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Abstract: In this work, we study the asymptotic and oscillatory behavior of solutions to the second-order
general neutral Emden–Fowler differential equation (a(v)η(x(v))z′(v))′ + q(v)F(x(g(v))) = 0, where
v ≥ v0 and the corresponding function z = x + p (x ◦ h). Besides the importance of equations of the
neutral type, studying the qualitative behavior of solutions to these equations is rich in analytical
points and interesting issues. We begin by finding the monotonic features of positive solutions.
The new properties contribute to obtaining new and improved relationships between x and z for
use in studying oscillatory behavior. We present new conditions that exclude the existence of
positive solutions to the examined equation, and then we establish oscillation criteria through the
symmetry property between non-oscillatory solutions. We use the generalized Riccati substitution
method, which enables us to apply the results to a larger area than the special cases of the considered
equation. The new results essentially improve and extend previous results in the literature. We
support this claim by applying the results to an example and comparing them with previous findings.
Moreover, the reduction of our results to Euler’s differential equation introduces the well-known
sharp oscillation criterion.

Keywords: differential equations; Emden–Fowler differential equation; oscillation criteria; neutral-
type equation

MSC: 34C10; 34K11

1. Introduction

Neutral differential equations (NDEs)—in which the largest derivative occurs on the
solution with and without delay—are among the most important types of functional differ-
ential equations (FDEs). Their importance is due to two main reasons, the first of which is
the many practical applications of this type in physics and engineering, and the second is
that the study of this type of equation includes many exciting analytical problems. Many
applications, such as population dynamics, control, automatic, fluid mixing, and vibrating
masses attached to a flexible rod, involve models of NDEs (see Hill [1]). In particular,
second-order NDEs are very useful in robotics for building bipedal robots and in biology
for explaining the ability of the human body to balance itself [2].

The part of qualitative theory that is concerned with studying the asymptotic and
oscillatory features of solutions of FDEs is called oscillation theory. The main objectives
of oscillation theory are to characterize the relationship between oscillatory and other
fundamental properties of solutions to various classes of differential equations, investigate
zero distribution laws, estimate the number of zeros in each interval and the distance
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between neighboring zeros, and establish conditions for the existence of oscillatory (and
non-oscillatory) solutions (see [3,4]). The property of symmetry plays an important role in
oscillation theory. In most studies, researchers are interested in obtaining criteria that guar-
antee the absence of any positive solutions to the examined equations, while the absence of
negative solutions is also ensured through symmetry between non-oscillatory solutions.
Oscillation theory has been and still is a crucial numerical mathematical technique in many
cutting-edge technologies and fields (see [5–7]).

The capacity to forecast whether the solutions of a system will oscillate or remain
stable is important in many applications. Understanding oscillation, for example, is useful
in mechanical and structural engineering when building systems that can resist periodic
forces without experiencing resonance, which could lead to structural failure. For modeling
phenomena in biological systems, such as brain activity or heart rhythms, where oscillating
patterns are suggestive of normal function or diseased states, oscillation criteria are crucial.
In electrical engineering, oscillation criteria are essential for designing oscillators and filters
in circuits so that they effectively carry out their intended tasks.

1.1. General NDE of Second Order

In this work, we provide sufficient conditions to verify that all solutions of the NDE(
a(v)η(x(v))z′(v)

)′
+ q(v)F(x(g(v))) = 0 (1)

are oscillatory, where v ≥ v0 and

z(v) = x(v) + p(v)x(h(v)).

During the study, we assume the following conditions:

A1: a ∈ C1([v0, ∞),R+), p, q ∈ C([v0, ∞), [0, ∞)), p(v) ≤ p0 < 1 and

£v0(∞) = ∞, (2)

where

£v0(v) :=
∫ v

v0

a−1(s)ds;

A2: h, g ∈ C([v0, ∞),R), h(v) ≤ v, g(v) ≤ v, g′(v) ≥ 0, limv→∞ h(v) = ∞, and
limv→∞ g(v) = ∞;

A3: η ∈ C1(R,R) and 0 < l0 ≤ η(x) ≤ L−1 for x ̸= 0;
A4: F ∈ C(R,R), and xF(x) > 0 for x ̸= 0.

