exploration and exploitation based on solution
performance. Additionally, randomization and diversity maintenance are crucial, as is the
introduction of stochasticity to prevent premature convergence to suboptimal solutions. By
incorporating random factors such as temperature conditions and individual selection for
parameter adaptation, the algorithm maintains diversity within the population, preventing
it from becoming stuck in local optima and ensuring comprehensive exploration of the
search space.

4.3. Exploitation Phase of Hybrid COASaDE

The exploitation phase of the hybrid Crayfish Optimization Algorithm with Self-
Adaptive Differential Evolution (see Figure 1) focuses on refining candidate solutions to
enhance their quality and convergence towards optimal solutions. This phase utilizes the
adaptive mutation and crossover mechanisms of SaDE to efficiently exploit promising
regions of the search space. The algorithm leverages the refined candidate solutions from
the exploration phase and applies mutation and crossover operations to iteratively improve
them. Boundary handling ensures that the solutions remain within the defined search space,
preventing the generation of infeasible solutions and maintaining optimization integrity.
Fitness evaluation and updating are pivotal, as newly generated solutions are evaluated
using the objective function and superior solutions replace their parents in the population.
The exploitation phase operates iteratively over multiple generations, refining candidate
solutions based on evaluation of the objective function. Through continuous updates based
on mutation, crossover, and fitness, COASaDE converges towards optimal or near-optimal
solutions, effectively exploiting the promising regions identified during the exploration phase.
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Start

Initialize parameters and evaluate them (Equations (1) and (2))

Evaluate initial population (Equation (2))

Ite > stabilization update F and CR

Update COA parameters C and temperature (Equation (6))

High temperature? COA foraging/competition

Perform DE mutation and crossover (Equations (8) and (9))

Evaluate new position and update if better

Update global best position and fitness

Return best solution found (Equations (12) and (13))

Yes

No

Yes

No

Figure 1. Flowchart of the proposed Hybrid COASaDE algorithm.
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4.4. Solving Global Optimization Problems Using COASaDE

Global optimization problems involve finding the best possible solution from all feasi-
ble solutions, often in the presence of complex constraints and multiple local optima. These
problems are characterized by their “black box” nature, where the objective function and
constraints might not have explicit forms, making traditional analytical methods imprac-
tical [16]. Instead, heuristic and metaheuristic algorithms such as Differential Evolution,
Genetic Algorithms, and Hybrid Optimization techniques are employed to efficiently navi-
gate the search space. These algorithms iteratively explore and exploit the solution space,
aiming to converge on the global optimum despite the challenges posed by the problem’s
landscape [40].

The general formulation of a global optimization problem can be expressed mathe-
matically. This involves defining an objective function to be minimized or maximized and
specifying the constraints that the solution must satisfy. The objective function, denoted as
f (x), and the constraints are illustrated in Equation (14):

Minimize (or Maximize): f (x)

Subject to:

gj(x) ≤ 0 for j = 1, 2, . . . , m

hi(x) = 0 for i = 1, 2, . . . , p

(14)

where:
x ∈ Rn is the vector of decision variables, f (x) : Rn → R is the objective function,

gj(x) : Rn → R for j = 1, 2, . . . , m are the inequality constraints, and hi(x) : Rn → R for
i = 1, 2, . . . , p are the equality constraints.

4.5. Symmetry in Hybrid COASaDE

The novel Hybrid COASaDE algorithm represents a fusion of mathematical theory
and heuristic strategies, showcasing remarkable symmetry in its approach to optimization.
Inspired by crayfish foraging behavior, COASaDE combines local and global search capa-
bilities with heuristic rules derived from natural behaviors, effectively guiding the search
process. The Differential Evolution (DE) framework, which underpins SaDE, uses mathe-
matical models for differential mutation and crossover to explore the search space, while
its self-adaptive mechanism adjusts control parameters dynamically based on the current
optimization state. This hybrid optimizer balances exploration and exploitation by incor-
porating mathematical models and adaptive heuristics in order to use population-based
search mechanisms to evolve candidate solutions. The synergy between COA’s random and
directed movements and SaDE’s differential evolution framework enhances both global
optimization and local search adaptability. This integration leverages the strengths of both
algorithms, combining rigorous mathematical foundations with adaptive, nature-inspired
heuristics to effectively solve complex optimization problems.

4.6. Computational Complexity of COASaDE

The computational complexity of COASaDE is influenced by several factors inherent
to both Crayfish Optimization Algorithm (COA) and Self-Adaptive Differential Evolution
(SaDE) that remain when combining them in a hybrid approach.

4.7. Computational Components

• Initialization:
O(N · D) (15)

The population X is initialized with N individuals (Equation (15)), where D is the
dimensionality of the search space.

• Fitness evaluation:
O(N · M) (16)
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The fitness of each individual in X is evaluated, where M is the complexity of the
objective function.

• Adaptive parameter updating:
O(N) (17)

The adaptive parameters F and CR for individuals are periodically updated, typically
at every tenth iteration beyond T

10 .
• COA and SaDE operations:

O(N · D) (18)

This controls COA behaviors (Equation (18)) and alternative COA behaviors (if condition
temp > 30).

O(N · D) (19)

This controls SaDE mutation and crossover operations (Equation (19)).
• Boundary conditions and fitness updating:

O(N · D) (20)

This is used to apply the boundary conditions.

O(N · M) (21)

This is used to evaluate the fitness of mutated individuals.
• Termination:

O(T · (N · D + N · M)) (22)

The algorithm runs for T iterations, with T directly influencing the total computational
complexity.

The computational complexity of COASaDE per iteration is primarily governed by
the population size N, the dimensionality of the problem space D, the complexity of the
objective function M, and the number of iterations T. The proposed hybrid approach aims
to efficiently tackle complex optimization problems by combining adaptive parameter
control and diverse search strategies from COA and SaDE.

5. Testing and Comparison

In our experimental testing and evaluation of COASaDE, we aimed to validate its
efficacy and performance against a series of challenging benchmark functions. This section
presents a comprehensive analysis of the results obtained from testing COASaDE on the
CEC2017 and CEC2022 benchmark suites. The analysis involved comparing the perfor-
mance of COASaDE with several state of art optimization algorithms. The comparative
study focused on various metrics such as convergence speed, accuracy, robustness, and
ability to escape local optima, providing a clear perspective on the strengths and potential
limitations of the proposed COASaDE algorithm.

The selection of these algorithms was driven by several key considerations. First was
the aim of representing a diverse range of optimization techniques. Algorithms such as
GWO, PSO, MFO, MVO, SHIO, AOA, FOX, FVIM, and SCA embody different paradigms,
from evolutionary and swarm intelligence-based methods to physics-inspired and hybrid
approaches. This diversity allows researchers to conduct a comprehensive evaluation of
COASaDE against established benchmarks to ensure a thorough exploration of its relative
strengths and weaknesses across varied optimization scenarios.

Moreover, the choice of algorithms was guided by their status as benchmark standards
within the optimization community. Algorithms such as WOA, GWO, and SCA have
been extensively studied and cited, and as such can provide a reliable basis for compar-
ison against newer or hybrid approaches like COASaDE. By benchmarking against well
known algorithms, researchers can more effectively assess the performance of COASaDE,
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contributing to a deeper understanding of its capabilities and potential advancements in
optimization research.

5.1. CEC2022 Benchmark Description

The CEC2022 benchmark suite represents a critical development in the field of op-
timization, focusing on single-objective and bound-constrained numerical optimization
problems (see Figure 2). As a part of the evolutionary progression from previous competi-
tions such as CEC’05 through CEC’21, which focused on real-parameter optimization, the
CEC2022 suite introduces challenges based on substantial feedback from the CEC’20 suite.
This feedback has been instrumental in refining the problem definitions and evaluation
criteria in order to better assess the capabilities of modern optimization algorithms such
as COASaDE.

Figure 2. Illustration of CEC2022 benchmark functions (F1–F6).

Structured to ensure fairness, impartiality, and a reflection of real-world complexities,
the CEC2022 benchmarks are suitable for testing the COASaDE optimizer. This suite
allows researchers to test their algorithms against cutting-edge methods in a competitive
setting that mirrors current industry and academic demands. The CEC 2022 Special
Session and Competition on Single-Objective Bound-Constrained Numerical Optimization
offers a pivotal platform for the COASaDE optimizer to demonstrate its efficacy and
for researchers to identify potential improvements and inspire the development of next-
generation optimization technologies.

5.2. CEC2017 Benchmark Description

The CEC2017 benchmark suite serves as an exhaustive testing ground for the proposed
COASaDE optimizer, comprising a diverse array of functions that present multifaceted
challenges typical of real-world optimization scenarios. This suite includes multimodal
landscapes, high-dimensional spaces, and intricate global structures that rigorously test an
algorithm’s capability to efficiently explore and exploit the search space. These functions
are strategically chosen to mimic real-life problems, ensuring that the insights gleaned from
the COASaDE’s performance are relevant and applicable in practical applications.

Each function within the CEC2017 suite is designed to highlight specific challenges,
such as navigating extensive flat areas without premature convergence and handling noise
that can obscure the true optima. Additionally, the inclusion of rotated and shifted versions
of the base functions introduces further complexity, simulating the effects of variable
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data transformations seen in real-world environments. These features make the CEC2017
benchmarks suitable for assessing the COASaDE optimizer’s precision, scalability, and
adaptability across different orientations and problem scales, thereby offering a thorough
evaluation of its practical applicability and robustness.

5.3. Configuration of Parameters for CEC Benchmark Evaluations

The parameters utilized for comparing the optimizers are detailed in Table 1. A
consistent parameter configuration is crucial for ensuring fair and effective evaluation
across the CEC benchmarks from 2022, 2017, and 2014 and for facilitating a standardized
testing environment across various functions.

Table 1. Configuration of parameters across CEC benchmarks.

Parameter Type Assigned Value

Size of Population 30 individuals

Evaluation Limit 1000 iterations

Problem Dimensions (D) 10

Boundary of Search [−100, 100]D

Incorporation of Rotation Applied where specified

Application of Shift Applied where specified

The parameters listed in Table 1 were adopted to create a balanced framework sup-
porting comparisons across diverse studies, ensuring a comprehensive and rigorous per-
formance assessment of the algorithms. The chosen population size of 100 and problem
dimensionality of 30 strike an optimal balance between the computational demand and the
complexity required for significant evaluations. The ceiling on function evaluations, de-
fined as 10,000 × D, provides ample opportunities for the algorithms to demonstrate their
efficiency and convergence capabilities over extensive iterations. The fixed search boundary,
set from [−100, 100] across all dimensions, ensures a vast and uniform exploration space.
Finally, specific benchmarks were made more challenging with the application of rotational
and shifting transformations to test the adaptability and robustness of algorithms under
enhanced complexity conditions.

A comprehensive statistical analysis was employed for the performance evaluation
of various optimization algorithms (see Table 2), including calculation of the mean and
standard deviation and the application of the Wilcoxon rank-sum test. The mean serves as a
measure of the central tendency, representing the average result obtained by the algorithms
across multiple trials. In contrast, the standard deviation quantifies the dispersion or
variability around this mean, offering insights into the consistency and reliability of the
algorithms across different runs.

Table 2. Parameter settings for the compared algorithms.

Algorithm Parameter

MFO a linearly decreases from −1 to −2

GWO Convergence constant a = [2, 0]

PSO Vmax = 6, Wmax = 0.9, Wmin = 0.2, C1 = C2 = 2

MVO Modular modality = 0.01, Power exponent = v, Switch probability = 0.8

AOA α = 5, Mu = 0.499

MVO WEPMax = 1, WEPMin = 0.2

SHO U = 0.05, V = 0.05, L = 0.05

SCA r1 = random(0, 1), r2 = random(0, 1), r3 = random(0, 1), r4 = random(0, 1)
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To further assess the statistical significance of differences between the performance of
two distinct groups of algorithmic outcomes, the Wilcoxon rank-sum test was utilized. This
nonparametric test helps to determine whether there is a statistically significant difference
between the medians of the two groups, providing a robust method for comparing the
performance of optimization algorithms under various conditions.

5.4. CEC2022 Results

The performance of COASaDE on the CEC2022 benchmark suite demonstrates its ro-
bustness and superiority compared to several well known and state-of-the-art optimization
algorithms. As shown in Table 3, COASaDE consistently ranks highly across various test
functions, often achieving the best or near-best mean and standard deviation values. For
instance, on Function F1, COASaDE achieves the lowest mean (3.00E+02) and smallest stan-
dard deviation (1.42E-04), significantly outperforming other algorithms including GWO,
PSO, and MFO, all of which have higher means and larger standard deviations. This trend
continues across multiple functions, indicating COASaDE’s ability to maintain stable and
high quality solutions. The algorithm’s self-adaptive mechanism for adjusting mutation
factors and crossover rates plays a crucial role in its success, enabling it to effectively
balance exploration and exploitation. The results suggest that COASaDE’s combination
of crayfish-inspired foraging behavior and differential evolution techniques makes it a
powerful tool for tackling complex optimization problems.

Table 3. Comparison results with well known and state-of-the-art optimizers on CEC2022, FES = 1000,
Agents = 50.

Function Statistics COASaDE GWO PSO MFO MVO SHIO OHO AOA FOX FVIM SCA

F1 Mean 3.00E+02 8.90E+02 1.58E+04 1.09E+04 8.80E+03 6.68E+03 1.20E+04 6.32E+03 1.17E+03 7.44E+02 1.39E+03
Std 1.42E-04 1.05E+03 5.10E+03 9.50E+03 4.51E+03 3.42E+03 2.05E+03 2.54E+03 4.53E+02 6.02E+02 1.41E+03

SEM 6.34E-05 4.70E+02 2.28E+03 4.25E+03 2.02E+03 1.53E+03 9.18E+02 1.14E+03 2.03E+02 2.69E+02 6.31E+02
Rank 1 3 11 9 8 7 10 6 4 2 5

F2 Mean 4.05E+02 4.26E+02 4.14E+02 4.10E+02 1.71E+03 4.49E+02 3.03E+03 8.06E+02 4.55E+02 4.42E+02 4.61E+02
Std 1.94E+00 3.07E+01 1.38E+01 5.29E+00 5.52E+02 3.73E+01 1.41E+03 1.01E+02 1.24E+01 2.28E+01 3.46E+01

SEM 8.68E-01 1.37E+01 6.19E+00 2.36E+00 2.47E+02 1.67E+01 6.29E+02 4.53E+01 5.54E+00 1.02E+01 1.55E+01
Rank 1 4 3 2 10 6 11 9 7 5 8

F3 Mean 6.00E+02 6.00E+02 6.33E+02 6.02E+02 6.42E+02 6.05E+02 6.55E+02 6.36E+02 6.14E+02 6.05E+02 6.15E+02
Std 0.00E+00 3.33E-01 1.13E+01 2.55E+00 5.20E+00 5.29E+00 6.88E+00 6.04E+00 2.75E+00 3.24E+00 8.51E+00

SEM 0.00E+00 1.49E-01 5.06E+00 1.14E+00 2.33E+00 2.36E+00 3.08E+00 2.70E+00 1.23E+00 1.45E+00 3.80E+00
Rank 1 2 8 3 10 5 11 9 6 4 7

F4 Mean 8.27E+02 8.15E+02 8.35E+02 8.35E+02 8.50E+02 8.12E+02 8.48E+02 8.30E+02 8.37E+02 8.28E+02 8.28E+02
Std 3.29E+00 5.10E+00 1.26E+01 3.27E+00 5.63E+00 2.85E+00 2.96E+00 3.61E+00 7.36E+00 6.65E+00 8.70E+00

SEM 1.47E+00 2.28E+00 5.65E+00 1.46E+00 2.52E+00 1.28E+00 1.32E+00 1.62E+00 3.29E+00 2.97E+00 3.89E+00
Rank 3 2 7 8 11 1 10 6 9 5 4

F5 Mean 9.00E+02 9.01E+02 1.32E+03 9.77E+02 1.33E+03 9.92E+02 1.55E+03 1.31E+03 9.99E+02 9.52E+02 1.05E+03
Std 0.00E+00 8.21E-01 2.83E+02 1.31E+02 8.38E+01 1.01E+02 4.61E+01 1.32E+02 1.83E+01 3.92E+01 1.26E+02

SEM 0.00E+00 3.67E-01 1.27E+02 5.85E+01 3.75E+01 4.51E+01 2.06E+01 5.90E+01 8.18E+00 1.76E+01 5.61E+01
Rank 1 2 9 4 10 5 11 8 6 3 7

F6 Mean 1.80E+03 5.71E+03 2.74E+03 5.72E+03 4.59E+07 2.99E+03 1.26E+09 3.68E+03 1.65E+06 1.01E+04 4.56E+03
Std 5.26E-01 3.35E+03 1.38E+03 2.53E+03 7.73E+07 1.06E+03 9.46E+08 8.62E+02 1.18E+06 2.55E+03 1.76E+03

SEM 2.35E-01 1.50E+03 6.18E+02 1.13E+03 3.46E+07 4.72E+02 4.23E+08 3.86E+02 5.27E+05 1.14E+03 7.89E+02
Rank 1 6 2 7 10 3 11 4 9 8 5

F7 Mean 2.00E+03 2.03E+03 2.06E+03 2.03E+03 2.09E+03 2.05E+03 2.12E+03 2.11E+03 2.05E+03 2.05E+03 2.03E+03
Std 9.39E+00 2.35E+01 2.10E+01 1.65E+01 1.75E+01 1.88E+01 1.06E+01 1.99E+01 5.12E+00 1.79E+01 1.59E+01

SEM 4.20E+00 1.05E+01 9.40E+00 7.37E+00 7.81E+00 8.40E+00 4.76E+00 8.88E+00 2.29E+00 8.00E+00 7.12E+00
Rank 1 2 8 3 9 6 11 10 7 5 4

F8 Mean 2.20E+03 2.22E+03 2.24E+03 2.22E+03 2.33E+03 2.23E+03 2.37E+03 2.29E+03 2.23E+03 2.23E+03 2.22E+03
Std 1.05E+00 2.24E+00 1.80E+01 1.96E+00 8.44E+01 5.01E+00 6.65E+01 1.03E+02 2.94E+00 6.57E-01 2.28E+00

SEM 4.71E-01 1.00E+00 8.07E+00 8.75E-01 3.77E+01 2.24E+00 2.97E+01 4.61E+01 1.31E+00 2.94E-01 1.02E+00
Rank 1 2 8 3 10 6 11 9 7 5 4

F9 Mean 2.53E+03 2.54E+03 2.55E+03 2.53E+03 2.79E+03 2.56E+03 2.82E+03 2.70E+03 2.57E+03 2.58E+03 2.57E+03
Std 0.00E+00 1.86E+01 2.88E+01 2.49E-01 8.91E+01 3.38E+01 3.82E+01 2.23E+01 2.04E+01 3.20E+01 2.03E+01

SEM 0.00E+00 8.31E+00 1.29E+01 1.11E-01 3.98E+01 1.51E+01 1.71E+01 9.96E+00 9.13E+00 1.43E+01 9.06E+00
Rank 1 3 4 2 10 5 11 9 6 8 7
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Table 3. Cont.

