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Abstract: This paper deals with the problem of financial risk management using a new expected
shortfall regression. The latter is based on the expectile model for financial risk-threshold. Unlike the
VaR model, the expectile threshold is constructed by an asymmetric least square loss function. We
construct an estimator of this new model using the k-nearest neighbors (kNN) smoothing approach.
The mathematical properties of the constructed estimator are stated through the establishment
of the pointwise complete convergence. Additionally, we prove that the constructed estimator is
uniformly consistent over the nearest neighbors (UCNN). Such asymptotic results constitute a good
mathematical support of the proposed financial risk process. Thus, we examine the easy implantation
of this process through an artificial and real data. Our empirical analysis confirms the superiority of
the kNN-approach over the kernel method as well as the superiority of the expectile over the quantile
in financial risk analysis.

Keywords: kNN estimator; complete consistency; expectile regression; expected shortfall; financial
data; conditional quantile

1. Introduction

Defining an accurate financial risk-metric is a challenging issue for financial insti-
tutions. Usually, the value at risk (VaR) is the standard risk-metric for financial risk
management. The VaR-model was approved by the Basel committee in (1996, 2006). How-
ever, the financial operators have recognized the limitations and the weaknesses of this
risk-metric of the VaR-model through the successive financial crises in the last decade. The
primary weakness of the VaR model in financial risk management is its insensitivity to
the extreme values. Consequently, the Basel committee in 2014 proposed enhancing the
financial risk surveillance with the expected shortfall (ES) function. This function examines
the expected loss when we exceed a specific threshold. Generally the threshold is defined
through the VaR level. The novelty of this paper is to define the ES-function using an
alternative risk-threshold that is the expectile regression.

The shortfall risk model was investigated by [1]. Motivated by its coherency feature,
the ES function has widely developed in the last decade. A comparison study between
VaR and ES-model was carried out by [1]. They stated that the VaR is inaccurate when
the profit or the loss is not Gaussian. In this context, the ES-model is a more accurate
financial risk metric than the VaR function. From a statistical point of view, the ES model
behaves at different manners such as parametric, semi-parametric, or free distribution
approaches. For an overview in the parametric approach, we refer to [2–4]. The present
paper considers the nonparametric strategy. At this stage, we point out that the first study
in nonparametric modeling was introduced by [5]. He estimated the ES-model by the kernel
method. The same estimator was considered by [6]. They stated the asymptotic normality
of their estimator. Alternatively, another estimator using the Bahadur representation was
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constructed by [7]. The literature concerning the nonparametric estimation of the ES is
limited when the data are functional. To the best of our knowledge, only two works have
treated the functional ES-model using the nonparametric regression structure. The first
results are developed by [8] when the financial time series is modeled under the strong
mixing assumption. The authors of [9] have used a weak correlation assumption to model
the financial time series. They proved the complete consistency of the functional kernel
estimator of the ES-function under the quasi-associated auto-correlation.

The second component of our contribution concerns the expectile model. It was
introduced by [10]. It can be considered an alternative to the VaR-function. However, it
corrects the main drawback of the quantile, which is the fact that it is the insensitive to
the outliers. The expectile metric is very sensitive to the outliers. In financial risk analysis,
the expectile has been developed by [11–14]. It should be noted that the expectile function
has been used for other statistical problems, including for the outlier analysis (see [15]) or
heteroscedasticity detection (see [16,17]). The expectile regression for vectorial statistics
was studied by [18]. The authors of this last paper have developed a semi-parametric
estimation of the expectile. Concerning the functional expectile model, we point out that
the first result was stated by [19]. They established the asymptotic convergence rate of the
kernel estimator of the functional expectile regression. We return to [20] for the parametric
version of the functional expectile regression. They established the asymptotic convergence
rate of an estimator constructed from the reproducing kernel Hilbert-space structure. For
more recent advances and results in functional regression data analysis, we may refer
to [21–25].

The third component of this paper is the k-NN smoothing approach. It is an attractive
approach for many applied statistics such as the classification problems, the clustering
issues or the prediction questions. The kNN estimation approach has been popularized by
the contribution of [26]. This cited paper can be considered as pioneer work in nonpara-
metric estimation by the kNN method. Pushed by its diversified applications, the kNN
estimation algorithm has been introduced in functional data analysis by [27]. They proved
the almost complete point-wise convergence of the functional regression using the kNN
estimator. Such a result has been stated under the independence condition. We refer to [28]
for the uniform convergence of the kNN estimation of the functional regression. They
established the convergence rate using the entropy property. More recent advances and
references in the functional kNN method, we may cite [21,29,30].

In this paper, we aim to estimate expectile shortfall regression using the k-NN smooth-
ing approach. The principal motivations on the use of this estimation methodology are
as follows: (1) usually, financial data are not Gaussian and the parametric approach fails
to fit its randomize movement; (2) the functional approach explores the high frequency
of the financial data by treating it as continuous curves; (3) the kNN approach explores
the functional structure of the data by considering a varied local bandwidth adapted to
functional curves. This feature allows one to update the estimator and identify the financial
risk systematically; (4) the last motivation is the possibility of remedying the problem of
the outliers’ insensitivity using the expectile instead to the VaR. The mathematical support
of this contribution is highlighted by establishing the almost complete convergence of
the constructed estimator. Additionally, we provide the convergence rate of the UCNN
consistency of the constructed estimator. It should be noted that this last result has a great
importance in practice. In particular, it can be used to resolve some practical purpose,
namely the problem of the choice of the best number of neighborhood. So, we emphasize
our theoretical development to examine the applicability as well as the efficiency of the
kNN estimator of expectile shortfall regression. More precisely, we examine the attainability
of the estimator using artificial and real financial data.