For the solution of (1), we mean a function x ∈ C1([vx, ∞),R), vx ∈ [v0, ∞), which has
the properties a η z′ ∈ C1([vx, ∞),R), sup{|x(v)| : v ≥ v} > 0 for all v ≥ vx, and satisfies
(1) on [vx, ∞). A solution x of (1) is called oscillatory if it has arbitrarily large zeros and,
otherwise, it is said to be non-oscillatory.

In the remainder of the introduction, we review some relevant previous literature.
The main results are then divided into three sections. In Section 2, we present some helpful
lemmas. Then, the oscillation results section provides new criteria for testing the oscillation
of the considered equation in different cases for the functions F and η. In the next section,
we apply our results to some special cases of the equation under study. The Conclusions
Section comes at the end of the results.

1.2. Related Literature

Next, we revise some related work that has contributed to studying the oscillatory
behavior of solutions to FDEs.
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One of the earliest seminal contributions to the study of oscillatory behavior was Coles’
paper [8]. He established a method for testing oscillatory behavior based on the definition
of a class of positive and locally integrable functions.

In 2000, Manojlovic [9] investigated the oscillatory features of the equation(
a(v)η(v)

∣∣x′(v)∣∣α−1x′(v)
)′

+ q(v)F(x(v)) = 0,

where α ∈ R+ and
F′(x)(

η(x)|F(x)|α−1
)1/α

≥ k > 0, for x ̸= 0.

As a generalization and extension of the results in [10,11], Dzurina and Lacková [12]
used the Riccati approach to establish criteria for the oscillation of the NDE (1) where F′(x)
is nondecreasing in (−∞,−v∗) and nonincreasing in (v∗, ∞), v∗ ≥ 0. Using Philos-type
criteria, Şahiner [13] studied the oscillatory behavior of solutions to (1) and considered the
following three cases for F:

(S1) F′(x) exists, and F′(x) ≥ k1 > 0.
(S2) F′(x) exists, and F′(x)/η(x) ≥ k2 > 0 for x ̸= 0,
(S3) F(x)/x ≥ k3 > 0.

Condition (S1) obviously implies (S2), but not the other way around. For instance, (S2)
is true for F(x) = x3 and η(x) = x2, even though these functions do not meet (S1). It is
necessary for F to be differentiable in (S1) and (S2). It is evident that (S3) does not have
this requirement.

Using the generalized Riccati transformation, Erbe et al. [14] presented conditions for
the oscillation of the NDE(

a(v)(x(v) + p(v)x(v − τ))′
)′

+ q(v)|x(g(v))|α−1x(g(v)) = 0,

where α ∈ R+. They obtained oscillation criteria of Kamenev type.
In all the previously mentioned works, researchers always used the traditional relation-

ship x > (1 − p)z that links x and z. This relationship is essential in studying the oscillatory
behavior of NDEs, as it is the means to transform the NDE into a delay inequality.

There has been a significant surge in the study of FDE oscillation theory lately. Re-
searchers have been interested in addressing some analytical problems in the oscillation
theory of NDEs. Alsharidi and Muhib [15] studied the oscillatory features of an NDE with
a mixed neutral term. Jadlovská et al. [16,17] provided sharp results for testing the oscilla-
tion of equations in the canonical case. For the non-canonical case, Muhib [18] presented
more effective conditions for oscillation. Guo et al. [19] studied an NDE with positive and
negative coefficients.

Moaaz et al. [20] discussed the oscillatory features of the NDE

(
a(v)

(
z′(v)

)α
)′

+
m

∑
j=1

qj(v)xβ
(
σj(v)

)
= 0,

based on the improved relations

x(v) > z(v)
n/2

∑
m=1

1
p2m−1

(
1 − 1

p
π
(
τ−2m(v)

)
π
(
τ−(2m−1)(v)

)), n ∈ Z+ is even,

and

x(v) > z(v)(1 − p)
(n−1)/2

∑
m=0

p2m
π
(

τ[2m+1](v)
)

π(v)
, n ∈ Z+ is odd,
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where
f [0](v) = v and f [j](v) = f

(
f [j−1](v)

)
, for j ∈ N.