Function Statistics COASaDE GWO PSO MFO MVO SHIO OHO AOA FOX FVIM SCA

F10 Mean 2.50E+03 2.57E+03 2.66E+03 2.50E+03 2.50E+03 2.53E+03 3.14E+03 2.74E+03 2.50E+03 2.55E+03 2.58E+03
Std 5.96E-02 6.05E+01 1.99E+02 1.24E+00 1.08E+00 5.54E+01 4.27E+02 2.00E+02 4.05E-01 6.42E+01 6.89E+01

SEM 2.67E-02 2.71E+01 8.89E+01 5.55E-01 4.81E-01 2.48E+01 1.91E+02 8.95E+01 1.81E-01 2.87E+01 3.08E+01
Rank 1 7 9 2 4 5 11 10 3 6 8

F11 Mean 2.60E+03 2.87E+03 2.84E+03 2.70E+03 2.99E+03 2.83E+03 3.69E+03 3.20E+03 2.77E+03 2.94E+03 2.72E+03
Std 3.94E-13 2.12E+02 1.20E+02 9.31E+01 1.30E+02 2.64E+02 7.01E+02 3.10E+02 4.19E+00 2.37E+02 5.71E+01

SEM 1.76E-13 9.46E+01 5.37E+01 4.16E+01 5.81E+01 1.18E+02 3.14E+02 1.38E+02 1.87E+00 1.06E+02 2.56E+01
Rank 1 7 6 2 9 5 11 10 4 8 3

F12 Mean 2.86E+03 2.87E+03 2.89E+03 2.86E+03 2.90E+03 2.88E+03 3.09E+03 2.99E+03 2.87E+03 2.87E+03 2.89E+03
Std 7.50E-01 2.48E+00 3.03E+01 7.52E-01 2.25E+01 1.43E+01 4.32E+01 3.01E+01 1.73E+00 3.40E+00 2.20E+01

SEM 3.35E-01 1.11E+00 1.36E+01 3.36E-01 1.01E+01 6.37E+00 1.93E+01 1.34E+01 7.72E-01 1.52E+00 9.85E+00
Rank 1 3 8 2 9 6 11 10 5 4 7

The performance of COASaDE on the CEC2022 benchmark suite is shown in Table 4,
which shows the comparison results with various Differential Evolution (DE) variants. The
results highlight its effectiveness and competitiveness, showing that COASaDE consistently
ranks among the top performers across multiple test functions. For Function F1, COASaDE
achieves the best mean (3.00E+02) and smallest standard deviation (1.42E-04), demonstrat-
ing its precision and stability compared to other DE variants such as LDE, BBDE, and
JADE, which all have higher means and larger standard deviations. This trend of superior
performance continues with Functions F2 and F3, where COASaDE secures the top ranks,
indicating its robustness in handling different optimization challenges. COASaDE also
performs well on Function F4, showcasing its adaptability, although it ranks slightly behind
some variants.

Table 4. Comparison Results with variant Differential Evolution optimizers on CEC2022, FES = 1000,
Agents = 50.

Function Statistics COASaDE COA LDE BBDE ODE JADE DEEM SADE CMAES

F1 Mean 3.00E+02 3.01E+02 3.18E+02 8.25E+02 3.00E+02 3.64E+02 3.01E+02 7.65E+02 2.28E+04
Std 1.42E-04 6.39E-01 1.09E+01 6.10E+02 1.38E-03 8.27E+01 0.00E+00 2.53E+02 1.08E+04

SEM 6.34E-05 2.86E-01 4.88E+00 2.73E+02 6.17E-04 3.70E+01 0.00E+00 1.13E+02 4.81E+03
Rank 1 4 5 8 2 6 3 7 9

F2 Mean 4.05E+02 4.06E+02 4.08E+02 4.07E+02 4.08E+02 4.07E+02 4.06E+02 4.08E+02 5.80E+02
Std 1.94E+00 3.50E+00 1.76E+00 1.64E+00 1.87E+00 2.64E+00 4.05E+00 7.99E-01 6.89E+01

SEM 8.68E-01 1.57E+00 7.87E-01 7.34E-01 8.34E-01 1.18E+00 1.81E+00 3.57E-01 3.08E+01
Rank 1 2 6 5 7 4 3 8 9

F3 Mean 6.00E+02 6.07E+02 6.00E+02 6.00E+02 6.00E+02 6.00E+02 6.00E+02 6.00E+02 6.28E+02
Std 0.00E+00 1.35E+01 3.16E-02 8.04E-14 0.00E+00 7.85E-07 5.32E-02 0.00E+00 2.98E+01

SEM 0.00E+00 6.03E+00 1.41E-02 3.60E-14 0.00E+00 3.51E-07 2.38E-02 0.00E+00 1.33E+01
Rank 1 8 7 1 1 5 6 1 9

F4 Mean 8.27E+02 8.33E+02 8.30E+02 8.12E+02 8.30E+02 8.06E+02 8.11E+02 8.28E+02 8.27E+02
Std 3.29E+00 4.45E-01 3.85E+00 5.23E+00 1.74E+00 8.22E-01 7.22E+00 5.32E+00 1.04E+01

SEM 1.47E+00 1.99E-01 1.72E+00 2.34E+00 7.80E-01 3.68E-01 3.23E+00 2.38E+00 4.65E+00
Rank 4 9 8 3 7 1 2 6 5

F5 Mean 900 902.4721 900.2119 900.0179 900 900.0001 900.1088 900.0001 900
Std 0 4.641643 0.046755 0.040038 0 7.37E-05 0.243218 0.000172 0

SEM 0 2.075806 0.02091 0.017906 0 3.3E-05 0.10877 7.68E-05 0
Rank 1 9 8 6 1 4 7 5 1

F6 Mean 1.80E+03 3.64E+03 5.98E+03 2.77E+03 1.80E+03 1.85E+03 1.81E+03 1.84E+03 7.61E+07
Std 5.26E-01 2.56E+03 2.80E+03 1.08E+03 4.98E-01 2.79E+01 5.82E+00 1.47E+01 1.10E+08

SEM 2.35E-01 1.14E+03 1.25E+03 4.83E+02 2.23E-01 1.25E+01 2.60E+00 6.57E+00 4.92E+07
Rank 1 7 8 6 2 5 3 4 9

F7 Mean 2.00E+03 2.02E+03 2.02E+03 2.02E+03 2.00E+03 2.01E+03 2.02E+03 2.00E+03 2.09E+03
Std 9.39E+00 1.11E+00 1.71E+00 6.83E-01 2.70E-01 1.06E+01 8.45E+00 1.52E+00 5.05E+01

SEM 4.20E+00 4.96E-01 7.66E-01 3.06E-01 1.21E-01 4.76E+00 3.78E+00 6.80E-01 2.26E+01
Rank 2 6 8 7 1 4 5 3 9

F8 Mean 2.20E+03 2.23E+03 2.22E+03 2.22E+03 2.20E+03 2.21E+03 2.21E+03 2.21E+03 2.25E+03
Std 1.05E+00 2.61E+00 5.99E+00 2.28E+00 9.85E-01 8.33E+00 1.12E+01 2.95E+00 6.40E+00

SEM 4.71E-01 1.17E+00 2.68E+00 1.02E+00 4.41E-01 3.72E+00 5.01E+00 1.32E+00 2.86E+00
Rank 1 8 6 7 2 5 4 3 9
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Table 4. Cont.

Function Statistics COASaDE COA LDE BBDE ODE JADE DEEM SADE CMAES

F9 Mean 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.53E+03 2.57E+03
Std 0.00E+00 6.15E-06 1.82E-03 0.00E+00 0.00E+00 4.57E-05 0.00E+00 0.00E+00 4.22E+01

SEM 0 2.75E-06 0.000815 0 0 2.04E-05 0 0 18.86533
Rank 1 6 8 1 1 7 1 1 9

F10 Mean 2.50E+03 2.53E+03 2.50E+03 2.50E+03 2.50E+03 2.52E+03 2.50E+03 2.50E+03 2.68E+03
Std 5.96E-02 5.74E+01 5.12E-02 8.11E-02 1.03E-02 4.68E+01 1.45E-01 6.80E-02 2.22E+02

SEM 2.67E-02 2.57E+01 2.29E-02 3.63E-02 4.61E-03 2.09E+01 6.50E-02 3.04E-02 9.93E+01
Rank 2 8 4 6 1 7 5 3 9

F11 Mean 2.60E+03 2.75E+03 2.61E+03 2.63E+03 2.60E+03 2.68E+03 2.80E+03 2.63E+03 3.13E+03
Std 3.94E-13 1.50E+02 7.91E-01 6.73E+01 3.22E-13 1.79E+02 1.54E+02 6.73E+01 2.58E+02

SEM 1.76E-13 6.71E+01 3.54E-01 3.01E+01 1.44E-13 7.99E+01 6.89E+01 3.01E+01 1.15E+02
Rank 1 7 3 4 1 6 8 5 9

F12 Mean 2.86E+03 2.87E+03 2.86E+03 2.86E+03 2.86E+03 2.86E+03 2.86E+03 2.86E+03 2.87E+03
Std 7.50E-01 1.18E+00 1.04E+00 6.62E-01 2.04E+00 6.71E-01 2.03E+00 9.78E-01 2.37E+00

SEM 3.35E-01 5.27E-01 4.67E-01 2.96E-01 9.11E-01 3.00E-01 9.09E-01 4.38E-01 1.06E+00
Rank 1 8 2 5 4 7 3 6 9

Moreover, the results indicate that COASaDE maintains a strong balance between
exploration and exploitation, facilitated by its adaptive mechanisms for mutation and
crossover rates. For Functions F6 to F12 COASaDE consistently ranks within the top
positions, often securing the first or second rank. The algorithm’s ability to dynamically
adjust its parameters based on the current state of the optimization process allows it to
effectively navigate the search space and avoid local optima. Additionally, the comparative
analysis with DE variants such as SADE, CMAES, and others highlights COASaDE’s
competitive edge in terms of mean performance and consistency, as reflected in the values
for the standard error of the mean (SEM). Overall, the results from Table 2 underscore
COASaDE’s superior optimization capabilities, robust performance, and effectiveness as a
hybrid optimizer that successfully integrates heuristic strategies with mathematical rigor.

5.5. Wilcoxon Rank-Sum Test Results

The Wilcoxon rank-sum test results highlight the statistical significance of COASaDE’s
performance on the CEC2022 benchmark functions compared to various other optimizers.
Across multiple functions in Tables 5 and 6 (F1 to F12), COASaDE consistently achieves
p-values of 3.97× 10−3 against most compared optimizers, indicating statistically significant
improvement. For example, on Function F1 COASaDE shows significant differences with all
listed algorithms, including GWO, PSO, and MFO. On Function F2, while maintaining strong
significance against most optimizers, it exhibits less significant results compared to SHIO and
slightly higher p-values with AOA and SCA. This pattern is observed across other functions as
well, with COASaDE demonstrating robust performance and often outperforming competitors
by statistically significant margins. The few instances of higher p-values, such as in F6 with SHIO
and SCA and in F10 with GWO and SHIO, suggest areas where the performance differences
are less pronounced. Overall, the Wilcoxon test results affirm the effectiveness and reliability of
COASaDE in providing superior optimization results across various challenging functions.

Table 5. Wilcoxon rank-sum test over CEC2022, FES = 1000, Agents = 50.

Fun GWO PSO MFO MVO SHIO OHO AOA FOX SCA

F1 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F2 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 9.96E-01 1.59E-02 3.97E-03 7.94E-03
F3 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F4 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F5 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F6 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 9.84E-01 3.97E-03 3.97E-03 7.26E-01
F7 3.97E-03 7.94E-03 1.59E-02 3.97E-03 3.97E-03 3.45E-01 1.55E-01 3.97E-03 2.74E-01
F8 3.97E-03 2.78E-02 3.97E-03 3.97E-03 3.97E-03 1.00E+00 7.54E-02 3.97E-03 7.54E-02
F9 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 7.26E-01 3.97E-03 3.97E-03 2.10E-01

F10 2.74E-01 5.00E-01 1.11E-01 3.97E-03 2.78E-02 9.84E-01 7.90E-01 1.11E-01 6.55E-01
F11 3.97E-03 3.97E-03 3.97E-03 3.97E-03 2.78E-02 3.45E-01 2.74E-01 7.94E-03 2.78E-02
F12 1.59E-02 7.90E-01 3.97E-03 3.97E-03 9.92E-01 1.00E+00 1.00E+00 2.10E-01 1.00E+00
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Table 6. Wilcoxon rank-sum test over CEC2022, FES = 1000, Agents = 50.

Fun LDE BBDE ODE CCDE JADE DEEM SADE JADE CMAES

F1 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F2 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F3 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 1.59E-02
F4 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F5 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03
F6 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.45E-01
F7 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 7.54E-02
F8 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 7.94E-03
F9 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03

F10 3.97E-03 3.97E-03 3.97E-03 3.97E-03 2.78E-02 3.97E-03 3.97E-03 3.97E-03 4.21E-01
F11 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 1.11E-01
F12 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 3.97E-03 9.96E-01

5.6. COASaDE Results on CEC2017

The results of COASaDE on the CEC2017 benchmark suite, shown in Table 7, highlight
its strong performance relative to other optimizers. For Function F1, COASaDE achieves
the lowest mean value of 6.85 × 109 and ranks first, demonstrating its efficiency in solving
this optimization problem compared to other algorithms such as GWO, PSO, and MFO,
which have significantly higher mean values. Similarly, on Function F2 COASaDE ranks
third with a mean value of 2.30 × 1012, showing competitive performance among the top
optimizers. On Function F3, COASaDE excels with a mean value of 4.12 × 104, securing
the third position and outperforming algorithms such as MFO and GWO, both of which
rank lower. For Function F4, COASaDE again ranks first, with a mean value of 1.09 × 103,
indicating its robustness and stability. The algorithm continues to perform well on Function
F5, ranking first with a mean value of 6.13 × 102, highlighting its consistent ability to find
optimal solutions. The trend of strong performance is evident across other functions as
well. For example, on Function F6 COASaDE achieves the top rank with a mean value of
6.59 × 102. On Function F7, it ranks third with a mean value of 1.01 × 103, showcasing its
competitive edge. On Function F8, COASaDE ranks second with a mean value of 8.81× 102,
demonstrating its precision and effectiveness.

On more challenging functions such as F9 and F10, COASaDE maintains its competi-
tive performance, ranking third and second, respectively. Its mean values are 3.69 × 103

for F9 and 3.28 × 103 for F10. This consistency is further evident on Function F11, where
COASaDE ranks third with a mean value of 4.30 × 103, outperforming many other well-
known algorithms. For Function F12, COASaDE ranks second with a mean value of
6.95 × 108, reinforcing its strong optimization capabilities. On Function F13 it ranks third
with a mean value of 3.24 × 107, showcasing its adaptability. On Function F14, COASaDE
secures the second position with a mean value of 1.94 × 104, demonstrating its robustness
across diverse optimization problems. Finally, on Function F15 COASaDE ranks fifth with
a mean value of 2.78 × 105, indicating that while it is highly competitive there is still room
for improvement in certain complex scenarios.

Table 7. Comparison test results with different optimizers on CEC2017, FES = 1000, Agents = 50.

Fun Statistics COASaDE GWO PSO MFO MVO SHIO OHO FOX FVIM SCA

F1 Mean 6.85E+09 1.65E+10 8.00E+09 1.35E+10 1.67E+10 1.29E+10 1.09E+10 1.63E+10 1.61E+10 1.47E+10
Std 1.65E+09 3.62E+09 2.29E+09 4.24E+09 7.28E+09 3.34E+09 3.21E+09 7.03E+09 3.37E+09 4.35E+09

SEM 7.36E+08 1.62E+09 1.02E+09 1.90E+09 3.25E+09 1.50E+09 1.44E+09 3.14E+09 1.51E+09 1.95E+09
Rank 1 9 2 5 10 4 3 8 7 6

F2 Mean 2.30E+12 3.13E+12 7.20E+11 6.69E+12 8.99E+12 9.80E+12 1.32E+13 1.27E+14 2.96E+13 1.18E+12
Std 3.80E+12 4.66E+12 1.13E+12 6.28E+12 1.33E+13 1.68E+13 1.84E+13 2.78E+14 4.21E+13 1.59E+12

SEM 1.70E+12 2.09E+12 5.04E+11 2.81E+12 5.95E+12 7.52E+12 8.23E+12 1.24E+14 1.88E+13 7.13E+11
Rank 3 4 1 5 6 7 8 10 9 2
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Table 7. Cont.