This paper is structured as follows: In Section 2, we present the risk metric function
and its kNN estimator. In Section 3, we state the point-wise convergence of the constructed
estimator. The UCNN consistency is sated in Section 4. Section 6 is dedicated to discuss the
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computation-ability of the estimator over simulated and real-data applications. Finally, the
proofs of the auxiliary results are given in Section 7.

2. KNN Estimator of Expectile Shortfall Regression

Let (A1, B1), . . . , (An, Bn) be n independent random pairs in F × IR which are inde-
pendent and have the same distribution as (A, B). The functional space F is a semi-metric
space with a semi-metric d. For our expected shortfall regression analysis, we assume that
A is the functional explanatory variable and B is the real response variable. Often, the
conventional ES-regression is defined for a ∈ F ,

ESRp(a) = IE
[
B|B > CVaRp(a), A = a

]
where CVaRp(·) is the conditional value at risk. In this paper, instead of CVaRp, we
explicate the ES-regression using the conditional expectile of B given A = a. The latter is
denoted by CEAp(·) and is defined by

CEAp(a) = IE
[
B|B > EXRp(a), A = a

]
where EXRp(·) is the expectile regression of B given A = a defined by

EXRp(a) = arg min
t∈IR

{
IE
[

p(B − t)21{(B−t)>0} | A = a
]

+ IE
[
(1 − p)(B − t)21{(B−t)≤0} | A = a

]}
,

where 1A is the indicator function of the set A. Of course, this replacement of CVaRp by
EXRp enables one to overcome the lack of risk insensitivity of the quantile to the extreme
values. This characteristic is very important in practice because the catastrophic losses
are characterized in the extremities. The second feature of our contribution is the use of
the kNN estimation approach. This latter feature is based on the determination of the
smoothing parameter as

An,k = min

{
hn ∈ R+ :

n

∑
i=1
1B(a,hn)(Ai) = k

}
, (1)

where B(a, hn) is a ball of the center a with a radius hn > 0 defined as follows

B(a, hn) = {a′ ∈ F , d(a, a′) ≤ hn}.

So, the kNN estimator of EXES-regression is

ĈEAp(a) =
∑n

i=1 F
[

A−1
n,kd(a, Ai)

]
Bi1Bi>ÊXRp(a)

∑n
i=1 F

(
A−1

n,kd(a, Ai)
) (2)

where F(·) is a known measurable function and ÊXRp is the kNN estimator of EXRp. The
latter is defined as the solution of

G̃(ÊXRp(a); x) =
p

1 − p

with

G̃(t; x) =

−
n

∑
i=1

Fni(a)(Bi − t)1I{(Bi−t)≤0}

n

∑
i=1

Fni(a)(Bi − t)1I{(Bi−t)>0}

, for t ∈ IR,
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with
Fni(a) =

Fi
n

∑
i=1

Fi

and Fi(a) = F
[

A−1
n,kd(a, Ai)

]
.

3. Pointwise Convergence

Before establishing the asymptotic properties of the estimator ĈEAp, we consider
some notation and assumptions. For the notation, we set by Ca or C′

a some strictly positive
generic constants, Na is a given neighborhood of a. Furthermore, for all t ∈ IR, we define
CE(t, a) = IE[B1B>t| A = a]. Now, to formulate our main result, we will use the hypotheses
listed below:

(P1) P(A ∈ B(a, r)) = φ(a, r) > 0 where B(a, h) = {x′ ∈ F : d(x′, a) < h}.
(P2) There exists an invertible non-negative function ϕ(·), a bounded and positive function

L(·), and a function ζ0(u) such that

(i) ϕ(ϵ) tends to zero as ϵ goes to zero and, φ(a,ϵ)
ϕ(ϵ)

−L(a) = O(ϵα), as ϵ −→ 0, for
certain α > 0

(ii) For all u > 0, lim
ϵ−→0

ϕ(uϵ)

ϕ(ϵ)
= ζ0(u),

(P3) ∃δ > 0, ∀(t1, t2) ∈ [EXRp(a)− δ, EXRp(a) + δ], ∀(a1, a2) ∈ N2
x ,

|CE(t1, a1)− CE(t2, a2)| ≤ Cx

(
db(a1, a2)

b + |t1 − t2|
)

, b > 0.

(P4) For all m > 2,

E

[∣∣∣B∣∣∣m | A = a
]
≤ C′

m,a < ∞, a.s.

(P5) The kernel function F(·) is supported on (0, 1) such that

C1I[0,1](t) < F(t) < C′1I[0,1](t).

(P6) The number of the neighborhood k such that

ϕ−1
(

k
n

)
→ 0 and

ln n
k

→ 0.