Hassan et al. [21] deduced the relation

x(v) > z(v)
(n−1)/2

∑
κ=0

p2κ

1 − p
π
(

τ[2κ+1](v)
)

π(τ2κ(v))

, n ∈ Z+ is odd,

and studied the oscillation of the NDE

(a(v)(z′(v))α)′ + q(v)xα(σ(v)) = 0. (3)

Recently, Bohner et al. [22] established the relationship

x(v) > z(v)(1 − p(v))(1 + Hk(v)),

and presented improved oscillation criteria for (3), where

Hk(v) =



0 for k = 0,

∑
k

i=1

2i−1
∏
j=0

p
(

τ[j](v)
)

for τ(v) ≤ v and k ∈ N,

∑
k

i=1
π(τ[2i](v))

π(v)

2i−1
∏
j=0

p
(

τ[j](v)
)

for τ(v) ≥ v and k ∈ N,

For the third-order NDE

(a(v)(z′′(v))α)′ + q(v)xα(σ(v)) = 0,

Moaaz et al. [23] tested the oscillatory features, and presented the relation

x(v) > z(v)(1 − p)
(n−1)/2

∑
κ=0

p2κ

(
τ[2κ+1](v)− v1

v − v1

)2

.

The study of second-order FDEs is of great importance from a theoretical standpoint,
in addition to its various applications. One can observe the reflection of the advancement
of the study of the oscillatory behavior of solutions of second-order equations on the study
of the oscillation of even-order equations, see [24,25] (for quasi-linear equations), [26,27]
(for super-linear equations), and [28] (for equations on Time Scales).

As an extension of the results in [20–23], we obtain new properties for positive solu-
tions of Equation (1) and then employ them to obtain a new relationship between x and z.
Using this relationship, we get oscillation conditions for solutions of (1), considering the
cases (S1)–(S3). The approach used is an improved extension of the integral averaging tech-
nique. The use of improved relationships is directly reflected in the conditions of oscillation,
as the new conditions are more efficient in the oscillation test for the studied equations.

2. Preliminary Results

For the sake of simplification, we provide the next notations: Ψ(v, v0) represents the
class of all bounded functions for v ≥ v0 that are positive and locally integrable and S+
represents the class of all eventually positive solutions of (1),

κ :=
1

l0L
,

ψ̃(v, ℓ) =
∫ v

ℓ
ψ(s)ds,
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Λ(φ; v, ℓ) =
1

ψ(v)

∫ v

ℓ
φ(s)ψ2(s)ds,

Θ(ω; v, ℓ) =
1

ψ̃(v, ℓ)

∫ v

ℓ
ψ(s)

∫ s

ℓ
ω(µ)dµds, for v ≥ ℓ ≥ v0,

and

Ωm(v) =
m

∑
j=0

(
2j

∏
k=0

p
(

h[k](v)
))[ 1

p
(
h[2j](v)

) − 1

]£v1

(
h[2j](v)

)
£v1(v)

κ

,

where ℓ ∈ [v0, ∞), ψ ∈ Ψ(v, v0), φ ∈ C([v0, ∞), (0, ∞)), and ω ∈ C([v0, ∞),R). Moreover,
we need the following conditions:

(N1) −F(−xw) ≥ F(xw) ≥ F(x)F(w) for xw > 0.
(N2) xη′(x) > 0 for x ̸= 0.

Definition 1 ([29]). Assume

D0 = {(v, s) : v > s > v0} and D = {(v, s) : v ≥ s ≥ v0}.

A function H ∈ C(D,R) belongs to the class ℑ, if

(i) H(v, v) = 0 for v ≥ v0, H(v, s) > 0 on D0;
(ii) H(v, s) has a continuous and nonpositive partial derivative ∂H/∂s on D0 such that the

condition
∂H(v, s)

∂s
= −h(v, s)

√
H(v, s), (4)

for all (v, s) ∈ D0, is satisfied for some h ∈ C(D,R).

Remark 1. Given α ∈ C([v0, ∞),R), we define an integral operator Φ. This operator is defined as

Φ(θ; v, ℓ) =
∫ v

ℓ
H(v, s)θ(s)α(s)ds for v ≥ v0,

in [30], where θ ∈ C([v0, ∞),R) and is specified in terms of H(v, s) and α(s).