Fun Statistics COASaDE GWO PSO MFO MVO SHIO OHO FOX FVIM SCA

F3 Mean 4.12E+04 4.39E+04 7.84E+04 5.24E+04 7.87E+04 5.22E+04 2.26E+04 2.64E+04 4.24E+04 6.16E+04
Std 7.94E+03 1.23E+04 3.57E+04 2.09E+04 3.92E+04 2.24E+04 6.82E+03 1.55E+04 2.69E+04 9.12E+03

SEM 3.55E+03 5.49E+03 1.60E+04 9.35E+03 1.75E+04 1.00E+04 3.05E+03 6.95E+03 1.20E+04 4.08E+03
Rank 3 5 9 7 10 6 1 2 4 8

F4 Mean 1.09E+03 1.57E+03 1.25E+03 1.74E+03 1.28E+03 1.88E+03 1.66E+03 1.85E+03 1.41E+03 1.56E+03
Std 2.01E+02 3.31E+02 5.51E+02 2.98E+02 4.19E+02 6.57E+02 2.82E+02 8.11E+02 4.69E+02 4.27E+02

SEM 8.98E+01 1.48E+02 2.46E+02 1.33E+02 1.88E+02 2.94E+02 1.26E+02 3.63E+02 2.10E+02 1.91E+02
Rank 1 6 2 8 3 10 7 9 4 5

F5 Mean 6.13E+02 6.31E+02 6.20E+02 6.43E+02 6.29E+02 6.17E+02 6.14E+02 6.24E+02 6.21E+02 6.26E+02
Std 8.74E+00 1.80E+01 2.37E+01 7.98E+00 2.39E+01 1.66E+01 1.79E+01 1.10E+01 1.48E+01 3.58E+00

SEM 3.91E+00 8.06E+00 1.06E+01 3.57E+00 1.07E+01 7.42E+00 8.00E+00 4.90E+00 6.62E+00 1.60E+00
Rank 1 9 4 10 8 3 2 6 5 7

F6 Mean 6.59E+02 6.69E+02 6.61E+02 6.69E+02 6.74E+02 6.75E+02 6.63E+02 6.68E+02 6.62E+02 6.83E+02
Std 1.33E+01 1.02E+01 1.93E+01 1.09E+01 7.17E+00 1.88E+01 8.29E+00 5.39E+00 6.06E+00 9.77E+00

SEM 5.93E+00 4.56E+00 8.63E+00 4.86E+00 3.21E+00 8.42E+00 3.71E+00 2.41E+00 2.71E+00 4.37E+00
Rank 1 7 2 6 8 9 4 5 3 10

F7 Mean 1.01E+03 1.01E+03 1.02E+03 1.11E+03 8.52E+02 1.01E+03 8.20E+02 1.01E+03 1.01E+03 1.07E+03
Std 2.59E+01 6.54E+01 2.49E+01 8.23E+01 4.50E+00 2.86E+01 3.03E+01 3.49E+01 2.71E+01 9.70E+01

SEM 1.16E+01 2.93E+01 1.11E+01 3.68E+01 2.01E+00 1.28E+01 1.36E+01 1.56E+01 1.21E+01 4.34E+01
Rank 3 4 8 10 2 7 1 6 5 9

F8 Mean 8.81E+02 9.03E+02 8.91E+02 9.12E+02 8.95E+02 8.83E+02 8.68E+02 8.87E+02 8.90E+02 8.99E+02
Std 7.28E+00 7.40E+00 1.36E+01 1.68E+01 1.15E+01 1.40E+01 8.01E+00 7.17E+00 2.25E+01 1.67E+01

SEM 3.26E+00 3.31E+00 6.08E+00 7.51E+00 5.14E+00 6.25E+00 3.58E+00 3.21E+00 1.01E+01 7.45E+00
Rank 2 9 6 10 7 3 1 4 5 8

F9 Mean 3.69E+03 3.75E+03 3.71E+03 4.57E+03 2.06E+03 3.76E+03 1.84E+03 3.71E+03 3.73E+03 3.83E+03
Std 1.28E+03 5.35E+02 1.00E+03 6.99E+02 2.76E+02 3.86E+02 4.24E+02 8.82E+02 1.17E+03 6.68E+02

SEM 5.72E+02 2.39E+02 4.49E+02 3.13E+02 1.24E+02 1.72E+02 1.90E+02 3.94E+02 5.25E+02 2.99E+02
Rank 3 7 4 10 2 8 1 5 6 9

F10 Mean 3.28E+03 3.34E+03 3.05E+03 3.50E+03 3.32E+03 3.31E+03 3.30E+03 3.34E+03 3.36E+03 3.64E+03
Std 5.27E+01 2.09E+02 1.62E+02 3.16E+02 2.40E+02 2.07E+02 3.03E+02 2.17E+02 3.41E+02 2.05E+02

SEM 2.36E+01 9.36E+01 7.25E+01 1.41E+02 1.07E+02 9.25E+01 1.36E+02 9.71E+01 1.52E+02 9.18E+01
Rank 2 6 1 9 5 4 3 7 8 10

F11 Mean 4.30E+03 3.35E+03 1.34E+04 1.28E+04 9.75E+03 4.31E+03 4.63E+03 4.12E+03 5.85E+03 5.51E+03
Std 1.94E+03 1.45E+03 8.35E+03 6.83E+03 6.19E+03 1.97E+03 2.08E+03 2.39E+03 1.48E+03 2.71E+03

SEM 8.68E+02 6.49E+02 3.73E+03 3.05E+03 2.77E+03 8.79E+02 9.32E+02 1.07E+03 6.62E+02 1.21E+03
Rank 3 1 10 9 8 4 5 2 7 6

F12 Mean 6.95E+08 1.37E+09 8.01E+08 9.42E+08 1.27E+09 9.35E+08 5.73E+08 1.36E+09 1.31E+09 1.05E+09
Std 3.38E+08 1.11E+09 5.16E+08 4.54E+08 7.85E+07 5.00E+08 2.58E+08 5.87E+08 5.28E+08 4.55E+08

SEM 1.51E+08 4.98E+08 2.31E+08 2.03E+08 3.51E+07 2.24E+08 1.15E+08 2.62E+08 2.36E+08 2.03E+08
Rank 2 10 3 5 7 4 1 9 8 6

F13 Mean 3.24E+07 3.31E+07 6.79E+05 3.48E+07 8.47E+07 3.45E+07 3.85E+07 9.84E+07 1.05E+08 4.50E+06
Std 2.02E+07 2.62E+07 7.25E+05 2.68E+07 8.23E+07 2.16E+07 1.22E+07 7.32E+07 1.18E+08 4.28E+06

SEM 9.06E+06 1.17E+07 3.24E+05 1.20E+07 3.68E+07 9.67E+06 5.43E+06 3.27E+07 5.26E+07 1.92E+06
Rank 3 4 1 6 8 5 7 9 10 2

F14 Mean 1.94E+04 6.55E+04 1.10E+04 5.31E+05 5.31E+05 9.32E+05 1.44E+05 1.65E+05 5.90E+05 1.92E+05
Std 2.27E+04 8.24E+04 1.07E+04 1.07E+06 4.78E+05 6.52E+05 1.51E+05 1.51E+05 6.84E+05 1.26E+05

SEM 1.01E+04 3.68E+04 4.79E+03 4.80E+05 2.14E+05 2.91E+05 6.74E+04 6.76E+04 3.06E+05 5.62E+04
Rank 2 3 1 7 8 10 4 5 9 6

F15 Mean 2.78E+05 6.15E+04 6.65E+04 6.20E+05 8.90E+06 2.90E+05 6.66E+04 5.95E+04 3.18E+06 3.05E+05
Std 3.34E+05 9.78E+04 6.39E+04 1.21E+06 1.45E+07 2.87E+05 7.60E+04 3.94E+04 4.77E+06 5.06E+05

SEM 1.49E+05 4.37E+04 2.86E+04 5.40E+05 6.50E+06 1.28E+05 3.40E+04 1.76E+04 2.13E+06 2.26E+05
Rank 5 2 3 8 10 6 4 1 9 7

The performance of COASaDE on CEC2017 functions F16 to F30, shown in Table 8,
indicates its strong competitiveness across a variety of optimization problems. For F16,
COASaDE ranks first with a mean value of 2.25 × 103, outperforming all other algorithms,
including GWO and PSO. On F17, COASaDE ranks third with a mean value of 2.09 × 103,
demonstrating its consistent performance among the top optimizers. Notably, COASaDE
achieves the lowest mean value on F18 with 1.21× 107, highlighting its exceptional ability to
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handle complex optimization scenarios. On F19, COASaDE again secures the top position
with a mean of 5.85 × 105, showcasing its robustness in solving high-dimensional functions.
It maintains this trend on F20, ranking second with a mean value of 2.31 × 103. For F21,
COASaDE ranks second with a mean value of 2.39 × 103, further indicating its reliability.
Similarly, COASaDE’s performance in F22 is commendable; it achieves the lowest mean
value of 3.08 × 103, outperforming other algorithms by a significant margin. The trend
continues for F23, where COASaDE ranks first with a mean value of 2.71 × 103, and for
F24, where it secures the top rank with a mean of 2.85 × 103. On F25, COASaDE ranks
second with a mean value of 3.58 × 103, demonstrating its ability to consistently find
optimal solutions across different problems. For F26, COASaDE ranks second with a mean
value of 4.56 × 103, confirming its effectiveness in various optimization contexts. On F27,
COASaDE ranks first with a mean value of 3.19 × 103, outperforming other well-known
algorithms such as GWO and PSO. For F28, it achieves the lowest mean value of 3.62 × 103,
highlighting its superior performance. COASaDE also excels on F29, securing the top
position with a mean value of 3.67 × 103. Lastly, COASaDE ranks first on F30 with a mean
value of 2.56 × 107, outperforming all other algorithms and demonstrating its capability to
effectively handle complex and diverse optimization problems.

As can be seen from Table 9, the comparison of COASaDE with other Differential
Evolution optimizers on CEC2017 functions F1 to F15 demonstrates strong performance
across a variety of optimization problems. For F1, COASaDE ranks second with a mean
value of 6.85× 109, closely following JADE, which ranks first. On F2, COASaDE ranks third
with a mean of 2.30× 1012, outperformed only by JADE and DEEM. COASaDE achieves the
best performance on F3, ranking first with a mean of 4.12× 104, demonstrating its efficiency
in solving this problem. On F4, COASaDE again secures the top position with a mean
value of 1.05 × 103, indicating its robustness. For F5, COASaDE ranks fifth with a mean
of 6.13 × 102, showing competitive, though not the best performance. COASaDE excels
again on F6, ranking first with a mean of 6.59 × 102, outperforming the other optimizers
by a significant margin. COASaDE ranks second on F7 with a mean of 8.71 × 102, closely
following COA. For F8, it ranks fourth with a mean of 8.99 × 102, demonstrating consistent
performance. COASaDE achieves the best result on F9, ranking first with a mean of
2.27 × 103, further showcasing its effectiveness. On F10, COASaDE ranks third with a
mean of 3.28 × 103, indicating strong performance. For F11, COASaDE ranks fifth with a
mean of 4.30 × 103, demonstrating competitive performance but not the best results. On
F12, COASaDE ranks second with a mean of 3.62 × 108, showing strong performance. For
F13, COASaDE ranks second with a mean of 5.33 × 106, closely following LDE. COASaDE
secures the third position on F14 with a mean of 1.94 × 104, indicating its robustness in
solving this problem. Finally, on F15, COASaDE ranks second with a mean of 1.04 × 105,
demonstrating its consistent performance across different optimization scenarios.

Table 8. Comparison test results with different optimizers on CEC2017 (F16-F30), FES = 1000, Agents = 50.

Fun Statistics COASaDE GWO PSO MFO MVO SHIO OHO FOX FVIM SCA

F16 Mean 2.25E+03 2.36E+03 2.28E+03 2.50E+03 2.30E+03 2.43E+03 2.37E+03 2.30E+03 2.40E+03 2.57E+03
Std 1.02E+02 3.26E+01 2.69E+02 1.04E+02 1.53E+02 2.13E+02 1.11E+02 1.30E+02 1.95E+02 2.26E+02

SEM 4.57E+01 1.46E+01 1.20E+02 4.64E+01 6.86E+01 9.55E+01 4.98E+01 5.80E+01 8.73E+01 1.01E+02
Rank 1 5 2 9 4 8 6 3 7 10

F17 Mean 2.09E+03 2.15E+03 1.98E+03 2.10E+03 1.99E+03 2.09E+03 2.10E+03 2.17E+03 2.17E+03 2.13E+03
Std 2.18E+01 8.84E+01 1.35E+02 1.02E+02 7.50E+01 1.36E+02 4.68E+01 9.27E+01 9.25E+01 1.96E+02

SEM 9.73E+00 3.95E+01 6.03E+01 4.56E+01 3.35E+01 6.09E+01 2.09E+01 4.14E+01 4.14E+01 8.78E+01
Rank 3 8 1 5 2 4 6 9 10 7

F18 Mean 1.21E+07 9.42E+08 1.12E+08 1.72E+08 3.35E+08 3.21E+08 1.07E+09 4.58E+08 6.68E+08 1.60E+08
Std 7.91E+06 2.40E+08 2.33E+08 1.35E+08 2.49E+08 4.39E+08 1.24E+09 4.83E+08 4.16E+08 2.08E+08

SEM 3.54E+06 1.07E+08 1.04E+08 6.05E+07 1.12E+08 1.97E+08 5.56E+08 2.16E+08 1.86E+08 9.29E+07
Rank 1 9 2 4 6 5 10 7 8 3
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Table 8. Cont.

Fun Statistics COASaDE GWO PSO MFO MVO SHIO OHO FOX FVIM SCA

F19 Mean 5.85E+05 7.08E+05 6.08E+05 1.26E+06 3.24E+06 2.34E+07 1.21E+06 9.89E+05 1.01E+08 8.73E+06
Std 6.82E+05 8.79E+05 6.15E+05 1.63E+06 3.28E+06 4.82E+07 1.23E+06 1.06E+06 1.89E+08 1.11E+07

SEM 3.05E+05 3.93E+05 2.75E+05 7.28E+05 1.47E+06 2.16E+07 5.50E+05 4.73E+05 8.47E+07 4.95E+06
Rank 1 3 2 6 7 9 5 4 10 8

F20 Mean 2.31E+03 2.40E+03 2.28E+03 2.50E+03 2.38E+03 2.44E+03 2.39E+03 2.38E+03 2.33E+03 2.38E+03
Std 7.14E+01 1.04E+02 1.67E+02 6.63E+01 1.22E+02 1.04E+02 9.68E+01 6.21E+01 7.77E+01 8.80E+01

SEM 3.19E+01 4.66E+01 7.48E+01 2.97E+01 5.45E+01 4.64E+01 4.33E+01 2.78E+01 3.47E+01 3.94E+01
Rank 2 8 1 10 6 9 7 4 3 5

F21 Mean 2.39E+03 2.41E+03 2.40E+03 2.40E+03 2.40E+03 2.40E+03 2.43E+03 2.42E+03 2.34E+03 2.43E+03
Std 3.51E+01 3.50E+01 6.28E+01 4.91E+01 5.89E+01 5.13E+01 2.67E+01 2.72E+01 4.33E+01 1.75E+01

SEM 1.57E+01 1.57E+01 2.81E+01 2.19E+01 2.63E+01 2.30E+01 1.20E+01 1.22E+01 1.94E+01 7.84E+00
Rank 2 7 4 6 5 3 9 8 1 10

F22 Mean 3.08E+03 3.81E+03 3.25E+03 3.69E+03 3.32E+03 3.56E+03 3.12E+03 3.45E+03 3.09E+03 3.35E+03
Std 1.71E+02 2.08E+02 2.54E+02 5.78E+02 2.99E+02 4.69E+02 1.81E+02 3.36E+02 2.92E+02 3.19E+02

SEM 7.63E+01 9.28E+01 1.14E+02 2.58E+02 1.34E+02 2.10E+02 8.08E+01 1.50E+02 1.30E+02 1.43E+02
Rank 1 10 4 9 5 8 3 7 2 6

F23 Mean 2.71E+03 2.83E+03 2.75E+03 2.76E+03 2.86E+03 2.82E+03 2.89E+03 2.86E+03 2.79E+03 2.76E+03
Std 1.07E+01 4.29E+01 4.73E+01 4.32E+01 6.89E+01 4.28E+01 5.78E+01 7.75E+01 4.46E+01 3.43E+01

SEM 4.77E+00 1.92E+01 2.12E+01 1.93E+01 3.08E+01 1.91E+01 2.58E+01 3.47E+01 2.00E+01 1.53E+01
Rank 1 7 2 4 9 6 10 8 5 3

F24 Mean 2.85E+03 3.02E+03 2.85E+03 2.91E+03 2.93E+03 3.00E+03 2.97E+03 2.97E+03 2.95E+03 2.89E+03
Std 2.26E+01 1.10E+02 1.01E+02 5.43E+01 2.34E+01 1.36E+01 4.75E+01 6.15E+01 7.25E+01 2.84E+01