Comments on the hypotheses.
All the considered assumptions are classical in functional data analysis, namely for

the kNN smoothing approach. They are used for a similar study (see, for instance [30]).
The assumptions (P1) and (P2) relate the functional variable to the probability structure. As
discussed in the last paragraph of introduction, the nonparametric path is motivated by the
fact that the distribution of the financial movement is unknown in practice. Assumption (P4)
concerns the conditional moment integrability of the interest variable B. Such a condition
is usually used in the regression analysis. Observe that the upper bound in (P4) is not
uniform, but strongly depends on the order of the moment m and the location point a. This
assumption is used to apply the Bernstein inequality where the constant C′

m,a should be
inferior to C1

m!
2 Cm−2

2 , (C1, (resp. C2) being constant independent to m). The assumption
over the kernel function is defined in condition (P5). Such a technical assumption is used
to precise the convergence rate of the estimator.

Now, we obtain the following result
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Theorem 1. From the suppositions (P1)–(P6), we have

∣∣∣ĈEAp(a)− CEAp(a)
∣∣∣ = O

(
ϕ−1

(
k
n

)b
)
+ O

(√
ln n

k

)
almost completely . (3)

Proof of Theorem 1. For t ∈ IR, we define

ĈE(t, a) =
∑n

i=1 F
[
h−1d(a, Ai)

]
Bi1Bi>t

∑n
i=1 F[h−1d(a, Ai)]

Then,

ĈE(ÊXRp(a), a) = ĈEAp(a), and CE(EXRp(a), a) = CEAp(a).

So
ĈEAp(a)− CEAp(a) = ĈE(ÊXRp(a), a)− CE(ĈEXRp(a), a)

+CE(ĈEXRp(a), a)− CE(CEXRp(a), a).

Therefore,

|ĈEAp(a)− CEAp(a)| ≤ sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

|ĈE(t, a)− CE(t, a)|

+C|ÊXRp(a)− EXRp(a)|.

It suffices to prove the following lemmas.

Lemma 1. From the suppositions of Theorem 1, we have

sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

|ĈE(t, a)− CE(t, a)| = O

(
ϕ−1

(
k
n

)b
)

+O

(√
ln n

k

)
almost completely

and

Lemma 2. From the suppositions of Theorem 1, we have

|ÊXRp(a)− EXRp(a)| = O

(
ϕ−1

(
k
n

)b
)

+O

(√
ln n

k

)
almost completely

The proof of both required results is based on the technique of kNN smoothing
summarized on the following lemmas.

Lemma 3 (see [28]). Let (Zi, Zi)i=1,...,n be a sequence of independent random variables identically
distributed as (Z, Z), which are valued in F ×R. Let

Cn(t) =

n

∑
i=1

ZiL(t, (z,Zi))

n

∑
i=1

L(t, (z,Zi))

. (4)
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where L(·, ·) is a measurable function inR+× (F ×F ) −→ R+. Consider (An)n≥1 as a sequence
of real random variables and (Vn)n∈N a decreasing positive sequence (with lim

n−→∞
Vn = 0), and

C(·) : F −→ R be a non-random function. If, for all increasing sequence ζn = ζ ∈ (0, 1) with
limit 1 (ζ − 1 = O(Vn)), there exist two sequences of real random variables (A−

n (ζ))n≥1 and
(A+

n (ζ))n≥1 such that

C1. ∀n ≥ 1, A−
n (ζ) ≤ A+

n (ζ) and

1{A−
n (ζ)≤An≤A+

n (ζ)}
almost completely

−→ 1;

C2.
n

∑
i=1

L(A−
n (ζ), (z,Zi))

n

∑
i=1

L(A+
n (ζ)(z,Zi))

− ζ = Oalmost completely (Vn);

C3.
Cn
(

A−
n (ζ)

)
− C(z) = Oalmost completely (Vn),

and
Cn
(

A+
n (ζ)

)
− C(z) = Oalmost completely (Vn).

Then, we have

Cn(An(z))− C(z) = Oalmost completely (Vn). (5)

4. UCNN Convergence

We aim to establish the almost complete consistency of ĈEAp(a) uniformly in the
numbers of neighbors k ∈ (k1,n, k2,n). To do that, we denote by C and C′ some strictly
positive generic constants. In order to announce the first theorem, we will need the
following assumptions.

U1 The function’s class

F =
{
· 7→ F(γ−1d(x, ·)), γ > 0

}
is a pointwise measurable class, such that:

sup
Q

∫ 1

0

√
1 + lnN (ϵ∥G∥Q,2,F )dϵ < ∞,

where the maximum is an overall probability Q on the space F with Q(G2) < ∞
with G being the envelope function of the set F . N (ϵ,F ) is the number of open balls
with a radius ϵ, which is necessary to cover the class of functions F . The balls are
constructed using the L2(Q)-metric.

U2 The kernel F is supported within (−1/2, 1/2) and has a continuous first derivative,
such that:

0 < C1I(−1/2,1/2)(·) ≤ K(·) ≤ C′1I(−1/2,1/2)(·),

K(1/2)ζ0(1/2)−
∫ 1/2

−1/2
K′(s)ζ0(s)ds > 0,

and (1/4)K(1/2)ζ0(1/2)−
∫ 1/2

−1/2
(s2K′(s))ζ0(s)ds > 0,
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where 1IA is the indicator function of set A.

U3 The sequences (k1,n) and (k2,n) verify:

ϕ−1
(

k2,n

n

)
→ 0 and

ln n

k1,n, nϕ−1
(

k1,n
n

) .

Then, the following theorem gives the UINN consistency of ĈEAp.

Theorem 2. Under assumptions (P1)–(P4) and (U1)–(U3), we have

sup
k1,n≤k≤k2,n

∣∣∣ĈEAp(a)− CEAp(a)
∣∣∣

= O

(
ϕ−1

(
k2,n

n

)b1
)
+ O

(√
ln n
k1,n

)
almost completely (a.co.).