Lemma 1 ([31]). If x ∈ S+, then

x >
m

∑
j=0

(
2j

∏
k=0

p
(

h[k](v)
)) z

(
h[2j](v)

)
p
(
h[2j](v)

) − z
(

h[2j+1](v)
), (5)

for any m ≥ 0 is an integer.

Lemma 2. If x ∈ S+, then z conforms to

z(v) > 0, z′(v) > 0, and
(
a(v)η(x(v))z′(v)

)′
< 0, (6)

eventually.

Proof. Assume that x ∈ S+. Based on assumption (A2), there is a v1 ∈ [v0, ∞) whereby
(x ◦ h)(v) and (x ◦ g)(v) are positive for v ≥ v1. Consequently, z(v) > 0. From (A4), we
have x(g(v)) > 0. It follows from Equation (1) that(

a(v)η(x(v))z′(v)
)′

= −q(v)F(x(g(v))) < 0.

Hence, we conclude that a(v)η(x(v))z′(v) has a fixed sign, eventually. This is equiva-
lent to saying that z′(v) > 0 or z′(v) < 0 for v ≥ v2, where v2 is large enough. However,
the case in which z′(v) < 0 contradicts condition (2), as shown below:
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If z′(v) < 0 for v ≥ v2, then

a(v)η(x(v))z′(v) ≤ a(v2)η(x(v2))z′(v2) := −c < 0.

Hence,
z′(v) ≤ − c

a(v)η(x(v))
, (7)

which with (A3) gives
z′(v) ≤ −cLa−1(v).

Thus,

z(v) ≤ z(v2)− cL
∫ v

v2

a−1(s)ds.

But (2) leads to z(v) → −∞ as v → ∞, a contradiction.
Therefore, the proof is finished.

Lemma 3. If x ∈ S+, then

z(v) ≥ La(v)η(x(v))z′(v)£v1(v),

and
d

dv

(
z(v)

[£v1(v)]
κ

)
≤ 0

is nonincreasing, for v ≥ v1.

Proof. Assume that x ∈ S+. Based on assumption (A2), there is a v1 ∈ [v0, ∞) such
that (x ◦ h)(v) and (x ◦ g)(v) are positive for v ≥ v1. Using the results of Lemma 2, we
conclude that

z(v) = z(v1) +
∫ v

v1

1
a(s)η(x(s))

a(s)η(x(s))z′(s)ds

≥ L
∫ v

v1

1
a(s)

a(s)η(x(s))z′(s)ds

≥ La(v)η(x(v))z′(v)
∫ v

v1

1
a(s)

ds

= La(v)η(x(v))z′(v)£v1(v).

Hence,

0 ≥ z′(v)− 1
La(v)η(x(v))£v1(v)

z(v)

≥ z′(v)− 1
l0L

[a(v)]−1

£v1(v)
z(v). (8)

Since £v1(v) ≥ 0, £v1(v1) = 0 and £v1(∞) = ∞, there is a v2 ≥ v1 such that £v1(v2) = 1.
From (8), we obtain

0 ≥ d
dv

(
z(v) exp

[
−κ

∫ v

v2

[a(s)]−1

£v1(s)
ds

])

=
d

dv
(z(v) exp[−κ ln £v1(v)])

=
d

dv

(
z(v)

[£v1(v)]
κ

)
.

Therefore, the proof ends.
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Next, we derive a new relationship between x and z that helps improve the oscilla-
tion results.

Lemma 4. If x ∈ S+, then Equation (1) can be expressed as the delay form(
a(v)η(x(v))z′(v)

)′
+ q(v)F(Ωm(g(v)))F(z(g(v))) ≤ 0, (9)

for v ≥ v1 and any integer m ≥ 0.

Proof. Assume that x ∈ S+. Based on assumption (A2), there is a v1 ∈ [v0, ∞) such that
(x ◦ h)(v) and (x ◦ g)(v) are positive for v ≥ v1. From Lemma 1, we find that

x(v) >
m

∑
j=0

(
2j

∏
k=0

p
(

h[k](v)
)) z

(
h[2j](v)

)
p
(
h[2j](v)

) − z
(

h[2j+1](v)
) (10)

It follows from Lemmas 2 and 3 that

z′(v) > 0 and
(

z(v)
[£v1(v)]

κ

)′
≤ 0.