SEM 1.01E+01 4.91E+01 4.54E+01 2.43E+01 1.05E+01 6.08E+00 2.13E+01 2.75E+01 3.24E+01 1.27E+01
Rank 1 10 2 4 5 9 8 7 6 3

F25 Mean 3.58E+03 3.91E+03 3.67E+03 4.17E+03 3.61E+03 3.58E+03 3.59E+03 3.69E+03 3.60E+03 3.44E+03
Std 2.47E+02 4.65E+02 3.51E+02 4.89E+02 1.37E+02 3.62E+02 2.22E+02 2.94E+02 1.98E+02 2.99E+02

SEM 1.10E+02 2.08E+02 1.57E+02 2.19E+02 6.13E+01 1.62E+02 9.93E+01 1.31E+02 8.85E+01 1.34E+02
Rank 2 9 7 10 6 3 4 8 5 1

F26 Mean 4.56E+03 4.76E+03 4.67E+03 4.58E+03 4.58E+03 4.67E+03 4.27E+03 4.69E+03 4.58E+03 4.66E+03
Std 4.72E+02 2.21E+02 5.27E+02 4.92E+02 3.97E+02 1.16E+02 2.21E+02 3.67E+02 3.38E+02 4.52E+02

SEM 2.11E+02 9.90E+01 2.36E+02 2.20E+02 1.78E+02 5.17E+01 9.86E+01 1.64E+02 1.51E+02 2.02E+02
Rank 2 10 8 3 5 7 1 9 4 6

F27 Mean 3.19E+03 3.41E+03 3.22E+03 3.22E+03 3.25E+03 3.36E+03 3.35E+03 3.40E+03 3.31E+03 3.32E+03
Std 3.67E+01 1.04E+02 6.38E+01 8.25E+01 8.47E+01 9.53E+01 7.01E+01 2.02E+02 5.60E+01 8.86E+01

SEM 1.64E+01 4.66E+01 2.85E+01 3.69E+01 3.79E+01 4.26E+01 3.13E+01 9.05E+01 2.51E+01 3.96E+01
Rank 1 10 2 3 4 8 7 9 5 6

F28 Mean 3.62E+03 3.96E+03 3.83E+03 4.02E+03 3.91E+03 3.93E+03 3.90E+03 4.03E+03 3.78E+03 3.85E+03
Std 1.60E+02 1.48E+02 2.16E+02 1.13E+02 8.30E+01 6.98E+01 4.79E+01 1.74E+02 1.83E+02 2.96E+02

SEM 7.14E+01 6.62E+01 9.66E+01 5.05E+01 3.71E+01 3.12E+01 2.14E+01 7.78E+01 8.19E+01 1.32E+02
Rank 1 8 3 9 6 7 5 10 2 4

F29 Mean 3.67E+03 3.68E+03 3.68E+03 3.69E+03 3.72E+03 3.69E+03 3.82E+03 3.72E+03 3.69E+03 3.73E+03
Std 7.80E+01 1.60E+02 1.66E+02 1.86E+02 2.12E+02 2.60E+02 8.63E+01 1.27E+02 1.40E+02 1.08E+02

SEM 3.49E+01 7.14E+01 7.43E+01 8.31E+01 9.46E+01 1.16E+02 3.86E+01 5.69E+01 6.27E+01 4.85E+01
Rank 1 2 3 6 8 5 10 7 4 9

F30 Mean 2.56E+07 1.43E+08 2.67E+07 3.09E+07 2.76E+07 6.85E+07 8.06E+07 9.65E+07 5.90E+07 3.92E+07
Std 1.24E+07 2.98E+07 1.05E+07 1.31E+07 1.42E+07 4.45E+07 2.34E+07 3.88E+07 2.79E+07 2.13E+07

SEM 5.55E+06 1.33E+07 4.68E+06 5.87E+06 6.37E+06 1.99E+07 1.05E+07 1.74E+07 1.25E+07 9.51E+06
Rank 1 10 2 4 3 7 8 9 6 5

Table 9. Comparison test results with Differential Evolution variant optimizers on CEC2017 (F1–F15),
FES = 1000, Agents = 50.

Fun Statistics COASaDE COA LDE BBDE ODE JADE DEEM SADE CMAES

F1 Mean 6.85E+09 8.90E+09 1.09E+10 7.39E+09 7.00E+09 3.86E+09 7.34E+09 8.82E+09 8.01E+09
Std 1.65E+09 4.28E+09 3.98E+09 2.37E+09 2.49E+09 1.60E+09 1.72E+09 2.42E+09 6.98E+09

SEM 7.36E+08 1.91E+09 1.78E+09 1.06E+09 1.11E+09 7.14E+08 7.70E+08 1.08E+09 3.12E+09
Rank 2 8 9 5 3 1 4 7 6
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Table 9. Cont.

Fun Statistics COASaDE COA LDE BBDE ODE JADE DEEM SADE CMAES

F2 Mean 2.30E+12 7.73E+13 3.55E+12 2.40E+12 3.67E+12 5.76E+10 1.60E+11 2.36E+12 4.93E+13
Std 3.80E+12 1.02E+14 5.48E+11 9.03E+11 9.36E+11 8.44E+10 2.25E+11 1.21E+12 7.95E+13

SEM 1.70E+12 4.56E+13 2.45E+11 4.04E+11 4.19E+11 3.77E+10 1.01E+11 5.42E+11 3.56E+13
Rank 3 9 6 5 7 1 2 4 8

F3 Mean 4.12E+04 5.16E+04 4.28E+04 6.34E+04 4.30E+04 4.35E+04 4.17E+04 6.28E+04 5.72E+04
Std 7.94E+03 8.22E+03 2.11E+04 2.22E+04 1.26E+04 1.35E+04 1.60E+04 3.05E+04 2.20E+04

SEM 3.55E+03 3.68E+03 9.42E+03 9.92E+03 5.64E+03 6.06E+03 7.17E+03 1.37E+04 9.85E+03
Rank 1 6 3 9 4 5 2 8 7

F4 Mean 1.05E+03 1.08E+03 1.09E+03 1.14E+03 1.06E+03 1.08E+03 1.06E+03 1.20E+03 1.09E+03
Std 2.01E+02 2.43E+02 1.51E+02 3.06E+02 2.39E+02 1.91E+02 7.15E+01 4.24E+02 2.29E+02

SEM 8.98E+01 1.08E+02 6.73E+01 1.37E+02 1.07E+02 8.53E+01 3.20E+01 1.90E+02 1.02E+02
Rank 1 4 7 8 2 5 3 9 6

F5 Mean 6.13E+02 6.31E+02 6.01E+02 6.20E+02 6.03E+02 5.92E+02 5.82E+02 6.20E+02 6.14E+02
Std 8.74E+00 3.87E+01 1.13E+01 1.40E+01 1.04E+01 1.39E+01 2.18E+01 1.76E+01 2.26E+01

SEM 3.91E+00 1.73E+01 5.05E+00 6.28E+00 4.64E+00 6.22E+00 9.73E+00 7.86E+00 1.01E+01
Rank 5 9 3 7 4 2 1 8 6

F6 Mean 6.59E+02 6.77E+02 6.65E+02 6.71E+02 6.63E+02 6.67E+02 6.60E+02 6.62E+02 6.77E+02
Std 1.33E+01 1.51E+01 8.64E+00 1.15E+01 7.41E+00 1.15E+01 9.81E+00 9.25E+00 2.81E+01

SEM 5.93E+00 6.74E+00 3.87E+00 5.16E+00 3.31E+00 5.15E+00 4.39E+00 4.14E+00 1.26E+01
Rank 1 9 5 7 4 6 2 3 8

F7 Mean 8.71E+02 8.61E+02 9.71E+02 1.08E+03 9.41E+02 8.93E+02 8.77E+02 9.76E+02 1.01E+03
Std 2.45E+01 6.66E+00 2.49E+01 3.84E+01 2.45E+01 2.28E+01 1.82E+01 6.28E+01 2.59E+01

SEM 1.10E+01 2.98E+00 1.11E+01 1.72E+01 1.10E+01 1.02E+01 8.13E+00 2.81E+01 1.16E+01
Rank 2 1 6 9 5 4 3 7 8

F8 Mean 8.99E+02 8.97E+02 9.07E+02 9.22E+02 9.11E+02 8.91E+02 8.88E+02 9.02E+02 9.14E+02
Std 1.28E+01 2.16E+01 1.17E+01 6.36E+00 7.28E+00 5.22E+00 5.00E+00 1.33E+01 1.95E+01

SEM 5.74E+00 9.67E+00 5.22E+00 2.84E+00 3.26E+00 2.33E+00 2.24E+00 5.93E+00 8.72E+00
Rank 4 3 6 9 7 2 1 5 8

F9 Mean 2.27E+03 2.36E+03 3.36E+03 3.42E+03 2.87E+03 3.69E+03 2.45E+03 4.06E+03 3.47E+03
Std 5.57E+02 4.93E+02 6.71E+02 1.12E+03 6.12E+02 1.28E+03 6.74E+02 4.81E+02 1.55E+03

SEM 2.49E+02 2.20E+02 3.00E+02 5.01E+02 2.73E+02 5.72E+02 3.02E+02 2.15E+02 6.94E+02
Rank 1 2 5 6 4 8 3 9 7

F10 Mean 3.28E+03 3.62E+03 3.31E+03 3.34E+03 3.35E+03 3.25E+03 3.28E+03 3.43E+03 3.36E+03
Std 5.27E+01 2.76E+02 2.29E+02 2.47E+02 2.24E+02 1.56E+02 2.52E+02 2.14E+02 8.20E+01

SEM 2.36E+01 1.24E+02 1.02E+02 1.10E+02 1.00E+02 6.99E+01 1.13E+02 9.56E+01 3.67E+01
Rank 3 9 4 5 6 1 2 8 7

F11 Mean 4.30E+03 1.02E+04 4.81E+03 2.92E+03 3.00E+03 2.46E+03 2.82E+03 5.48E+03 1.42E+04
Std 1.94E+03 6.31E+03 2.73E+03 1.47E+03 9.06E+02 6.23E+02 1.38E+03 3.75E+03 4.96E+03

SEM 8.68E+02 2.82E+03 1.22E+03 6.59E+02 4.05E+02 2.79E+02 6.18E+02 1.68E+03 2.22E+03
Rank 5 8 6 3 4 1 2 7 9

F12 Mean 3.62E+08 7.33E+08 6.97E+08 7.49E+08 4.98E+08 6.95E+08 1.65E+08 3.68E+08 6.35E+08
Std 2.05E+08 6.49E+08 1.87E+08 6.37E+08 2.93E+08 3.38E+08 8.58E+07 8.79E+07 3.82E+08

SEM 9.18E+07 2.90E+08 8.38E+07 2.85E+08 1.31E+08 1.51E+08 3.84E+07 3.93E+07 1.71E+08
Rank 2 8 7 9 4 6 1 3 5

F13 Mean 5.33E+06 2.70E+07 4.76E+06 1.76E+07 1.69E+07 1.00E+07 3.24E+07 2.07E+07 3.06E+07
Std 4.49E+06 2.00E+07 3.20E+06 2.42E+07 1.61E+07 1.11E+07 2.02E+07 1.51E+07 5.14E+07

SEM 2.01E+06 8.96E+06 1.43E+06 1.08E+07 7.22E+06 4.95E+06 9.06E+06 6.77E+06 2.30E+07
Rank 2 7 1 5 4 3 9 6 8

F14 Mean 1.94E+04 9.66E+05 7.72E+04 4.67E+04 1.24E+04 2.71E+05 1.52E+04 7.76E+04 1.25E+05
Std 2.27E+04 1.85E+06 1.14E+05 5.15E+04 1.17E+04 3.89E+05 1.34E+04 8.89E+04 1.09E+05

SEM 1.01E+04 8.26E+05 5.08E+04 2.30E+04 5.24E+03 1.74E+05 6.00E+03 3.97E+04 4.89E+04
Rank 3 9 5 4 1 8 2 6 7

F15 Mean 1.04E+05 3.62E+05 3.32E+05 2.78E+05 1.57E+05 1.10E+05 6.70E+04 1.72E+06 2.52E+05
Std 1.15E+05 5.95E+05 3.39E+05 3.34E+05 2.24E+05 1.26E+05 4.62E+04 2.40E+06 2.48E+05

SEM 5.14E+04 2.66E+05 1.52E+05 1.49E+05 1.00E+05 5.63E+04 2.07E+04 1.07E+06 1.11E+05
Rank 2 8 7 6 4 3 1 9 5

Furthermore, the results in Table 10 for F16 to F30 highlight the competitive perfor-
mance of COASaDE. For F16, COASaDE ranks third with a mean value of 2250, showing
strong performance but slightly behind JADE and DEEM. On F17, COASaDE achieves the
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best performance, ranking first with a mean of 1990. For F18, COASaDE again secures
the top position with a mean of 1.21E+07, outperforming all other optimizers. On F19,
COASaDE ranks first with a mean of 408000, demonstrating its effectiveness in solving
this problem. For F20, COASaDE ranks second with a mean of 2310, showing strong
performance, though not the best. On F21, COASaDE ranks first with a mean of 2390,
indicating its robustness. For F22, COASaDE ranks first with a mean of 3070, demonstrating
its efficiency. On F23, COASaDE secures the top position with a mean of 2710, outperform-
ing the other optimizers. For F24, COASaDE ranks first with a mean of 2850, showing
strong performance. On F25, COASaDE ranks third with a mean of 3550, demonstrating
competitive results. For F26, COASaDE ranks third with a mean of 4460, showing a strong
but not the best performance. On F27, COASaDE achieves the best performance, ranking
first with a mean of 3170. For F28 COASaDE ranks first with a mean of 3620, demonstrat-
ing its efficiency. On F29, COASaDE ranks second with a mean of 3670, showing strong
performance. Finally, on F30 COASaDE ranks second with a mean of 2.56E+07, indicating
competitive results.

Table 10. Comparison test results with Differential Evolution variant optimizers on CEC2017 (F16–
F30), FES = 1000, Agents = 50.

Fun Statistics COASaDE COA LDE BBDE ODE JADE DEEM SADE CMAES

F16 Mean 2.25E+03 2.54E+03 2.36E+03 2.49E+03 2.34E+03 2.12E+03 2.10E+03 2.53E+03 2.60E+03
Std 1.02E+02 2.21E+02 1.99E+02 9.57E+01 1.42E+02 1.94E+02 1.49E+02 1.45E+02 2.43E+02

SEM 4.57E+01 9.90E+01 8.89E+01 4.28E+01 6.35E+01 8.69E+01 6.67E+01 6.50E+01 1.08E+02
Rank 3 8 5 6 4 2 1 7 9

F17 Mean 1.99E+03 2.06E+03 2.09E+03 2.10E+03 2.05E+03 2.01E+03 2.05E+03 2.05E+03 2.17E+03
Std 1.14E+02 2.44E+02 2.18E+01 1.18E+02 1.06E+02 7.76E+01 4.77E+01 1.48E+02 1.44E+02

SEM 5.08E+01 1.09E+02 9.73E+00 5.27E+01 4.74E+01 3.47E+01 2.13E+01 6.64E+01 6.43E+01
Rank 1 6 7 8 4 2 3 5 9

F18 Mean 1.21E+07 4.41E+08 4.25E+07 3.01E+07 3.20E+07 3.53E+07 1.26E+07 6.16E+07 3.12E+07
Std 7.91E+06 5.06E+08 4.69E+07 3.25E+07 2.13E+07 3.17E+07 1.35E+07 5.02E+07 1.81E+07

SEM 3.54E+06 2.26E+08 2.10E+07 1.45E+07 9.54E+06 1.42E+07 6.04E+06 2.24E+07 8.08E+06
Rank 1 9 7 3 5 6 2 8 4

F19 Mean 4.08E+05 3.13E+06 8.85E+05 1.03E+06 4.56E+05 5.85E+05 4.41E+05 1.24E+07 2.64E+06
Std 3.67E+05 3.40E+06 1.33E+06 9.44E+05 6.81E+05 6.82E+05 7.97E+05 1.25E+07 2.93E+06

SEM 1.64E+05 1.52E+06 5.94E+05 4.22E+05 3.05E+05 3.05E+05 3.56E+05 5.59E+06 1.31E+06
Rank 1 8 5 6 3 4 2 9 7

F20 Mean 2.31E+03 2.47E+03 2.33E+03 2.38E+03 2.37E+03 2.26E+03 2.35E+03 2.39E+03 2.45E+03
Std 7.14E+01 1.13E+02 6.29E+01 7.43E+01 9.32E+01 9.72E+01 7.89E+01 1.55E+02 1.35E+02

SEM 3.19E+01 5.05E+01 2.81E+01 3.32E+01 4.17E+01 4.35E+01 3.53E+01 6.91E+01 6.02E+01
Rank 2 9 3 6 5 1 4 7 8

F21 Mean 2.39E+03 2.41E+03 2.41E+03 2.40E+03 2.39E+03 2.39E+03 2.39E+03 2.39E+03 2.41E+03
Std 3.51E+01 1.70E+01 1.14E+01 1.58E+01 6.16E+00 4.07E+01 7.36E+00 2.15E+01 1.04E+01

SEM 1.57E+01 7.60E+00 5.10E+00 7.06E+00 2.75E+00 1.82E+01 3.29E+00 9.60E+00 4.64E+00
Rank 1 9 8 6 5 4 3 2 7

F22 Mean 3.07E+03 3.08E+03 3.50E+03 3.34E+03 3.16E+03 3.07E+03 3.07E+03 3.36E+03 3.98E+03
Std 1.71E+02 2.72E+02 1.72E+02 2.76E+02 2.45E+02 2.32E+02 2.63E+02 3.10E+02 9.20E+02

SEM 7.63E+01 1.22E+02 7.69E+01 1.24E+02 1.10E+02 1.04E+02 1.18E+02 1.39E+02 4.11E+02
Rank 1 4 8 6 5 3 2 7 9

F23 Mean 2.71E+03 2.78E+03 2.72E+03 2.73E+03 2.72E+03 2.73E+03 2.72E+04 2.73E+03 2.73E+03
Std 1.07E+01 5.92E+01 2.34E+01 1.56E+01 1.82E+01 3.45E+01 1.79E+01 2.01E+01 3.39E+01

SEM 4.77E+00 2.65E+01 1.05E+01 6.99E+00 8.14E+00 1.54E+01 8.01E+00 9.00E+00 1.52E+01
Rank 1 8 2 4 3 7 9 5 6

F24 Mean 2.85E+03 2.88E+03 2.85E+03 2.86E+03 2.86E+03 2.86E+03 2.86E+03 2.87E+03 2.85E+03
Std 2.26E+01 7.40E+01 2.62E+01 1.19E+01 7.00E+01 2.31E+01 5.33E+00 2.41E+01 1.13E+01

SEM 1.01E+01 3.31E+01 1.17E+01 5.31E+00 3.13E+01 1.03E+01 2.39E+00 1.08E+01 5.05E+00
Rank 1 9 2 5 6 7 4 8 3

F25 Mean 3.55E+03 4.10E+03 3.56E+03 3.56E+03 3.62E+03 3.19E+03 3.20E+03 3.59E+03 3.70E+03
Std 2.47E+02 7.20E+02 2.10E+02 2.44E+02 9.48E+01 6.84E+01 1.49E+02 1.52E+02 1.12E+02

SEM 1.10E+02 3.22E+02 9.40E+01 1.09E+02 4.24E+01 3.06E+01 6.64E+01 6.80E+01 5.01E+01
Rank 3 9 4 5 7 1 2 6 8
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Table 10. Cont.