Proof of Theorem 2. Similarly to Theorem 1, the claimed result is the consequence of

Lemma 4. From the suppositions of Theorem 2, we have

sup
k1,n≤k≤k2,n

sup
t∈[EXRp(s)−δ, EXRp(a)+δ]

|ĈE(t, a)− CE(t, a)| = O

(
ϕ−1

(
k2,n

n

)b1
)

+

Oa.co.

(√
ln n
k1,n

)
and

Lemma 5 ([11]). From the suppositions of Theorem 2, we have

sup
k1,n≤k≤k2,n

|ÊXRp(a)− EXRp(a)| = O

(
ϕ−1

(
k2,n

n

)b1
)

+Oa.co.

(√
ln n
k1,n

)
.

5. Empirical Analysis

In this section, we discuss the practical use of the risk metric studied in the present
work. This section is divided into three sections. In the first part, we propose an approach
to choose the best number of neighborhood. The selection of this number constitutes
a primordial for the practical use of this financial model. The second part is devoted to
evaluate the behavior of the estimator for an artificial datum. In the last section, we examine
the constructed model over real financial data from the Dow–Jones stock market.

5.1. Smoothing Parameter Selection: Cross-Validation

Generally, the optimal number k is obtained by optimizing some criterion as

kopt = arg min
k

L(A, B, k)

where L is a given loss function which is fixed according to the employed selector algorithm.
In particular, for the expectile regression, many selector approaches exist; for instance,
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different cross-validation rules that were used, as can be seen in [19]. For instance, we
can use

kCVopt = arg min
k

n

∑
i=1

(
Bi − ÊXR0.5(Ai)

)2
, (6)

or more generally

kopt = arg min
k

n

∑
i=1

ρ
(

Bi − ÊXRp(Ai)
)2

(7)

where ρ is the scoring function defining EXRp. In practice, these selectors provide an effi-
cient estimator. In this context, the UCNN convergence allows one to ensure the consistency

of ĈEAp
opt

(a) which is associated with kopt. Therefore, we deduce the following corollary.

Corollary 1. If kopt ∈ (k1,n, k2,n) and if the conditions of Theorem 2 hold, then we have

∣∣∣ĈEAp
opt

− CEAp(a)
∣∣∣ = O

(
ϕ−1

(
k2,n

n

)b
)
+ Oa.co.

(√
log n
k1,n

)
.

5.2. Simulated Data

The first part is devoted to the examination of the performance of the ES-expectile
function using artificial observations. We compute this estimator for independent functional
data. More precisely, we compare the proposed model to the same estimator obtained by
the standard smoothing parameter. Additionally, we compare our estimator to the standard
expected shortfall based on the percentile regression. For this empirical study, we generate
the functional variable Ai(t) defined, for any t ∈ [0, 1], by:

Ai(t) = 3Wi sin(2πt) + ηit.

where Wi and ηi are two real random variables. In order to cover more general cases, we
consider two examples of (Wi, ηi). In the first example, we assume that Wi ∼ N (0, 0.5) and
ηi ∼ N (0, 1). While, in the second example, we generate Wi from Lognormal(0, 0.5) and ηi
from Lognormal(0, 1). In both cases, the obtained functional variables are relatively smooth,
allowing one to choose the spline L2-metric (see [31]). A sample of the first co-variate
curves is plotted in Figure 1.

Time

0 20 40 60 80

−6
−4

−2
0

2
4

Figure 1. Some explanatory curves of the sample Ai.

We assume that the functional regressor represents a continuous trajectory of a finan-
cial asset. The interest variable B represents a future characteristic of this trajectory. More
precisely, for all i, we assume that Bi = Ai+1(0). Recall that the principal aim of this com-
putational part is to conduct a comparison study between the kNN ES-expectile regression
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ĈEAp and the standard expected shortfall based on the VaRp regression associated with
the percentile regression

VaRp(a) = inf{z ∈ IR : F(z|a) ≥ p},

where F is the conditional cumulative function of B given A. The latter is estimated using
the kNN estimator of the function F as

F̂(z|a) =

n

∑
i=1
1(Bi−z)<0F

(
d(a, Ai)

An,k

)
n

∑
i=1

F
(

d(a, Ai)

An,k

) .

Thereafter, we estimate the VaRp function by

V̂aRp(a) = inf
{

z ∈ IR : F̂(z|a) ≥ p
}

.

Recall that, in this case, the expected shortfall regression is expressed by

C̃EAp(a) =
∑n

i=1 F
[

A−1
n,kd(a, Ai)

]
Bi1Bi>V̂aRp(a)

∑n
i=1 F

(
A−1

n,kd(a, Ai)
) . (8)

So, we aim to compare the three estimators ĈEAp (see Equation (2)), C̃EAp (see,
Equation (8)) and CEAp (obtained by replacing An,k in Equation (2) by a standard bandwidth
hn). All these estimators are calculated using the β-kernel, and the spline L2 metric and
the smoothing parameter (h or k) are selected by the cross-validation rule (6). In the kNN
estimation, we select the best k by

kopt = arg min
k∈{5,10,15,20,...,40}

n

∑
i=1

(
Bi − ÊXR0.5(Ai)

)2
,

and for the standard bandwidth, we select h

hCVopt(a) = arg min
h∈Hn(a)

n

∑
i=1

(
Bi − ÊXR0.5(Ai)