Then,
z
(

h[2j](v)
)
≥ z
(

h[2j+1](v)
)

and

z
(

h[2j](v)
)
≥

£v1

(
h[2j](v)

)
£v1(v)

κ

z(v).

Using the previous two inequalities in (10), we obtain

x(v) > z(v)
m

∑
j=0

(
2j

∏
k=0

p
(

h[k](v)
))[ 1

p
(
h[2j](v)

) − 1

]£v1

(
h[2j](v)

)
£v1(v)

κ

> Ωm(v)z(v). (11)

Combining this relation with Equation (1), we arrive at(
a(v)η(x(v))z′(v)

)′ ≤ −q(v)F(Ωm(g(v))z(g(v)))
≤ −q(v)F(Ωm(g(v)))F(z(g(v))).

Therefore, the proof ends.

Lemma 5. Assume that (N1) and (S2) are satisfied. If x ∈ S+, then (6) and (9) hold.

Proof. Assume that x ∈ S+. Based on assumption (A2), there is a v1 ∈ [v0, ∞) whereby
(x ◦ h)(v) and (x ◦ g)(v) are positive for v ≥ v1. In addition, we observe that (6) and (7)
hold for v ≥ v1. Now, we may verify that z′(v) > 0 for v ≥ v1. In fact, multiplying (7) by
F′(z(v)) > 0 yields

F′(z(v))z′(v) ≤ − k2L
a(v)

,

in light of x(v) > z(v) for v ≥ v1. Clearly,

F(z(v)) ≤ F(z(v1))− k2L
∫ v

v1

a−1(s)ds,
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for v ≥ v1. Hence, F(z(v)) → −∞ as v → ∞ while applying (A1). This goes against (A4);
hence, for v ≥ v1, z′(v) > 0 is required. Next, we find that (9) holds by repeating the
procedures from the proofs of Lemmas 3 and 4. The proof is finished.

Lemma 6. Assume that (S3) is satisfied. If x ∈ S+, then (6) holds for some v1 > v0. Additionally,(
a(v)η(x(v))z′(v)

)′
+ k3q(v)Ωm(g(v))z(g(v)) ≤ 0. (12)

Proof. Assume that x ∈ S+. As per the proofs of Lemmas 3 and 4, we then state that (6)
and (9) hold for some v1 ≥ v0. Thus, from (1) and (S3), we have

0 =
(
a(v)η(x(v))z′(v)

)′
+ q(v)F(x(g(v)))

≥
(
a(v)η(x(v))z′(v)

)′
+ k3q(v)x(g(v))

=
(
a(v)η(x(v))z′(v)

)′
+ k3q(v)Ωm(g(v))z(g(v)).

Note that, (
a(v)η(x(v))z′(v)

)′
+ k3q(v)Ωm(g(v))z(g(v)) ≤ 0, v ≥ v1. (13)

It is evident from (13) that (12) is true. This brings the proof to a close.

3. Oscillation Results

In this section, we derive new criteria for the oscillation of solutions to Equation (1) in
cases (S1)–(S3).

3.1. Oscillation Theorems for Case (S1)

Theorem 1. Assume that (S1) and (N1) are satisfied. Equation (1) is oscillatory if there are
ψ ∈ Ψ(v, v0), ρ ∈ C1([v0, ∞),R+), and σ ∈ C1([v0, ∞),R) such that

ρ′(v)
ρ(v)

+
2k1Lg′(v)σ(v)

a(g(v))
:= θ1(v) ≥ 0, (14)

∫ ∞

v0

ψ̃ς(s, ℓ)
Λ(φ1; s, ℓ)

ds = ∞, ς ∈ [0, 1), ℓ ≥ v0, (15)

and

lim
v→∞

Θ
(

ξ1 −
1
4

φ1θ2
1

)
= ∞, ℓ ≥ v0 (16)

where

φ1(v) =
1

k1L
ρ(v)

a(g(v))
g′(v)

,

and

ξ1(v) = ρ(v)
(

q(v)F(Ωm(g(v))) +
k1Lg′(v)
a(g(v))

σ2(v)− σ′(v)
)

.