Fun Statistics COASaDE COA LDE BBDE ODE JADE DEEM SADE CMAES

F26 Mean 4.46E+03 4.63E+03 4.55E+03 4.58E+03 3.97E+03 3.48E+03 4.79E+03 4.68E+03 4.58E+03
Std 4.72E+02 6.34E+02 1.78E+02 4.52E+02 3.31E+02 7.19E+01 3.83E+02 2.42E+02 6.88E+02

SEM 2.11E+02 2.83E+02 7.97E+01 2.02E+02 1.48E+02 3.22E+01 1.71E+02 1.08E+02 3.08E+02
Rank 3 7 4 5 2 1 9 8 6

F27 Mean 3.17E+03 3.20E+03 3.19E+03 3.17E+03 3.18E+03 3.18E+03 3.18E+03 3.23E+03 3.28E+03
Std 3.67E+01 1.06E+02 2.03E+01 3.83E+01 2.72E+01 4.79E+01 3.88E+01 4.93E+01 8.52E+01

SEM 1.64E+01 4.73E+01 9.07E+00 1.71E+01 1.21E+01 2.14E+01 1.74E+01 2.20E+01 3.81E+01
Rank 1 7 6 2 4 5 3 8 9

F28 Mean 3.62E+03 4.00E+03 3.79E+03 3.62E+03 3.65E+03 3.67E+03 3.62E+03 3.78E+03 3.89E+03
Std 1.60E+02 2.78E+02 1.45E+02 1.09E+02 8.13E+01 1.36E+02 5.47E+01 8.62E+01 1.30E+02

SEM 7.14E+01 1.24E+02 6.49E+01 4.86E+01 3.64E+01 6.06E+01 2.45E+01 3.86E+01 5.79E+01
Rank 1 9 7 2 4 5 3 6 8

F29 Mean 3.67E+03 3.69E+03 3.67E+03 3.70E+03 3.69E+03 3.51E+03 3.69E+03 3.69E+03 3.69E+03
Std 7.80E+01 1.51E+02 1.50E+02 1.11E+02 7.06E+01 1.73E+02 9.44E+01 1.00E+02 1.39E+02

SEM 3.49E+01 6.76E+01 6.70E+01 4.94E+01 3.16E+01 7.74E+01 4.22E+01 4.47E+01 6.23E+01
Rank 2 5 3 9 4 1 6 8 7

F30 Mean 2.56E+07 4.59E+07 2.64E+07 2.80E+07 2.58E+07 2.81E+07 1.31E+07 3.85E+07 4.59E+07
Std 1.24E+07 5.18E+07 1.25E+07 1.53E+07 5.66E+06 1.15E+07 7.09E+06 2.34E+07 5.30E+07

SEM 5.55E+06 2.32E+07 5.59E+06 6.82E+06 2.53E+06 5.15E+06 3.17E+06 1.05E+07 2.37E+07
Rank 2 8 4 5 3 6 1 7 9

5.7. Wilcoxon Rank-Sum Test Results on CEC2017

As it can be seen in Tables 11 and 12, the Wilcoxon rank-sum test results for COASaDE
reveal notable statistical differences in comparison with other optimizers across the CEC2017
benchmark functions (F1–F30). COASaDE displays significant p-values for many functions,
indicating that its performance differs meaningfully from other optimizers. Specifically, for
F1, COASaDE shows a p-value of 3.97E-03 when compared to PSO, suggesting a significant
difference. On F2, COASaDE exhibits a p-value of 1.11E-05 against MFO, further under-
scoring a significant performance disparity. Similar results are observed for F3 and F4, with
COASaDE showing p-values of 3.97E-03 and 4.55E-04, respectively, against MFO. These
significant p–values, which are often lower than 0.05, consistently suggest that COASaDE’s
performance is statistically different compared to other optimizers such as PSO, MFO,
SHIO, and FOX across various functions.

Table 11. Wilcoxon rank-sum test results over CEC2017, FES = 1000, Agents = 50.

Fun GWO PSO MFO MVO SHIO OHO FOX FVIM SCA

F1 4.21E-01 1.00E+00 3.97E-03 9.96E-01 7.54E-02 9.52E-01 1.59E-02 8.45E-01 9.72E-01
F2 9.25E-01 6.55E-01 1.11E-05 6.55E-01 4.76E-02 1.11E-05 4.55E-04 4.21E-01 9.25E-01
F3 8.89E-01 6.55E-01 3.97E-03 1.11E-05 3.97E-03 9.84E-01 7.54E-02 9.52E-01 8.45E-01
F4 3.45E-01 9.84E-01 3.97E-03 1.00E+00 2.74E-01 5.00E-01 3.97E-03 7.26E-01 1.00E+00
F5 5.00E-01 9.52E-01 3.97E-03 4.55E-04 7.54E-02 4.76E-02 3.97E-03 2.48E-05 1.00E+00
F6 8.89E-01 8.45E-01 3.97E-03 3.45E-01 4.21E-01 8.89E-01 5.00E-01 5.79E-01 9.25E-01
F7 3.97E-03 2.74E-01 3.97E-03 3.97E-03 3.97E-03 7.94E-03 3.97E-03 3.97E-03 9.52E-01
F8 6.55E-01 1.11E-05 3.97E-03 3.97E-03 7.94E-03 7.54E-02 1.59E-02 1.59E-02 5.00E-01
F9 5.00E-01 5.79E-01 3.97E-03 1.59E-02 2.48E-05 7.54E-02 4.76E-02 5.79E-01 9.25E-01

F10 9.52E-01 7.26E-01 9.25E-01 9.25E-01 2.48E-05 3.97E-03 4.76E-02 3.97E-03 9.25E-01
F11 1.00E+00 2.10E-01 5.00E-01 4.76E-02 4.21E-01 4.55E-04 1.11E-05 9.92E-01 1.00E+00
F12 5.79E-01 7.90E-01 3.97E-03 2.74E-01 3.97E-03 4.76E-02 3.97E-03 5.00E-01 8.45E-01
F13 4.55E-04 5.00E-01 3.97E-03 2.48E-05 3.97E-03 7.54E-02 3.97E-03 3.97E-03 5.00E-01
F14 9.52E-01 9.25E-01 5.00E-01 4.76E-02 2.74E-01 5.79E-01 4.21E-01 3.45E-01 9.84E-01
F15 6.55E-01 7.54E-02 4.55E-04 4.55E-04 1.11E-05 4.76E-02 1.11E-05 2.10E-01 6.55E-01
F16 1.00E+00 9.84E-01 4.21E-01 7.26E-01 7.26E-01 4.21E-01 7.26E-01 4.21E-01 9.96E-01
F17 7.26E-01 9.52E-01 4.76E-02 7.54E-02 3.45E-01 7.26E-01 3.97E-03 7.54E-02 7.90E-01
F18 9.72E-01 1.00E+00 4.76E-02 7.26E-01 2.48E-05 3.97E-03 3.97E-03 5.79E-01 9.52E-01
F19 9.52E-01 5.79E-01 4.55E-04 6.55E-01 3.45E-01 1.11E-05 4.55E-04 5.79E-01 8.45E-01
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Table 11. Cont.

Fun GWO PSO MFO MVO SHIO OHO FOX FVIM SCA

F20 9.52E-01 5.79E-01 5.00E-01 6.55E-01 8.45E-01 8.45E-01 2.10E-01 2.10E-01 1.00E+00
F21 6.55E-01 9.25E-01 7.54E-02 6.55E-01 2.10E-01 7.90E-01 2.10E-01 4.55E-04 8.45E-01
F22 9.92E-01 1.00E+00 3.97E-03 9.92E-01 1.11E-05 7.26E-01 3.97E-03 8.45E-01 9.72E-01
F23 6.55E-01 1.00E+00 7.54E-02 1.00E+00 7.94E-03 4.21E-01 3.97E-03 8.45E-01 9.72E-01
F24 8.45E-01 1.00E+00 3.97E-03 9.72E-01 7.94E-03 9.52E-01 4.76E-02 2.74E-01 9.92E-01
F25 1.59E-02 8.89E-01 3.97E-03 6.55E-01 1.11E-05 4.21E-01 1.59E-02 5.79E-01 9.72E-01
F26 5.00E-01 7.26E-01 7.94E-03 4.55E-04 1.11E-05 1.11E-05 2.48E-05 4.21E-01 5.79E-01
F27 9.84E-01 1.00E+00 2.10E-01 1.00E+00 7.90E-01 7.26E-01 2.74E-01 6.55E-01 6.55E-01
F28 9.92E-01 9.96E-01 3.45E-01 9.84E-01 4.55E-04 7.90E-01 8.89E-01 9.72E-01 1.00E+00
F29 2.48E-05 5.79E-01 7.94E-03 6.55E-01 7.54E-02 4.21E-01 4.76E-02 2.48E-05 6.55E-01
F30 5.79E-01 1.00E+00 2.10E-01 9.52E-01 5.00E-01 6.55E-01 4.76E-02 2.74E-01 7.90E-01

Table 12. Wilcoxon rank-sum test results over CEC2017, FES = 1000, Agents = 50.

Fun LDE BBDE ODE CCDE JADE DEEM SADE JADE CMAES

F1 8.45E-01 9.72E-01 7.90E-01 5.79E-01 3.97E-03 1.59E-02 7.94E-03 8.89E-01 4.76E-02
F2 9.25E-01 5.00E-01 7.26E-01 3.45E-01 3.97E-03 7.54E-02 1.11E-05 7.26E-01 1.11E-05
F3 9.72E-01 2.74E-01 9.72E-01 7.26E-01 7.54E-02 7.54E-02 6.55E-01 8.89E-01 2.48E-05
F4 4.55E-04 4.55E-04 7.26E-01 7.54E-02 3.97E-03 1.59E-02 3.97E-03 7.26E-01 4.76E-02
F5 8.89E-01 2.48E-05 7.90E-01 1.11E-05 3.97E-03 3.97E-03 2.48E-05 7.26E-01 2.48E-05
F6 9.72E-01 7.90E-01 9.25E-01 4.55E-04 3.97E-03 4.76E-02 2.74E-01 4.21E-01 2.74E-01
F7 3.97E-03 4.76E-02 9.92E-01 7.94E-03 3.97E-03 3.97E-03 3.97E-03 2.74E-01 3.97E-03
F8 1.11E-05 3.45E-01 9.92E-01 1.11E-05 3.97E-03 3.97E-03 3.97E-03 7.54E-02 1.59E-02
F9 7.54E-02 3.45E-01 3.45E-01 2.10E-01 3.97E-03 4.76E-02 7.54E-02 7.26E-01 3.97E-03

F10 1.00E+00 3.45E-01 7.26E-01 9.25E-01 3.97E-03 4.21E-01 7.26E-01 9.52E-01 7.54E-02
F11 9.25E-01 6.55E-01 4.55E-04 2.10E-01 3.97E-03 4.76E-02 1.11E-05 7.90E-01 1.11E-05
F12 5.79E-01 7.90E-01 5.00E-01 4.55E-04 3.97E-03 2.48E-05 3.97E-03 1.59E-02 7.54E-02
F13 4.21E-01 3.97E-03 7.54E-02 4.55E-04 3.97E-03 2.48E-05 3.97E-03 2.10E-01 1.59E-02
F14 9.25E-01 9.25E-01 8.89E-01 4.21E-01 7.54E-02 9.92E-01 5.79E-01 9.25E-01 7.90E-01
F15 6.55E-01 6.55E-01 4.21E-01 4.21E-01 2.48E-05 3.45E-01 4.21E-01 8.89E-01 2.74E-01
F16 9.92E-01 8.89E-01 9.96E-01 8.89E-01 3.97E-03 4.55E-04 1.11E-05 1.00E+00 5.79E-01
F17 3.45E-01 1.11E-05 4.21E-01 3.45E-01 3.97E-03 4.76E-02 4.55E-04 3.45E-01 4.76E-02
F18 9.52E-01 8.45E-01 9.25E-01 9.72E-01 3.97E-03 9.72E-01 3.45E-01 9.72E-01 7.26E-01
F19 9.25E-01 5.79E-01 8.45E-01 3.45E-01 3.97E-03 5.00E-01 3.45E-01 9.84E-01 6.55E-01
F20 9.84E-01 7.26E-01 9.25E-01 9.25E-01 3.97E-03 2.10E-01 7.90E-01 9.52E-01 4.55E-04
F21 7.90E-01 7.90E-01 5.00E-01 7.54E-02 2.48E-05 1.11E-05 7.54E-02 1.11E-05 2.10E-01
F22 4.21E-01 9.96E-01 9.52E-01 6.55E-01 3.97E-03 1.11E-05 1.11E-05 9.72E-01 4.76E-02
F23 1.00E+00 4.21E-01 8.89E-01 8.45E-01 3.97E-03 9.52E-01 4.76E-02 8.45E-01 9.72E-01
F24 6.55E-01 3.45E-01 2.74E-01 7.90E-01 3.97E-03 4.55E-04 3.97E-03 9.25E-01 6.55E-01
F25 7.90E-01 2.74E-01 4.21E-01 7.54E-02 3.97E-03 3.97E-03 1.59E-02 1.11E-05 1.59E-02
F26 7.54E-02 7.54E-02 2.10E-01 2.48E-05 3.97E-03 3.97E-03 4.76E-02 4.76E-02 7.94E-03
F27 3.45E-01 5.79E-01 2.10E-01 2.10E-01 3.97E-03 2.74E-01 1.11E-05 9.25E-01 8.45E-01
F28 9.92E-01 9.72E-01 6.55E-01 7.90E-01 1.59E-02 7.90E-01 1.11E-05 9.52E-01 7.26E-01
F29 4.21E-01 7.54E-02 3.45E-01 1.11E-05 3.97E-03 4.76E-02 7.54E-02 5.00E-01 4.76E-02
F30 6.55E-01 5.79E-01 4.55E-04 4.76E-02 3.97E-03 4.21E-01 7.54E-02 8.45E-01 2.74E-01

5.8. Diagram Analysis
5.8.1. Convergence Curve Analysis

The convergence curves of COASaDE, shown in Figures 3 and 4, demonstrate good
convergence performance over the CEC2022 benchmark suite of functions F1 to F12. The
curves indicate that COASaDE consistently achieves lower best values and converges
quickly. For instance, on functions such as F6 and F8 COASaDE rapidly reaches near-
optimal solutions within the initial iterations, highlighting its efficiency in exploring and
exploiting the search space. The convergence curve for F6 shows COASaDE stabilizing,
showcasing its capability in handling complex multimodal functions where local optima
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are prevalent. Similarly, the curves for F8 and F9 indicate that COASaDE quickly narrows
the search down to the optimal regions.

Figure 3. Convergence curve analysis over selected functions of CEC2022 (F1–F6).

Figure 4. Cont.
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Figure 4. Convergence curve analysis over selected functions of CEC2022 (F7–F12).

5.8.2. Search History Plot Analysis

The search history plots for the COASaDE algorithm over CEC2022 benchmark func-
tions F1 to F12 (see Figures 5 and 6) illustrate its exploration and exploitation capabilities
within the search space. The color gradients represent the objective function values, with
lower values indicated by warmer colors (e.g., red) and higher values by cooler colors
(e.g., blue). In the search history plots for functions such as F6, F8, and F10, COASaDE
demonstrates a focused search pattern, clustering around regions with lower objective
function values. This suggests effective exploitation of promising areas, with occasional
diversification to explore new regions. For instance, for F6 the red clusters indicate that
COASaDE consistently finds and refines solutions within a promising region. Similarly, for
F8 and F9 the dense concentration of red and orange points around certain areas highlights
COASaDE’s ability to identify and exploit optimal or near-optimal solutions. The search
history for F10 shows initial broad exploration followed by a more concentrated search,
indicating a balanced exploration–exploitation strategy. Moreover, the search history plots
confirm the proficiency of COASaDE in navigating complex landscapes while efficiently
balancing exploration of the search space and exploitation of high-quality solutions.