)2
,

where Hn(a) is the set of the positive real h(a) such as the ball centered at a with radius
h(a) ‘contains exactly k neighbors of a. We compare this selection procedure using an

arbitrary choice. Specifically, we execute the three optimal estimators ĈEAp
opt

, C̃EAp
opt

and CEAp
opt, and the arbitrary one ĈEAp

arb
, C̃EAp

arb
and CEAp

arb. The efficiency of the
estimation approaches is examined using the backtesting measure defined by

Mse =
1
n

n

∑
i=1

(
Bi − ϑ̂p(·)

)2
1IBi>ÊXRp(Ai)

and Msp =
1
n

n

∑
i=1

(
Bi − ϑ̂p(·)

)2
1IBi>V̂aRp(Ai)

. (9)

Such an error is evaluated for various values of p = 0.9, 0.5, 0.1, 0.05, and p = 0.01. The
abstained results are given in the following tables (see Tables 1 and 2).
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Table 1. Comparison of Mse-error.

Example Cases p = 0.9 p = 0.5 p = 0.1 p = 0.05 p = 0.01

Case: Normal distribution ĈEAp
opt

0.06 0.04 0.03 0.098 0.096

C̃EAp
opt

0.091 0.092 0.098 0.094 0.07
CEAp

opt 0.12 0.13 0.17 0.14 0.19

ĈEAp
arb

0.18 0.17 0.15 0.11 0.10

C̃EAp
arb

0.23 0.39 0.22 0.27 0.37

CEAp
arb 0.32 0.37 0.35 0.33 0.39

Case: Log-normal distribution ĈEAp
opt

0.02 0.01 0.007 0.0042 0.006

C̃EAp
opt

0.089 0.091 0.098 0.090 0.06
CEAp

opt 0.091 0.097 0.065 0.078 0.081

ĈEAp
arb

0.11 0.10 0.098 0.087 0.086

C̃EAp
arb

0.15 0.19 0.16 0.12 0.19

CEAp
arb 0.13 0.17 0.18 0.15 0.15

Table 2. Comparison of Msp-error.

Example Cases p = 0.9 p = 0.5 p = 0.1 p = 0.05 p = 0.01

Case: Normal distribution ĈEAp
opt

0.11 0.12 0.13 0.14 0.099

C̃EAp
opt

0.091 0.094 0.099 0.089 0.107
CEAp

opt 0.18 0.20 0.27 0.32 0.39

ĈEAp
arb

0.46 0.49 0.32 0.38 0.29

C̃EAp
arb

0.23 0.22 0.24 0.27 0.24

CEAp
arb 0.42 0.39 0.41 0.40 0.36

Case: Log-normal distribution ĈEAp
opt

0.096 0.082 0.088 0.065 0.074

C̃EAp
opt

0.088 0.089 0.095 0.091 0.06
CEAp

opt 0.12 0.13 0.17 0.14 0.19

ĈEAp
arb

0.093 0.089 0.092 0.087 0.088

C̃EAp
arb

0.22 0.34 0.17 0.22 0.34

CEAp
arb 0.13 0.24 0.27 0.19 0.16

Clearly, the behavior of the three estimators are strongly impacted by the choice of the
smoothing parameter. However, we observe that the kNN approach is more appropriate
compared to a standard case. Moreover, the expected shortfall based on expectile is more
accurate than the expected shortfall based on the VaR threshold. Without suppressing the
behavior of the estimators, it is also affected by the definition of the regressors with respect
to the distribution of (Wi, ηi) (normal or lognormal). In particular, the estimators ĈEAp

and CEAp are more sensitive to this aspect than the estimator C̃EAp. The variability of the

Mse and Msp is more important in ĈEAp and CEAp than C̃EAp. This sensitivity confirms
the importance of the expectile regression as a financial risk model.

5.3. Real Data Application

This last paragraph is devoted to the applicability of our model to real data. More
precisely, we examine the efficiency of the ES-expectile model over financial data associated
with real-time stock prices of liberty energy company. This last is one of a major energy
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industry service provider across North America. Using these data, we compare our financial
metric to its competitive ones. In this financial data analysis, we study the high price P(t)t
of this company during October 2024, observed within a frame of five minutes. The parent
data contains more than 2700 values. The process of P(t)t is displayed in Figure 2. It is
available in https://stooq.com/db/l (accessed on 24 April 2024).

0 500 1000 1500 2000 2500

1
5

1
6

1
7

1
8

time

P
r
ic

e

Figure 2. The high price P(t).

To insure the stability, we proceeded with the difference algorithmic. We constructed
the functional data from the process R(t) = log(P(t + 1)− log(P(t))). The transformed
data are given in Figure 3.

0 500 1000 1500 2000 2500

−
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−
1

0
1

2
3

time

P
r
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e

Figure 3. The process R(t).