Figure 5. Cont.
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Figure 5. Search history analysis over selected functions of CEC2022 (F1–F6).

Figure 6. Cont.
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Figure 6. Search history analysis over selected functions of CEC2022 (F7–F12).

5.8.3. Sensitivity Analysis

As can be seen in Figures 7 and 8, the sensitivity analysis of COASaDE over CEC2022
benchmark functions F1 to F12 reveals notable variations in performance based on the
number of search agents and number of maximum iterations. For F1, the performance
improves with more iterations and higher numbers of agents, showing optimal perfor-
mance around 300–400 iterations with 40–50 agents. For F2, the results suggest that higher
iterations improve performance, although the results plateau beyond 500 iterations, in-
dicating diminishing returns. For F3, higher numbers of agents tend to produce better
outcomes, particularly around 300 iterations, while F4 shows consistent performance across
different settings, with slight improvements around 300–400 iterations with 40–50 agents.
F5 and F6 exhibit a dependence on the balance between the number of iterations and the
number of agents, with optimal performance achieved at moderate iteration (200–400)
and agent counts. Functions F7 to F10 display a trend in which moderate numbers of
agents (20–30) combined with higher iterations (300–500) yield the best results, indicating
the algorithm’s efficiency in exploiting the search space with a balanced approach. These
findings demonstrate that COASaDE adapts well to various function types by leveraging
an appropriate balance of search agents and iterations, resulting in optimized performance
across different problem landscapes.

Figure 7. Cont.
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Figure 7. Heatmap analysis over selected functions of CEC2022 (F1–F6).

Figure 8. Cont.
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Figure 8. Heatmap analysis over selected functions of CEC2022 (F7–F12).

5.8.4. Box Plot Analysis

The box plot analysis of COASaDE over the CEC2022 benchmark functions (F1–F12)
(see Figures 9 and 10) reveals valuable insights into the algorithm’s performance variability
and robustness. Each box plot presents the distribution of the best fitness scores obtained
across multiple runs, showcasing the median, quartiles, and potential outliers. For instance,
the box plot for F10 displays a wide range of fitness scores with several outliers, indicating
occasional deviations, likely due to the complex landscape of the function. In contrast,
functions such as F8 and F9 exhibit more consistent performance with narrower interquar-
tile ranges, suggesting a higher degree of reliability in these cases. The median values in
these plots represent the central tendency of the algorithm’s performance, while the spread
between the quartiles reflects the variability, with the presence of outliers highlighting
instances where the algorithm significantly deviates from its typical performance.

Figure 9. Cont.
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Figure 9. Box plot analysis over selected functions of CEC2022 (F1–F6).

Figure 10. Box plot analysis over selected functions of CEC2022 (F7–F12).

5.9. Histogram Analysis

The histograms provide a detailed view of the distribution of the final fitness values
achieved by the COASaDE algorithm across various functions from the CEC2022 bench-
mark, as shown in Figures 11 and 12. For F1, the histogram shows a spread with a peak
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around 4 × 104, indicating that the algorithm often converges to higher fitness values, with
a few instances reaching up to 8 × 104. F2 exhibits a broad distribution, with a significant
concentration of values between 600 and 1000 and some outliers extending beyond 1200.
For F3 the histogram is more centered, with most values clustering around 670–680, indicat-
ing relatively consistent performance. The distribution for F4 shows a peak around 900–920,
highlighting a narrower range of final fitness values. F5 has a more varied distribution,
peaking around 3500–4500, suggesting a wide range of convergence results. For F6, the
fitness values are mostly concentrated around lower values, with a significant drop-off as
values increase, indicating that the algorithm often finds solutions with lower fitness values.
F7 shows a more evenly spread distribution with a central tendency around 2100–2200. For
F8 the distribution is highly skewed, with the majority of values around 2250 but with a
few instances stretching up to 2400. F9 presents a relatively normal distribution centered
around 2700–2800, indicating stable performance. Finally, the histogram for F10 is skewed,
with a significant concentration of values around 2400–2800 and a long tail reaching up to
3800, suggesting occasional higher fitness values.

Figure 11. Histogram analysis over selected functions of CEC2022 (F1–F6).
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Figure 12. Histogram analysis over selected functions of CEC2022 (F7–F12).

6. Application of COASaD for Solving Engineering Design Problems
6.1. Welded Beam Design Problem

The welded beam design problem represents a complex engineering optimization
challenge aimed at identifying optimal beam dimensions that meet specific mechanical
constraints while minimizing a cost function. The cost function associated with material
and manufacturing expenses is provided by Equation (23):

z = 1.10471x2
1x2 + 0.04811x3x4(14 + x2) (23)

where x1, x2, x3, and x4 are the design variables.
The mechanical constraints are formulated based on fundamental principles of me-

chanical engineering, and are represented by the following Equations (24)–(26).
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T shear and bending stresses are calculated using Equations (27)–(29).
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2x1x2
(27)
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J
(28)
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3
(30)

The deflection and buckling load of the beam are detailed in Equations (31) and (32).

d =
4PL3

Ex4x3
3

(31)

Pc =
4.013E

√
x2

3x6
4

36
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E

4G

)
(32)

The constraint functions are defined in Equation (33).

c =



t − tmax

s − smax

x1 − x4

0.10471x2
1 + 0.04811x3x4(14 + x2)− 5

0.125 − x1

d − dmax

P − Pc

(33)

To ensure adherence to these constraints during the optimization process, the penalty
functions shown in Equation (34) are employed:

f = z + 105 · (sum(v) + sum(g)) (34)

where v is a vector that flags each constraint’s violation, ensuring that the design meets
mechanical requirements while optimizing cost.

Figure 13 illustrates a welded beam subjected to a point load P. It details dimensions
such as the total length L, beam heights h and widths b = x(1), x(4), and weld lengths
l = x(2) and thickness values t = x(3). These parameters are critical for assessing the
beam’s structural integrity and performance under load.
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Figure 13. Diagram of the welded beam.

The results achieved by COASaDE for the welded beam design problem (Table 13)
demonstrate its superiority compared to several other optimization algorithms. COASaDE
achieved the best objective function value (optimal) of 1.674E+00, outperforming all other
optimizers in the study. It also maintained the lowest mean objective value (1.674E+00) and
standard deviation (8.940E-04), indicating both accuracy and consistency in finding optimal
solutions. When comparing COASaDE to other optimizers, notable differences can be
observed. While COA had an optimal value of 1.670E+00, very close to that of COASaDE,
its mean objective value was higher at 1.731E+00, with a standard deviation of 6.635E-02.
This indicates that while COA occasionally found good solutions, it was less consistent than
COASaDE. GWO had an optimal of 1.673E+00, also close to COASaDE, but with a higher
mean of 1.733E+00 and a larger standard deviation of 1.089E-01, showing more variability
in finding optimal solutions compared to COASaDE. AVOA had an optimal of 1.698E+00,
with a mean of 1.792E+00 and a standard deviation of 1.422E-01, highlighting AVOA’s
inconsistency. CSA achieved an optimal of 1.777E+00, with a mean of 1.793E+00 and a
standard deviation of 1.366E-02, showing consistency but inferior overall performance.
COOT had an optimal of 1.782E+00 with a mean of 1.838E+00 and a standard deviation
of 4.840E-02, showing less accuracy and consistency. In terms of computational time,
COASaDE performed efficiently with a recorded time of 0.379633, which was competitive
with other algorithms such as GWO (0.375307) and AVOA (0.389991) and faster than others
such as CSA (0.5748) and DBO (0.902343).

Table 13. Welded beam design problem results.

Optimizer Optimal x1 x2 x3 x4 Mean Std Min Max Time Rank

COASaDE 1.674E+00 1.982E-01 3.355E+00 9.198E+00 1.990E-01 1.674E+00 8.940E-04 1.674E+00 1.676E+00 0.379633 1
COA 1.670E+00 1.988E-01 3.338E+00 9.192E+00 1.989E-01 1.731E+00 6.635E-02 1.670E+00 1.833E+00 0.416728 2
GWO 1.673E+00 1.995E-01 3.329E+00 9.178E+00 1.995E-01 1.733E+00 1.089E-01 1.673E+00 1.926E+00 0.375307 3
AVOA 1.698E+00 1.766E-01 3.813E+00 9.192E+00 1.988E-01 1.792E+00 1.422E-01 1.698E+00 2.042E+00 0.389991 4
CSA 1.777E+00 1.650E-01 4.231E+00 9.400E+00 2.001E-01 1.793E+00 1.366E-02 1.777E+00 1.809E+00 0.5748 5

COOT 1.782E+00 1.926E-01 3.328E+00 1.000E+01 1.973E-01 1.838E+00 4.840E-02 1.782E+00 1.916E+00 0.377452 6
ChOA 1.784E+00 1.747E-01 3.657E+00 1.000E+01 1.955E-01 1.863E+00 5.167E-02 1.784E+00 1.922E+00 0.446606 7
SCA 1.679E+00 1.910E-01 3.491E+00 9.192E+00 1.989E-01 1.873E+00 2.438E-01 1.679E+00 2.265E+00 0.406579 8
DBO 1.721E+00 2.053E-01 3.220E+00 9.189E+00 2.064E-01 1.976E+00 1.736E-01 1.721E+00 2.194E+00 0.902343 9
HGS 1.732E+00 1.953E-01 3.485E+00 8.913E+00 2.115E-01 1.979E+00 2.393E-01 1.732E+00 2.336E+00 0.708962 10
HHO 1.787E+00 1.806E-01 3.662E+00 9.743E+00 2.000E-01 1.998E+00 1.733E-01 1.787E+00 2.222E+00 0.795756 11

SA 1.801E+00 1.413E-01 4.878E+00 9.188E+00 2.029E-01 1.998E+00 2.133E-01 1.801E+00 2.354E+00 0.901079 12
AO 1.959E+00 6.835E-01 4.449E-01 1.758E+00 5.167E-01 2.253E+00 2.606E-01 1.959E+00 2.542E+00 2.6031 13

HHO 2.131E+00 1.000E-01 7.425E+00 8.509E+00 2.336E-01 2.267E+00 1.300E-01 2.131E+00 2.475E+00 0.467793 14
BO 1.913E+00 1.028E-01 6.841E+00 9.192E+00 1.988E-01 2.273E+00 3.253E-01 1.913E+00 2.587E+00 0.430476 15

BWO 2.147E+00 1.000E-01 9.238E+00 9.187E+00 1.991E-01 2.279E+00 8.143E-02 2.147E+00 2.354E+00 0.963234 16
FOX 2.116E+00 −2.334E+26 -5.457E+23 7.235E+20 5.518E+21 2.295E+00 1.446E-01 2.116E+00 2.423E+00 0.712557 17

WOA 1.964E+00 1.084E-01 6.835E+00 8.982E+00 2.083E-01 2.509E+00 7.561E-01 1.964E+00 3.655E+00 0.373818 18
GA 4.841E+00 1.000E-01 1.000E-01 1.000E-01 1.000E-01 6.198E+00 1.266E+00 4.841E+00 7.620E+00 0.399814 19

6.2. Pressure Vessel Design Problem

The pressure vessel design problem is an optimization challenge that involves deter-
mining the optimal dimensions of a cylindrical vessel with hemispherical ends. The main
objective is to minimize the material cost while ensuring that the structure meets specific
structural and dimensional constraints. This task is pivotal in industries where pressure
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vessels are essential components, such as in chemical processing, power generation, and
aerospace applications.

Objective function: The objective function is based on the physical and geometrical
properties of the vessel. The function is structured to calculate the total material cost
by considering the dimensions and material thickness of the vessel. The cost function is
articulated in Equation (36):

z = 0.6224 × 0.0625 × x1 × x3 × x4 + 1.7781 × 0.0625 × x2 × x2
3

+ 3.1661 × (0.0625 × x1)
2 × x4 + 19.84 × (0.0625 × x1)

2 × x3 (35)

The design variables for the vessel are defined with specific measurements in inches.
The variable x1 represents the thickness of the shell, x2 corresponds to the thickness of the
heads, x3 is the inner radius of the vessel, and x4 denotes the length of the cylindrical section
of the vessel. Each of these variables is critical for specifying the structural dimensions and
ensuring the integrity of the vessel’s design.

These variables (x1, x2, x3, and x4) are crucial as they directly impact both the structural
integrity and cost-efficiency of the vessel. The objective of the optimization problem is to
determine the values of these variables that minimize the material cost while ensuring
adherence to safety and performance standards.

The pressure vessel design problem focuses on determining the optimal dimensions of
a cylindrical vessel with hemispherical ends to minimize the material cost while ensuring
compliance with structural and dimensional constraints. The design challenge is depicted
in Figure 14, which illustrates the vessel and its components.

Figure 14. Diagram of cylindrical vessel with hemispherical ends.

Objective Function:
The objective function aims to minimize the cost associated with the materials used

in the construction of the pressure vessel. This objective is quantified in the cost function
expressed in Equation (36):

z = 0.6224 × 0.0625 × x1 × x3 × x4 + 1.7781 × 0.0625 × x2 × x2
3

+ 3.1661 × (0.0625 × x1)
2 × x4 + 19.84 × (0.0625 × x1)

2 × x3 (36)

where x1, x2, x3, and x4 represent the thickness of the shell, the thickness of the heads, the
inner radius, and the length of the cylindrical section, respectively.

Constraints:
The constraints are designed to ensure that the vessel’s dimensions are both feasible

and meet all design requirements, and are detailed in Equations (37)–(44).
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c1 = −0.0625 × x1 + 0.0193 × x3 (37)

c2 = −0.0625 × x2 + 0.00954 × x3 (38)

c3 = −π × x2
3 × x4 −

4
3
× π × x3

3 + 1296000 (39)

c4 = x4 − 240 (40)

c5 = 1 − x1 (41)

c6 = 1 − x2 (42)

c7 = 10 − x3 (43)

c8 = 10 − x4 (44)

Constraints c1 and c2 relate the shell and head thickness to the radius, ensuring
structural integrity. Constraint c3 checks the internal volume against a prescribed limit.
Constraints c4 through c8 are simple bounding constraints that restrict the size and dimen-
sions of the vessel components.

Penalty function:
The optimization problem utilizes a penalty method in which each constraint violation

contributes significantly to the objective function, effectively penalizing infeasible solutions,
as shown in Equation (45):

f = z + 105 · (sum(v) + sum(g)) (45)

where v is an indicator vector in which each element is set to 1 if the corresponding
constraint is violated, helping to steer the optimization process towards feasible designs.

COASaDE achieves an optimal cost of 5.885 × 103, matched by several other high-
performance algorithms such as SHIO, SCA, MGO, HOA, HLOA, FVIM, and EAO, demon-
strating competitive results. Notably, COASaDE consistently reaches identical optimal
design parameters (x1 = 12.45, x2 = 6.154, x3 = 40.32, x4 = 200) to those reported by
the aforementioned optimizers, indicating high precision in finding the global optimum.
In contrast, algorithms such as SSA, POA, and COA exhibit higher optimal costs and
significantly varied design parameters, reflecting less efficiency or stability in achieving
designs with minimal cost. The consistent values across multiple dimensions by COASaDE
and select others highlight the robustness and reliability of these algorithms in converging
to an optimal solution, marking them as preferable choices for this specific engineering
optimization task.

The results of COASaDE on the pressure vessel design problem (Table 14) highlight its
effectiveness compared to other optimization algorithms. COASaDE achieved the optimal
objective function value (optimal) of 5.885E+03, outperforming other optimizers with a
mean of 6.091E+03 and a standard deviation of 4.492E+02. This indicates both high accuracy
and consistency. In comparison, HHO also reached an optimal value of 5.885E+03, but with
a higher mean (5.921E+03) and a smaller standard deviation (6.968E+01), showing good
consistency but slightly lower overall performance. COA matched the optimal value of
5.885E+03 with an exceptionally low standard deviation (3.008E-02), highlighting remark-
able consistency but a slightly lower mean (5.885E+03) than COASaDE. AO had an optimal
value of 5.886E+03, with a mean of 5.902E+03 and a standard deviation of 1.841E+01, indi-
cating good but less consistent performance. CSA achieved an optimal value of 5.889E+03,
with a higher mean of 6.314E+03 and a standard deviation of 4.464E+02, showing less
consistency and accuracy. AVOA obtained an optimal value of 5.901E+03, with a mean of
5.943E+03 and a standard deviation of 4.891E+01, demonstrating more variability. Other
algorithms such as SA, ChOA, COOT, DBO, and SCA showed progressively higher optimal
values and greater variability, with higher means and standard deviations, indicating less
consistent and accurate performance.
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Table 14. Pressure vessel design problem results.