We explore the functional path of the considered data by cutting the process R(t)
with pieces of 30 points. These pieces represent the functional regressors Ai. Furthermore,
we use the same strategy as in the simulated data. Indeed, we choose Ai as the curve of
R(t)t∈[s−30,s[ and Bi = R(s). Now, to insure the independence structure of our work, we
select distanced observations. Specifically, from 2790 observations, we choose 90 equidistant
independent values from which we construct our learning sample (Ai, Bi)i=1,...,90. Thus, we

compare the three estimators CEAp, ĈEAp, and C̃EAp using a real datum, (Ai, Bi)i=1,...,90.
Such estimators are computed using the same algorithm of the simulated data. We use the
same kernel and select the smoothing parameters k and h by the rule (6). We use the L2
metric obtained by the PCA-metric. We refer to Ferraty and Vieu [31] for more details on the
mathematical formulation of this metric. The comparison results are given in Figures 4–6,
where we plot the true values of 670 testing observations (black line) (Bi)i=1,...,670 versus

the estimator ĈEXp(Ai) and C̃EAp(Ai) (red line) for values of p = 0.1.

https://stooq.com/db/l
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Figure 4. kNN expectile expected shortfall.
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Figure 5. kNN VaR expected shortfall.
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Figure 6. Standard expectile expected shortfall.

Once again, the comparison confirms the superiority of the kNN ES-expectile regres-
sion over the standard ES-expectile and the kNN ES-quantile model. This superiority is
confirmed by computing the Mse error (9) of the three models. We obtain, respectively,
0.0274 for the kNN ES-expectile, 0.108 for the standard ES-expectile 0.201, and for the kNN
ES-quantile. For a deep examination of the behavior of the three estimators as financial
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risk models, we use the backtesting measure based on the cover test developed Bayer and
Dimitriadis [32]. Specifically, we apply the version so-called one-side intercept expected
shortfall regression backtest. This last is obtained using the routine code esr-backtest from
the R-package esrback with α = 0.05. We compute the p-values of the 70 observations,
randomly chosen, from the above 670 testing observations. The average of the obtained
values confirms the first statement that is the kNN ES-expectile regression, which is more
adequate than the standard ES-expectile and the kNN ES-quantile model. Specifically, the
average of the p-values of the kNN ES-expectile is 0.035 against 0.067 for the standard
ES-expectile, and for the 0.058 kNN ES- quantile.

6. Conclusions and Prospects

In the present work, we developed a free-parameter estimation of the ES-expectile-
with-regression. We constructed an estimator using kNN smoothing. This study covers
two principal aspects of the financial data analysis: In the theoretical part, we establish
the almost complete convergence of the constructed estimator; moreover, to ensure the
applicability of the constructed estimator, we also determine the convergence rate of the
UCNN consistency. Of course, this theoretical analysis constitutes a good mathematical
support for the use of the new developed risk-metric in practice. We point out that
the obtained asymptotic results are established under standard conditions and with the
precision of the convergence rate. In particular, all the assumed conditions are related to
the functional structure of the regressors and the nonparametric path of the model. On
the other hand, we observe that the applicability of the estimator is very easy and gives
better results compared to the other financial risk metric. In addition, our contribution
leaves many open questions. For instance, the first natural prospect is the treatment of
the dependent case, which allows the control of the movement of the stock exchange in
its natural path, that is, the functional time series case. The second future work is the
establishment of the asymptotic distribution of our new estimator, which in both cases, are
independent or dependent cases. Moreover, the third prospect concerns the determination
of the single structure case. This last permit enables one to improve the convergence rate of
the estimator. Furthermore, we can also treat the partial model case or the parametric case.

7. The Demonstration of the Intermediate Results

The proof of the intermediate results are regrouped in this Section.

Proof of Lemma 1. It suffices to apply Lemma 3 for A−
n (ζ) = ϕ−1(

√
ζ k

n ),
A+

n = ϕ−1( k√
ζn ) and L(t, (z,Zi)) = F

[
t−1d(z,Zi)

]
Since the choice of A−

n , A+
n and L

are the same as in [27], Conditions (C1 and C2) are satisfied. So, all that remains is checking
condition (C3). Indeed, by a simple decomposition, for t ∈ IR,

ĈE(t, s)− ĈE(t, s) =
1

ĈED(s)

[(
ĈEN(t, s)− IE

[
ĈEN(t, s)

])

−
(

ĈE(t, s))− IE
[
ĈEN(t, s)

])]
− ĈEN(t, s)

ĈED(s)

[
ĈED(s)− IE

[
ĈED(s)

]]
where

ĈEN(t, s) =
1

IE[F[h−1d(s, A1)]]

n

∑
i=1

F
[

h−1d(s, Ai)
]

Bi1Bi>t

and ĈED(s) =
1

IE[F[h−1d(s, A1)]]

n

∑
i=1

F
[

h−1d(s, Ai)
]
.

and h = A−
n , or a = A+

n Therefore, (C3) is a consequence of

ĈED(s)− IE
[
ĈED(s)

]
= O

((
ln n

n ϕ(h)

)1/2
)

a.co.
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sup
t∈[EXRp(s)−δ, EXRp(s)+δ]

∣∣∣ĈEN(t, s)− IE
[
ĈEN(t, s)

]∣∣∣ = O

((
ln n

n ϕ(h)

)1/2
)

, a.co.

and
sup

t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣CE(t, s)− IE
[
ĈEN(t, s)

]∣∣∣ = O
(

hb
)

.

Because the proof of the three required results is based on similar analytical arguments
in FDA, we only focus on the second results, namely,

sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣ĈEN(t, s)− IE
[
ĈEN(t, s)

]∣∣∣ = O

((
ln n

n ϕ(h)

)1/2
)

, a.co.