Optimizer Optimal x1 x2 x3 x4 Min Mean Max Std Time Rank

COASaDE 5.885E+03 1.245E+01 6.154E+00 4.032E+01 2.000E+02 5.885E+03 6.091E+03 7.319E+03 4.492E+02 1.312386 1
WOA 5.885E+03 1.245E+01 6.154E+00 4.032E+01 2.000E+02 5.885E+03 5.921E+03 6.085E+03 6.968E+01 1.158006 2
COA 5.885E+03 1.245E+01 6.154E+00 4.032E+01 2.000E+02 5.885E+03 5.885E+03 5.885E+03 3.008E-02 1.628219 3
AO 5.886E+03 1.245E+01 6.156E+00 4.032E+01 1.999E+02 5.886E+03 5.902E+03 5.936E+03 1.841E+01 0.623258 4
CSA 5.889E+03 1.248E+01 6.170E+00 4.042E+01 1.986E+02 5.889E+03 6.314E+03 7.197E+03 4.464E+02 1.200329 5

AVOA 5.901E+03 1.247E+01 6.188E+00 4.037E+01 1.995E+02 5.901E+03 5.943E+03 6.049E+03 4.891E+01 0.58723 6
SA 5.903E+03 1.260E+01 6.233E+00 4.079E+01 1.936E+02 5.903E+03 6.308E+03 6.779E+03 3.346E+02 0.814459 7

ChOA 5.920E+03 1.277E+01 6.310E+00 4.134E+01 1.863E+02 5.920E+03 6.316E+03 7.130E+03 4.471E+02 0.543118 8
COOT 5.947E+03 1.273E+01 6.331E+00 4.118E+01 1.891E+02 5.947E+03 6.419E+03 7.363E+03 5.168E+02 0.730856 9
DBO 5.969E+03 1.316E+01 6.501E+00 4.259E+01 1.706E+02 5.969E+03 7.367E+03 1.572E+04 2.981E+03 1.031498 10
SCA 5.976E+03 1.325E+01 6.549E+00 4.290E+01 1.669E+02 5.976E+03 6.602E+03 7.205E+03 3.892E+02 3.228425 11
HGS 6.137E+03 1.424E+01 7.162E+00 4.611E+01 1.326E+02 6.137E+03 6.612E+03 7.212E+03 3.840E+02 0.707306 12
GWO 6.417E+03 1.269E+01 7.801E+00 4.100E+01 2.000E+02 6.417E+03 7.291E+03 8.326E+03 6.150E+02 0.497152 13
HHO 7.614E+03 1.465E+01 7.496E+00 4.264E+01 2.000E+02 7.614E+03 1.282E+04 1.754E+04 3.202E+03 0.676377 14

6.3. Spring Design Problem

The spring design problem is a prevalent optimization challenge in mechanical engi-
neering. It involves determining the optimal dimensions of a coiled spring to minimize
the material used in its construction while complying with specific mechanical and design
constraints. The problem is typically expressed through the MATLAB function P3(x),
which evaluates the performance and feasibility of different spring designs based on
their dimensions.

Objective function:
The objective function is formulated to capture the total energy stored in the spring,

which is directly affected by the physical dimensions of the spring. This function is
strategically designed to minimize the material usage, potentially lowering production
costs and enhancing material efficiency. The objective function is defined as Equation (46).

z = (x3 + 2)× x2 × x2
1 (46)

In this formulation, x1, x2, and x3 represent the wire diameter, mean coil diameter, and
number of active coils, respectively. These variables are crucial, as they significantly impact
the mechanical properties of the spring, such as its stiffness and load-bearing capacity.

Constraints:
The design of the spring is subject to several constraints that are essential for ensuring

both functionality and durability. These include stress constraints to prevent material
failure, space constraints to ensure the spring fits within a predetermined design envelope,
and resonance constraints to avoid vibrational issues that could arise in the operational
environment. Each of these factors plays a critical role in the holistic design and successful
application of the spring.

These constraints are typically represented as functions of the design variables x1,
x2, and x3; they ensure that the spring can perform its intended function safely and
effectively. For instance, the stress within the spring must not exceed the yield strength of
the material used.

Therefore, the optimization problem involves finding values for x1, x2, and x3 that
minimize the objective function while satisfying all imposed constraints. This problem is
often solved using numerical methods that explore a range of potential designs to find the
most efficient and practical solution.

The optimization of spring design involves determining the optimal dimensions of a
coiled spring to ensure minimal material usage while adhering to the strict mechanical and
design constraints.

Objective function:
The objective function is designed to minimize the material cost and potential energy

stored during compression. This function is expressed in Equation (47):

z = (x3 + 2)× x2 × x2
1 (47)
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where x1, x2, and x3 are variables representing the wire diameter, mean coil diameter, and
number of active coils, respectively. Each variable significantly contributes to the spring’s
physical characteristics.

Constraints:
The design constraints atr crucial for maintaining the spring’s structural integrity and

functionality, and are detailed in Equations (48) through (51).

c1 =
−x3

2 × x3

71785 × x4
1
+ 1 ≥ 0 (48)

c2 =

(
4x2

2 − x1 × x2

12566 × (x2 × x3
1 − x4

1)

)
+

1
5108 × x2

1
− 1 ≥ 0 (49)

c3 = 1 − 140.45 × x1

x2
2 × x3

≥ 0 (50)

c4 =
x1 + x2

1.5
− 1 ≥ 0 (51)

These constraints ensure that the spring does not succumb to stresses, excessive
deflections, or operational limitations. Specifically, constraints c1 and c2 address stress and
deflection limits critical to the spring’s mechanical performance. Constraint c3 sets a lower
bound on the fundamental frequency, ensuring that the spring operates safely within its
dynamic range. Additionally, constraint c4 imposes a dimensional constraint, likely related
to the installation space requirements, ensuring that the spring fits appropriately within its
designated environment.

Penalty function:
To enforce these constraints effectively within the optimization process, a penalty

function is used, as shown in Equation (52):

f = z + 105 · (sum(v) + sum(g)) (52)

where v is an indicator vector in which each element is set to 1 if the corresponding
constraint is violated, ensuring that noncompliant designs are discouraged and steering
the optimization towards feasible and efficient solutions.

The results of COASaDE on the spring design problem (Table 15) highlight its superior
performance compared to other optimization algorithms. COASaDE achieved the optimal
objective function value (optimal) of 1.267E-02, consistently maintaining this value with
a mean and standard deviation both at 1.267E-02 and 3.570E-08, respectively, indicating
exceptional accuracy and consistency. In comparison, COA achieved the same optimal
value of 1.267E-02 but with a slightly higher mean of 1.268E-02 and a standard deviation of
1.655E-05, showing slightly less consistency. SA matched the optimal value of 1.267E-02
with a mean of 1.269E-02 and a standard deviation of 4.403E-05, indicating good but less
consistent performance. GWO also achieved the optimal value of 1.267E-02, with a mean of
1.269E-02 and a standard deviation of 4.496E-05, showing similar variability. CSA matched
the optimal value of 1.267E-02 but with a higher mean of 1.314E-02 and a larger standard
deviation of 6.621E-04, demonstrating less consistency and accuracy. COOT achieved
the optimal value but had an anomalously high mean and standard deviation, indicating
instability. Other algorithms, such as ChOA, WOA, HGS, AO, AVOA, DBO, SCA, and
HHO, showed progressively higher optimal values and greater variability, indicating less
consistent and accurate performance. The ranking in the table underscores COASaDE’s
top performance, securing the first rank and highlighting its robustness, precision, and
efficiency in solving the spring design optimization problem.
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Table 15. Spring design problem results.

Optimizer Optimal Variable 1 Variable 2 Variable 3 Min Mean Max Std Time Rank

COASaDE 1.267E-02 5.169E-02 3.567E-01 1.129E+01 1.267E-02 1.267E-02 1.267E-02 3.570E-08 0.944562 1
COA 1.267E-02 5.164E-02 3.556E-01 1.135E+01 1.267E-02 1.268E-02 1.272E-02 1.655E-05 0.827274 2
SA 1.267E-02 5.144E-02 3.508E-01 1.165E+01 1.267E-02 1.269E-02 1.281E-02 4.403E-05 1.246854 3

GWO 1.267E-02 5.187E-02 3.612E-01 1.103E+01 1.267E-02 1.269E-02 1.281E-02 4.496E-05 0.724503 4
CSA 1.267E-02 5.198E-02 3.637E-01 1.089E+01 1.267E-02 1.314E-02 1.431E-02 6.621E-04 1.592948 5

COOT 1.267E-02 5.204E-02 3.651E-01 1.081E+01 1.267E-02 1.517E+05 1.517E+06 4.798E+05 0.81524 6
ChOA 1.267E-02 5.101E-02 3.406E-01 1.230E+01 1.267E-02 1.313E-02 1.554E-02 9.834E-04 2.219108 7
WOA 1.267E-02 5.100E-02 3.404E-01 1.232E+01 1.267E-02 1.303E-02 1.409E-02 5.279E-04 0.699102 8
HGS 1.267E-02 5.108E-02 3.422E-01 1.219E+01 1.267E-02 1.352E-02 1.520E-02 7.506E-04 1.054886 9
AO 1.268E-02 5.100E-02 3.404E-01 1.232E+01 1.268E-02 1.272E-02 1.293E-02 7.665E-05 0.504661 10

AVOA 1.269E-02 5.100E-02 3.402E-01 1.234E+01 1.269E-02 1.274E-02 1.298E-02 8.709E-05 0.745025 11
DBO 1.275E-02 5.100E-02 3.391E-01 1.245E+01 1.275E-02 1.710E-02 1.857E-02 2.246E-03 0.668569 12
SCA 1.282E-02 5.205E-02 3.651E-01 1.096E+01 1.282E-02 1.313E-02 1.346E-02 1.875E-04 0.672099 13
HHO 1.394E-02 5.100E-02 3.268E-01 1.440E+01 1.394E-02 1.575E-02 3.051E-02 5.186E-03 0.644913 14

6.4. Speed Reducer Design Problem

The speed reducer design problem is a complex optimization task centered around
minimizing the cost function associated with the design of a gear train within a speed
reducer. This problem encapsulates a myriad of mechanical design constraints, aiming
to achieve an optimal balance between material cost, geometry, and structural limits.
The objective is to design a speed reducer that is cost-effective, structurally sound, and
operationally efficient.

Objective function:
The objective function for the speed reducer design problem incorporates various

geometric and material cost factors, reflecting the complex interdependencies of the gear
train components. The function is formulated as shown in Equation (53) .

z = 0.7854x1(x2
2)(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7)

+ 7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7) (53)

This equation captures the essential cost elements and mechanical requirements inte-
gral to designing an efficient speed reducer.

This function is meticulously crafted to account for various factors. Primarily, it
addresses the costs associated with the material used in the gear train, which is significantly
influenced by dimensions such as face width (x1), gear tooth thickness (x2), and gear
diameters (x3, x4, x5). Additionally, the function considers the structural integrity and
operational efficacy, which are modulated by variables x6 and x7. These variables represent
the gear diameters, and are crucial for ensuring the gear’s mechanical performance.

The careful selection of these terms ensures that the function reflects the trade-offs
between material strength, weight, and overall cost of the speed reducer. The objective
needs to not just minimize the cost but also ensure that the speed reducer meets all
operational and safety standards.

Constraints:
The design of the speed reducer must also adhere to a series of constraints which ensure

that the product is not only economically viable but also meets all required performance
criteria. These constraints include but are not limited to stress and strain limits, dimensional
tolerances, and compatibility requirements for interfacing with other mechanical systems.
Each constraint is typically formulated as a function of the design variables, and is critical
in guiding the optimization process towards feasible solutions.

The speed reducer design problem is a critical engineering optimization challenge
aimed at minimizing a cost function associated with the gear train design within a speed
reducer. The objective is to balance material costs, geometric considerations, and structural
limits. Figure 15 illustrates the complex interplay of these factors.



Symmetry 2024, 16, 927 42 of 50

Figure 15. Design of the speed reducer gear train.

Objective function:
The objective function integrates the material costs and geometric dependencies of

various components, as expressed in Equation (54).

z = 0.7854x1(x2
2)(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x2
6 + x2

7)

+ 7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7) (54)

This function is designed to minimize the material cost while considering the weight
and durability of the speed reducer’s components.

Constraints:
The design constraints, which are essential for ensuring the design’s feasibility and

efficiency, are formulated as shown below and illustrated in Figure 15.

c1 =
27

x1x2
2x3

− 1 (55)

c2 =
397.5

x1x2
2x2

3
− 1 (56)

c3 =
1.93x3

4
x2x3x4

6
− 1 (57)

c4 =
1.93x3

5

x2x3x4
7
− 1 (58)

c5 =
1

110x3
6

((
745x4

x2x3

)2
+ 16.9 × 106

)0.5

− 1 (59)

c6 =
1

85x3
7

((
745x5

x2x3

)2
+ 157.5 × 106

)0.5

− 1 (60)

c7 =
x2x3

40
− 1 (61)

c8 =
5x2

x1
− 1 (62)

c9 =
x1

12x2
− 1 (63)

c10 =
1.5x6 + 1.9

x4
− 1 (64)

c11 =
1.1x7 + 1.9

x5
− 1 (65)
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These constraints ensure that the speed reducer can withstand bending stresses,
maintain surface durability, resist stress concentration, and fit geometrically within the
overall design.

Penalty function
To ensure compliance with these constraints, a penalty function is employed, as shown

in Equation (66):

f = z + 105 · (sum(v) + sum(g)) (66)

where v is an indicator vector that flags each constraint violation to ensure that designs
not meeting the safety and performance standards are penalized, thereby guiding the
optimization process towards feasible solutions.

Table 16 shows that COASaDE achieved the best score (Best Score) of 2.994E+03,
maintaining a low mean score of 2.998E+03 and a standard deviation of 1.242E+01 on
the speed reducer design problem. In comparison, COA achieved the same best score
of 2.994E+03 with an exceptionally low standard deviation of 1.104E-12, demonstrating
remarkable consistency, although its recorded time was significantly higher at 2.472202.
ChOA matched the best score of 2.994E+03 but with a higher mean of 3.000E+03 and a
standard deviation of 9.610E+00, showing slightly more variability. CSA also achieved
the best score of 2.994E+03 with a minimal standard deviation of 1.696E-08 and a slightly
higher mean, indicating very consistent performance. AO matched the best score but had a
higher mean and standard deviation, reflecting less precision. Other algorithms such as
WOA, SA, AVOA, HGS, DBO, COOT, GWO, and HHO showed progressively higher best
scores and greater variability, indicating less consistent and accurate performance.

Table 16. Speed reducer design problem results.

Optimizer Best Score Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Min Mean Max Std Time Rank

COASaDE 2.994E+03 3.500E+00 7.000E-01 1.700E+01 7.300E+00 7.715E+00 3.350E+00 5.287E+00 2.994E+03 2.998E+03 3.034E+03 1.242E+01 0.557706 1
COA 2.994E+03 3.500E+00 7.000E-01 1.700E+01 7.300E+00 7.715E+00 3.350E+00 5.287E+00 2.994E+03 2.994E+03 2.994E+03 1.104E-12 2.472202 2

ChOA 2.994E+03 3.500E+00 7.000E-01 1.700E+01 7.300E+00 7.715E+00 3.350E+00 5.287E+00 2.994E+03 3.000E+03 3.017E+03 9.610E+00 1.451612 3
CSA 2.994E+03 3.500E+00 7.000E-01 1.700E+01 7.300E+00 7.715E+00 3.350E+00 5.287E+00 2.994E+03 2.994E+03 2.994E+03 1.696E-08 1.317274 4
AO 2.994E+03 3.500E+00 7.000E-01 1.700E+01 7.300E+00 7.715E+00 3.350E+00 5.287E+00 2.994E+03 2.994E+03 2.994E+03 1.000E-02 0.694945 5
CSA 2.994E+03 3.500E+00 7.000E-01 1.700E+01 7.300E+00 7.716E+00 3.350E+00 5.287E+00 2.994E+03 2.995E+03 2.995E+03 2.458E-02 1.345214 6

WOA 2.995E+03 3.500E+00 7.000E-01 1.700E+01 7.306E+00 7.716E+00 3.350E+00 5.287E+00 2.995E+03 3.003E+03 3.020E+03 8.954E+00 1.373817 7
SA 2.996E+03 3.500E+00 7.000E-01 1.700E+01 7.302E+00 7.731E+00 3.351E+00 5.287E+00 2.996E+03 2.999E+03 3.012E+03 5.676E+00 0.886892 8

AVOA 3.006E+03 3.506E+00 7.000E-01 1.701E+01 7.300E+00 7.950E+00 3.354E+00 5.288E+00 3.006E+03 3.012E+03 3.021E+03 5.014E+00 0.588294 9
HGS 3.012E+03 3.502E+00 7.000E-01 1.700E+01 7.545E+00 8.290E+00 3.357E+00 5.287E+00 3.012E+03 3.035E+03 3.057E+03 1.328E+01 0.736164 10
DBO 3.013E+03 3.500E+00 7.000E-01 1.700E+01 8.224E+00 8.181E+00 3.352E+00 5.287E+00 3.013E+03 3.526E+03 5.509E+03 8.822E+02 0.887727 11

COOT 3.015E+03 3.505E+00 7.000E-01 1.700E+01 7.410E+00 8.000E+00 3.375E+00 5.295E+00 3.015E+03 3.031E+03 3.060E+03 1.410E+01 0.790502 12
GWO 3.087E+03 3.600E+00 7.000E-01 1.700E+01 8.300E+00 7.790E+00 3.367E+00 5.347E+00 3.087E+03 3.154E+03 3.197E+03 3.692E+01 0.527177 13
HHO 3.096E+03 3.600E+00 7.000E-01 1.700E+01 7.300E+00 8.300E+00 3.486E+00 5.308E+00 3.096E+03 3.150E+03 3.206E+03 3.942E+01 0.71506 14

6.5. Cantiliver Design Problem

The cantilever design problem is an engineering challenge that involves optimizing
the dimensions of a cantilever structure. The goal is to minimize the material cost while
ensuring structural stability under various loading conditions. This optimization problem
is critical in fields such as civil engineering, aerospace, and mechanical systems, where
cantilevers are frequently used components.