To do that, we write

[EXRp(a)− δ, EXRp(a) + δ] ⊂
ln⋃

j=1

]Bj − dn, yj + dn[ (10)

with dn = O
(

1√
n

)
and ln = O

(√
n
)
. Since IE[ĈEN(·, s)] and ĈEN(·, s) are increasing

functions. Thus, ∀ 1 ≤ j ≤ ln

IEĈEN(yj − dn, s) ≤ sup
t∈]yj−dn ,yj+dn [

IEĈEN(t, s) ≤ IEĈEN(yj + dn, s)

ĈEN(t, s)(yj − dn, s) ≤ sup
t∈]yj−dn ,yj+dn [

ĈEN(t, s) ≤ ĈEN(yj + dn, t). (11)

Now, by (P2), we obtain
sup

t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣ĈEN(t, s)− IEĈEN(t, s)
∣∣∣

≤ max
1≤j≤ln

max
z∈{yj−dn ,yj+dn}

∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣+ Cdn.

As

dn = n−1/2 = o

(√
ln n

n ϕ(h)

)
.

We treat

max
1≤j≤ln

max
z∈{yj−dn ,yj+dn}

∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣ = O

(√
ln n

n ϕ(h)

)
, a.co.

For this, we write for any η > 0

IP

(
max

1≤j≤ln
max

z∈{yj−dn ,yj+dn}

∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣ > η

√
ln n

n ϕ(h)

)

≤ 2ln max
1≤j≤ln

max
z∈{yj−dn ,yj+dn}

IP

(∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣ > η

√
ln n

n ϕ(h)

)
.

Now, we evaluate

IP

(∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣ > η

√
ln n

n ϕ(h)

)
.
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Indeed, let

F̃i =
1

IE[F[h−1d(s, A1)]]

[
F
[

h−1d(s, Ai)
]

Bi1I{Bi≤z} − IE
[
F
[

h−1d(s, Ai)
]

Bi1I{B1≤z}

]]
.

We write

∀ ε > 0, IP
[
|ĈEN(z, s)− IEĈEN(z, s)| > ε

]
= IP

[
1
n

[∣∣∣∣∣ n

∑
i=1

F̃i

∣∣∣∣∣ > ε

]]

Since
E

∣∣∣F̃i(a)
∣∣∣m = O

(
(ϕ(h))−m+1

)
. (12)

we can apply the inequality of Bernstein with a2
n = (ϕ(h))−1, to obtain, for all τ > 0,

P

(∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣ > τ

√
ln n

nϕ(h)

)
= P

(∣∣∣ n

∑
i=1

F̃i(a)
∣∣∣ > nτ

√
ln n

nϕ(h)

)

≤ 2 exp

−1
2

τ2 ln n

1 + τ
√

ln n
nϕ(h)

,

Thus

∑
n≥1

P

(∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣ > τ

√
ln n

nϕ(h)

)
≤ 2 ∑

n≥1
exp

(
−Cτ2 ln n

)
.

Thereby, for τ > 1√
C

gives

∣∣∣ĈEN(z, s)− IEĈEN(z, s)
∣∣∣ = Oa.co.

(√
ln n

nϕ(h)

)
. (13)

Proof of Lemma 2. Let

zn = ϕ−1
(

k
n

)b
+

√
ln n

k

Similarly to [19], we have

∑
n

IP
(
|ÊXRp(a)− EXRp(a)| > zn

)
≤ ∑

n
IP
(

supt∈[EXRp(a)−δ, EXRp(a)+δ]|G̃(t, a)− G(t, a)| ≥ Czn

)
< ∞.

where

G(t, a) :=
G1(t, a)
G2(t, a)

,

with  G1(t, a) = −IE
[
(B − t)1I{(B−t)≤0} | A = a

]
,

G2(t, a) = IE
[
(b − t)1I{(B−t)>0} | A = a

]
.

Therefore,

supt∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣G̃h(t, a)− G(t, a)
∣∣∣ = Oa.co.(zn). (14)
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Similarly to the previous lemma, we write

G̃h(t, a)− G(t, a) =
G̃1(t, a)
G̃2(t, a)

− G1(t, a)
G2(t, a)

=
1

G̃2(t, a)

[
G̃1(t, a)− G1(t, a)

]
+

G(t, a)
G̃2(t, a)

[
G2(t, a)− G̃2(t, a)

]
, (15)

where

G̃1(t, a) = − 1
nIE[F1]

n

∑
i=1

Fi(Bi − t)1I{(Bi−t)≤0},

and

G̃2(t, a) =
1

nIE[F1]

n

∑
i=1

Fi(Bi − t)1I{(Bi−t)>0}.

We prove

supt∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣Ĝ1(t, a)− IE
[

Ĝ1(t, a)
]∣∣∣ = Oa.co.(zn), (16)

and
supt∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣Ĝ2(t, a)− IE
[

Ĝ2(t, a)
]∣∣∣ = Oa.co.(zn). (17)

The rest of the proof is based on the same arguments of Lemma 1 where ĈE(t, a) is
replaced by Ĝ1(t, a) or Ĝ2(t, a).

Proof of Lemma 4. Let α ∈]0, 1[; thus, we write

IP

 sup
k1,n≤k≤k2,n

sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣ĈE(t, a)− CE(t, a)
∣∣∣ ≥ zn


≤ IP

 sup
k1,n≤k≤k2,n

sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣ĈE(t, a)− CE(t, a)
∣∣∣× 1I{

ϕ−1
(

αk1,n
n

)
≤hk≤ϕ−1

(
k2,n
nα

)} ≥ zn

2


+IP

{
h ̸∈

(
ϕ−1

(
αk1,n

n

)
, ϕ−1

(
k2,n

nα

))}
.