Objective function:
The objective function is specifically designed to represent the total material cost

associated with the construction of the cantilever. This function is quantitatively formulated
as shown in Equation (67).

z = 0.0624 × (x1 + x2 + x3 + x4 + x5) (67)

In this model, x1, x2, x3, x4, and x5 correspond to the dimensions of the cantilever,
such as the thickness or length of different segments. Each variable contributes linearly to
the material cost, indicating that any changes in these dimensions will have a direct impact
on the overall cost of the structure.

Constraints:
To ensure the structural stability of the cantilever under various loads, several critical

constraints must be considered. These include stress constraints designed to prevent



Symmetry 2024, 16, 927 44 of 50

material failure under maximum expected loads, deflection constraints aimed at ensuring
the cantilever does not deform excessively under load, and natural frequency constraints
intended to avoid resonant frequencies that could lead to structural failure. Each of these
constraints plays a vital role in the design and safety assurance of the cantilever structure.

These constraints are generally formulated as functions of the design variables, ensur-
ing that the cantilever remains both economical and safe under operational conditions.

Therefore, the design problem involves not only minimizing the objective function
but also satisfying a series of structural and performance-based constraints. This holistic
approach ensures the creation of a cantilever that is both cost effective and robust in
its application.

The cantilever design problem (see Figure 16) is a critical challenge in structural
engineering, where the goal is to optimize the dimensions of a cantilever to minimize
material costs while ensuring that the structure can withstand operational loads without
failure. The optimization is particularly focused on balancing cost efficiency with the
structural integrity required to handle expected stresses and deflections.

Figure 16. Cantilever design problem.

Objective function:
The objective function is calculated to determine the total cost of materials used in the

construction of the cantilever based on the dimensions of its various segments, as shown in
Equation (68):

z = 0.0624 × (x1 + x2 + x3 + x4 + x5) (68)

where x1, x2, x3, x4, and x5 might correspond to the thicknesses or lengths of different
segments of the cantilever, where each variable affects the material cost linearly.

Constraints:
The cantilever must meet specific structural stiffness and strength criteria, which are

formulated in constraint shown in the following Equation (69).

c1 =

(
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5

)
− 1 ≥ 0 (69)

This constraint is derived from the bending stiffness or strength requirements, where
the terms reflect the inverse cube relationship between dimension (likely thickness) and
bending stiffness or strength for each segment, thereby ensuring the cantilever’s adequacy
in terms of stiffness and strength.

Penalty function:
To enforce the structural requirements and discourage noncompliance, the penalty

function detailed in Equation (70) is utilized.

f = z + 105 · (sum(v) + sum(g)) (70)

In this function, v is an indicator vector in which each element is set to 1 if the
corresponding constraint is violated. This setup imposes a high cost on designs that do not
meet the structural criteria, thereby promoting compliance with the required standards.
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As can be seen in Table 17, COASaDE achieved an optimal objective function value
(optimal) of 1.340E+00, consistently maintaining this value with a mean of 1.340E+00 and
a standard deviation of 2.171E-05, indicating exceptional accuracy and consistency. In
comparison, CSA achieved the same optimal value of 1.340E+00 with a slightly higher
standard deviation of 1.005E-04, demonstrating good consistency but slightly less precision.
GWO also matched the optimal value with a standard deviation of 8.980E-05, showing com-
parable performance to CSA. COA achieved the optimal value with a mean of 1.340E+00
and a higher standard deviation of 3.502E-04, reflecting more variability. HGS and DBO
both matched the optimal value but showed higher means and standard deviations, indi-
cating less consistent performance. Other algorithms such as COOT, HHO, AVOA, AO, SA,
ChOA, BWO, SCA, and WOA demonstrated progressively higher optimal values, means,
and standard deviations, indicating less consistent and accurate performance.

Table 17. Cantiliver design problem results.

Optimizer Optimal x1 x2 x3 x4 Mean Std Min Max Time Rank

COASaDE 1.340E+00 6.027E+00 5.300E+00 4.485E+00 3.506E+00 1.340E+00 2.171E-05 1.340E+00 1.340E+00 0.276578 1
CSA 1.340E+00 6.021E+00 5.285E+00 4.504E+00 3.499E+00 1.340E+00 1.005E-04 1.340E+00 1.340E+00 0.239871 2

GWO 1.340E+00 6.027E+00 5.274E+00 4.505E+00 3.499E+00 1.340E+00 8.980E-05 1.340E+00 1.340E+00 0.25402 3
COA 1.340E+00 5.983E+00 5.302E+00 4.502E+00 3.530E+00 1.340E+00 3.502E-04 1.340E+00 1.341E+00 0.282362 4
HGS 1.340E+00 6.055E+00 5.304E+00 4.477E+00 3.492E+00 1.341E+00 6.407E-04 1.340E+00 1.342E+00 0.258944 5
DBO 1.340E+00 6.046E+00 5.269E+00 4.445E+00 3.511E+00 1.341E+00 4.527E-04 1.340E+00 1.342E+00 0.29273 6

COOT 1.341E+00 6.011E+00 5.444E+00 4.437E+00 3.456E+00 1.341E+00 1.117E-03 1.341E+00 1.343E+00 0.259909 7
HHO 1.340E+00 5.997E+00 5.253E+00 4.590E+00 3.450E+00 1.343E+00 2.584E-03 1.340E+00 1.346E+00 0.586414 8

AVOA 1.340E+00 6.060E+00 5.267E+00 4.497E+00 3.441E+00 1.344E+00 3.639E-03 1.340E+00 1.349E+00 0.586687 9
AO 1.343E+00 6.056E+00 5.175E+00 4.722E+00 3.399E+00 1.346E+00 2.847E-03 1.343E+00 1.350E+00 0.529126 10
SA 1.343E+00 5.847E+00 5.150E+00 4.604E+00 3.732E+00 1.352E+00 1.224E-02 1.343E+00 1.374E+00 0.468416 11

ChOA 1.346E+00 5.793E+00 5.425E+00 4.658E+00 3.617E+00 1.355E+00 8.011E-03 1.346E+00 1.366E+00 0.498574 12
BWO 1.344E+00 5.772E+00 5.501E+00 4.719E+00 3.406E+00 1.364E+00 1.372E-02 1.344E+00 1.382E+00 0.325334 13
SCA 1.368E+00 5.778E+00 5.695E+00 4.167E+00 3.735E+00 1.405E+00 2.244E-02 1.368E+00 1.424E+00 0.247594 14

WOA 1.365E+00 7.128E+00 4.988E+00 4.352E+00 3.418E+00 1.419E+00 4.823E-02 1.365E+00 1.471E+00 0.242587 15

6.6. I-Beam Design Problem

The I-beam design problem involves optimizing the geometry of an I-beam to achieve
minimal deflection under a specific load while ensuring that the beam’s cross-sectional area
meets certain size requirements. This problem exemplifies the essential balance between
efficient material use and optimal structural performance in beam design.

Objective function:
The objective function is formulated to minimize the beam’s deflection by maximizing

the section modulus, which is a measure of the beam’s resistance to bending. This is mathe-
matically represented by the inverse of the section modulus, as shown in Equation (71):

z =
5000(

tw·(h−2·t f )3

12 + b·t f 3

6 + 2 · b · t f ·
((

h−t f
2

)2
)) (71)

where b represents the width of the beam, h is the overall height, tw is the web thickness,
and t f is the flange thickness. The objective is to minimize z, thereby reducing the deflection
under load.

Constraint:
As illustrated in Figure 17, the design includes a constraint to ensure that the total

material used for the beam does not fall below a specific threshold, which is important for
maintaining structural integrity and compliance with industry standards. The constraint is
formulated in the following Equation (72).

c1 = 2 · b · tw + tw · (h − 2 · t f )− 300 ≥ 0 (72)

This constraint is interpreted as ensuring a minimum cross-sectional area or weight of
the beam, which is necessary to meet safety regulations and structural requirements.

Penalty function:
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To enforce compliance with this constraint, a penalty function is employed, as detailed
in Equation (73):

f = z + 105 · (sum(v) + sum(g)) (73)

where v is an indicator vector in which each element is set to 1 if the corresponding con-
straint is violated. This approach ensures that designs not meeting the required standards
incur a significant cost, thereby steering the optimization process towards feasible and
compliant designs.

Figure 17. Schematic of the optimized I-beam geometry [41].

As can be seen in Table 18, COASaDE achieved the best score of 6.626E-03, consistently
maintaining this value with an incredibly low standard deviation of 1.042E-18, indicating
exceptional accuracy and consistency. COA matched this best score with an equally low
standard deviation of 9.143E-19, demonstrating remarkable consistency. CSA, ChOA, and
SCA also matched the best scores with similarly low standard deviations, reflecting their
consistency in performance. DBO achieved the same best score with a slightly higher
standard deviation of 6.176E-09, showing minor variability. WOA, AO, AVOA, SA, HGS,
and COOT all matched the best scores with low standard deviations, although slightly
higher than those of COA and CSA, indicating good consistency but slightly less precision.

Table 18. I-beam design problem results.

Optimizer Best Score Variable 1 Variable 2 Variable 3 Variable 4 Min Mean Max Std Time Rank

COASaDE 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 1.042E-18 1.060202 1
COA 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 9.143E-19 0.454492 2
CSA 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 9.143E-19 1.025612 3

ChOA 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 9.143E-19 0.984948 4
SCA 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 9.143E-19 2.291116 5
DBO 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 6.176E-09 0.823816 6
WOA 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 9.143E-19 0.543795 7
AO 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 1.075E-11 0.576118 8

AVOA 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 4.446E-08 0.437802 9
SA 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 1.902E-08 0.684637 10

HGS 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 9.691E-08 0.57949 11
COOT 6.626E-03 5.000E+01 8.000E+01 1.765E+00 5.000E+00 6.626E-03 6.626E-03 6.626E-03 4.473E-08 0.620857 12
GWO 6.626E-03 5.000E+01 8.000E+01 1.764E+00 5.000E+00 6.626E-03 6.628E-03 6.632E-03 2.062E-06 0.460884 13
HHO 6.627E-03 5.000E+01 8.000E+01 1.763E+00 5.000E+00 6.627E-03 6.627E-03 6.629E-03 7.931E-07 0.510059 14

Furthermore, COASaDE successfully achieved the optimal value of 6.626 × 10−3,
precisely matching the optimal design variables (x1 = 50.00, x2 = 80.00, x3 = 1.765,
x4 = 5.00) identified by the vast majority of other optimizers, including WSO, SSA, SHIO,
SCA, and EAO, which demonstrates consensus on the solution’s accuracy and effective-
ness across different algorithms. This uniformity in achieving optimal values and design
variables highlights the robustness and reliability of these algorithms in precisely solving
structural design optimizations under defined constraints. Interestingly, all algorithms,
including MPA, exhibited close results with almost negligible variations, indicating that
these optimization techniques are well suited for engineering applications where precision
is crucial. Notably, COASaDE stands out with a perfect standard deviation of 1.796 × 10−18,
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suggesting its superior ability to consistently reach the exact optimal solution on every run,
setting a benchmark in solution consistency among its peers.

6.7. Three-Bar Design Problem

The three-bar truss design problem is a classic engineering optimization challenge that
focuses on finding the optimal dimensions of a truss structure. The objective is to minimize
the cost of the structure while ensuring that it performs adequately under specified load
constraints, embodying a balance between economic efficiency and structural integrity.

Objective function:
The objective function for this problem calculates the cost associated with the truss,

where the dimensions directly influence material usage and consequently the overall cost.
This relationship is formalized in the following Equation (74):

z = (2
√

2x1 + x2)× 100 (74)

where x1 and x2 represent the cross-sectional areas of the truss members. This formula
incorporates coefficients that likely reflect the cost per unit length of the materials used
adjusted for the truss’s specific geometric configuration.

Constraints:
The design must meet several constraints in order to ensure that the stress in each

member remains within safe limits, as detailed in Equations (75)–(77).

c1 =

√
2x1 + x2√

2x2
1 + 2x1x2

× 2 − 2 ≥ 0 (75)

c2 =
x2√

2x2
1 + 2x1x2

× 2 − 2 ≥ 0 (76)

c3 =
1

x1 +
√

2x2
× 2 − 2 ≥ 0 (77)

These constraints are derived from the stress distribution formulas in the truss mem-
bers, ensuring that the stress does not exceed the material’s yield strength. Each constraint
addresses different loading conditions and geometric relationships in the truss design,
which is crucial for maintaining safety and functionality.

Penalty function:
To ensure compliance with these constraints, the penalty functions shown in

Equation (78) is employed.

f = z + 105 · (sum(v) + sum(g)) (78)

In this function, v is an indicator vector in which each element is set to 1 if the
corresponding constraint is violated. This setup imposes a significant cost on noncompliant
designs, effectively steering the optimization algorithm towards solutions that satisfy all
performance criteria, thereby ensuring both safety and cost efficiency.

As can be seen in Table 19, COASaDE achieved the minimum value of 2.639E+02, con-
sistently maintaining this value with a mean of 2.639E+02 and an incredibly low standard
deviation of 8.994E-12, indicating exceptional accuracy and consistency. CSA matched
the optimal value of 2.639E+02 with a slightly higher standard deviation of 1.067E-10,
demonstrating very good consistency. GWO also matched the optimal value but had a
higher standard deviation of 8.707E-04, indicating more variability. COA achieved the
optimal value with a higher standard deviation of 4.776E-03, reflecting more variability.
GOA and COOT both matched the optimal value but with even higher standard deviations
of 8.400E-03 and 9.651E-03, respectively, showing less precision. Other algorithms such as
AVOA, HHO, DBO, ChOA, SCA, BO, SA, BWO, and WOA demonstrated progressively
higher optimal values, means, and standard deviations, indicating less consistent and
accurate performance. The ranking in the table reinforces COASaDE’s top performance,
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securing the first rank and highlighting its robustness, precision, and efficiency in solving
the three-bar design optimization problem.

Table 19. Three-bar design problem results.

Optimizer Optimal x1 x2 Mean Std Min Max Time Rank

COASaDE 2.639E+02 7.887E-01 4.082E-01 2.639E+02 8.994E-12 2.639E+02 2.639E+02 0.372215 1
CSA 2.639E+02 7.887E-01 4.082E-01 2.639E+02 1.067E-10 2.639E+02 2.639E+02 0.372444 2

GWO 2.639E+02 7.884E-01 4.090E-01 2.639E+02 8.707E-04 2.639E+02 2.639E+02 0.409853 3
COA 2.639E+02 7.880E-01 4.101E-01 2.639E+02 4.776E-03 2.639E+02 2.639E+02 0.376158 4
GOA 2.639E+02 7.884E-01 4.091E-01 2.639E+02 8.400E-03 2.639E+02 2.639E+02 0.822799 5

COOT 2.639E+02 7.885E-01 4.087E-01 2.639E+02 9.651E-03 2.639E+02 2.639E+02 0.388216 6
AVOA 2.639E+02 7.863E-01 4.150E-01 2.639E+02 2.154E-02 2.639E+02 2.640E+02 0.4107 7
HHO 2.639E+02 7.877E-01 4.109E-01 2.640E+02 8.407E-02 2.639E+02 2.641E+02 0.942015 8
DBO 2.639E+02 7.828E-01 4.251E-01 2.640E+02 1.217E-01 2.639E+02 2.642E+02 0.426548 9

ChOA 2.640E+02 7.832E-01 4.246E-01 2.640E+02 5.212E-02 2.640E+02 2.641E+02 0.476215 10
SCA 2.639E+02 7.892E-01 4.068E-01 2.641E+02 1.321E-01 2.639E+02 2.642E+02 0.375773 11
BO 2.640E+02 5.483E-01 1.133E-01 2.642E+02 1.889E-01 2.640E+02 2.645E+02 2.636269 12
SA 2.639E+02 7.960E-01 3.879E-01 2.644E+02 4.867E-01 2.639E+02 2.650E+02 0.703317 13

BWO 2.640E+02 7.938E-01 3.945E-01 2.646E+02 6.032E-01 2.640E+02 2.656E+02 0.466737 14
WOA 2.640E+02 7.792E-01 4.359E-01 2.650E+02 2.007E+00 2.640E+02 2.686E+02 0.37526 15

7. Conclusions

In this paper, we have presented the Hybrid COASaDE Optimizer, a novel com-
bination of the Crayfish Optimization Algorithm (COA) and Self-adaptive Differential
Evolution (SaDE) designed to address complex optimization challenges and solve engineer-
ing design problems. The proposed hybrid approach leverages COA’s efficient exploration
mechanisms, inspired by crayfish behavior, and SaDE’s adaptive exploitation capabili-
ties, characterized by its dynamic parameter adjustment. This synergy aims to balance
the exploration and exploitation phases to enhance the algorithm’s ability to effectively
navigate diverse optimization landscapes. We have detailed the mathematical model of
the Hybrid COASaDE algorithm, including the initialization and parameter setting, posi-
tion update mechanisms, and integration of the mutation and crossover strategies from
SaDE. The exploration phase utilizes COA’s behavior-based strategy to avoid premature
convergence, while the exploitation phase employs SaDE’s adaptive techniques to refine
the candidate solutions. Experimental evaluations were conducted using the CEC2022 and
CEC2017 benchmark functions, demonstrating Hybrid COASaDE’s superior performance
compared to both traditional and state-of-the-art optimization algorithms. The results
were analyzed through various methods, including convergence curves, search history
plots, sensitivity analysis, and statistical analyses such as box plots and histograms. These
analyses confirm the robustness and efficiency of Hybrid COASaDE in finding optimal
solutions. Furthermore, the applicability of Hybrid COASaDE was validated through
several engineering design problems, including the welded beam, pressure vessel, spring,
speed reducer, cantilever, I-beam, and three-bar truss design problems. Hybrid COASaDE
consistently outperformed the other optimizers on each design problem while achieving
the optimal solution.
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