It is shown, in [33], that

∑
n

k2,n

∑
k=k1,n

IP
(

hk ≤ ϕ−1
(

αk1,n

n

))
< ∞ and ∑

n

k2,n

∑
k=k1,n

IP
(

hk ≥ ϕ−1
(

k2,n

nα

))
< ∞.

So, all that is left to be proven is

sup

ϕ−1
(

αk1,n
n

)
≤h≤ϕ−1

(
k2,n
nα

) sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣C̃E(t, a)− CE(t, a)
∣∣∣ = Oa.co.(zn).

where C̃E(t, a) is obtained by replacing h by An,k in ĈE(t, a). For this aim, we use the
following decomposition

C̃E(t, a)− CE(t, a) = B̃(t, a) +
D̃(t, a)
C̃ED(a)

+
Q̃(t, a)
C̃ED(a)

,
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where

Q̃(t, a) = (C̃EN(t, a)− IE[C̃EN(t, a)])− CE(t, a)(C̃ED(a)− IE[C̃ED(a)]),

B̃(t, a) =
IE[C̃EN(t, a)]
IE[C̃ED(a)]

− CE(t, a) and D̃(t, a) = −B̃(t, a)(C̃ED(a)− IE[C̃ED(a)]),

with

C̃EN(t, a) =
1

nϕ(h)

n

∑
i=1

F
[

h−1d(a, Ai)
]

Bi1Bi>t

and

C̃ED(a) =
1

nϕ(h)

n

∑
i=1

F
[

h−1d(a, Ai)
]
.

Thus, we split the proof of Lemma 4 into

sup
an≤h≤bn

∣∣∣C̃ED(a)− IE[C̃ED(a)]
∣∣∣ = Oa.co.

(√
ln n

nϕ(an)

)
.

sup
an≤h≤bn

sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣C̃EN(t, a)− IE[C̃EN(t, a)]
∣∣∣ = Oa.co.

(√
ln n

nϕ(an)

)
,

where an = ϕ−1
(

αk1,n

n

)
and bn = ϕ−1

(
k2,n
nα

)
.

We concentrate on the second convergence. The first one can be deduced by the same
tools. Indeed, we write that

[EXRp(a)− δ, EXRp(a) + δ] ⊂
dn⋃

j=1

(
tj − ln, tj + ln

)
,

with ln = n−1/2 and dn = O
(

n1/2
)

.

Next, since the functions IE[C̃EN(x, ·)] and C̃EN(x, ·) are monotone, which implies
that, for 1 ≤ j ≤ dn,

IE
[
C̃EN(x, tj − ln)

]
≤ sup

t∈(tj−ln ,tj+ln)
IE
[
C̃EN(t, a)

]
≤ IE

[
C̃EN(x, tj + ln)

]
,

C̃EN(x, tj − ln) ≤ sup
t∈(tj−ln ,tj+ln)

C̃EN(t, a) ≤ C̃EN(x, tj + ln).

Thus

sup
t∈[EXRp(a)−δ, EXRp(a)+δ]

∣∣∣C̃EN(t, a)− IE
[
C̃EN(t, a)

]∣∣∣
≤ max

1≤j≤dn
max

z∈{tj−ln ,tj+ln}

∣∣∣C̃EN(z, a)− IE
[
C̃EN(z, a)

]∣∣∣+ 2Cln.

Observe that ln = o
(

ln n
n ϕ(an)

)1/2
. Now, it suffices to

sup
an≤h≤bn

max
1≤j≤dn

max
z∈{tj−ln ,tj+ln}

∣∣∣C̃EN(x, z)− IE
[
C̃EN(x, z)

]∣∣∣ = O
(

ln n
n ϕ(an)

)1/2
, a.co. (18)
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For this, we write that

IP

(
sup

an≤h≤bn

max
1≤j≤dn

max
z∈{tj−ln ,tj+ln}

∣∣∣C̃EN(x, z)− IE
[
C̃EN(x, z)

]∣∣∣ > η

√
ln n

nϕ(an)

)

≤ 2dn max
1≤j≤dn

max
z∈{tj−ln ,tj+ln}

IP

(
sup

an≤h≤bn

∣∣∣C̃EN(x, z)− IE[C̃EN(x, z)]
∣∣∣ > η

√
ln n

nϕ(an)

)
.

We evaluate the following quantity

IP

(
sup

an≤h≤bn

∣∣∣C̃EN(x, z)− IE[C̃EN(x, z)]
∣∣∣ > η

√
ln n

nϕ(an)

)
, for all z = tj ∓ ln, 1 ≤ j ≤ dn.

The proof of the latter is based on Bernstein’s inequality for empirical processes as
in [33]. The empirical processes are

αn(K) =
1√
n

n

∑
i=1

(
Fi1I{Bi≥t} − IE

[
Fi1I{Bi≥t}

])
.

where Fi = F
[
h−1d(a, Ai)

]
. Thereafter, we obtain

IP

(
sup

an≤h≤b0

√
nϕ(h)
ln n

∣∣∣C̃EN(z, a)− IE[C̃EN(z, a)]
∣∣∣ ≥ η′

0

)
≤ ln(n)n−C′η2

0 .

Consequently, an adequate choice of η0 enables us to deduce (18).
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