Proof. Assume the contrary, that x ∈ S+. Consequently, for v ≥ v1, (6) and (9) hold,
according to Lemmas 3 and 4. Define

ω(v) = ρ(v)
(

a(v)η(x(v))z′(v)
F(z(g(v)))

+ σ(v)
)

. (17)
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Then, differentiating (17), it follows that

ω′(v) = ρ(v)

[
F(z(g(v)))(a(v)η(x(v))z′(v))′

F2(z(g(v)))

− a(v)η(x(v))z′(v)F′(z(g(v)))z′(g(v))g′(v)
F2(z(g(v)))

]
+ρ(v)σ′(v) + ρ′(v)

(
a(v)η(x(v))z′(v)

F(z(g(v)))
+ σ(v)

)
= ρ(v)

(a(v)η(x(v))z′(v))′

F(z(g(v)))

−a(v)ρ(v)η(x(v))g′(v)
z′(v)F′(z(g(v)))z′(g(v))

F2(z(g(v)))

+ρ(v)σ′(v) +
ρ′(v)
ρ(v)

ω(v).

Using (9), we obtain

ω′(v) =
ρ′(v)
ρ(v)

ω(v)− ρ(v)q(v)F(Ωm(g(v)))

−a(v)ρ(v)η(x(v))g′(v)
z′(v)F′(z(g(v)))z′(g(v))

F2(z(g(v)))
+ ρ(v)σ′(v).

Since g(v) ≤ v and a(v)η(x(v))z′(v) ≤ 0, we have

a(g(v))η(x(g(v)))z′(g(v)) ≥ a(v)η(x(v))z′(v)

and

z′(g(v)) ≥ a(v)η(x(v))z′(v)
a(g(v))η(x(g(v)))

.

Therefore, we obtain

ω′(v) ≤ ρ′(v)
ρ(v)

ω(v)− ρ(v)q(v)F(Ωm(g(v)))

− k1ρ(v)g′(v)
a(g(v))η(x(g(v)))

(
a(v)η(x(v))z′(v)

F(z(g(v)))

)2

+ ρ(v)σ′(v)

≤ ρ′(v)
ρ(v)

ω(v)− ρ(v)q(v)F(Ωm(g(v))) + ρ(v)σ′(v)

− k1Lρ(v)g′(v)
a(g(v))

(
ω(v)
ρ(v)

− σ(v)
)2

= −ξ1(v) + θ1(v)ω(v)− 1
φ1(v)

ω2(v), (18)

that is,

ω′(v) ≤ −ξ1(v) +
1
4

φ1(v)θ2
1(v)−

1
φ1(v)

(
ω(v)− 1

2
φ1(v)θ1(v)

)2
.

For v ≥ ℓ ≥ ℓ1, we obtain

ω(v) +
∫ v

ℓ

1
φ1(s)

(
ω(s)− 1

2
φ1(s)θ1(s)

)2
ds

≤ ω(ℓ)−
∫ v

ℓ1

(
ξ1(s)−

1
4

φ1(s)θ2
1(s)

)
ds.
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After integrating from ℓ to v and multiplying the above relation by ψ(v), we obtain

∫ v

ℓ
ψ(s)ω(s)ds +

∫ v

ℓ
ψ(s)

∫ s

ℓ

1
φ1(s)

(
ω(µ)− 1

2
φ1(µ)θ1(µ)

)2
dµds

≤
∫ v

ℓ
ψ(s)ω(ℓ)ds −

∫ v

ℓ
ψ(s)

∫ s

ℓ

(
ξ1(µ)−

1
4

φ1(µ)θ
2
1(µ)

)
dµds.

Hence,

∫ v

ℓ
ψ(s)ω(s)ds +

∫ v

ℓ
ψ(s)

∫ s

ℓ

1
φ1(µ)

(
ω(µ)− 1

2
φ1(µ)θ1(µ)

)2
dµds

≤ ψ̃(v, ℓ)
[

ω(ℓ)− Θ
(

ξ1(v)−
1
4

φ1(v)θ2
1(v)

)]
.

Based on condition (16), there is a ℓ1 ≥ ℓ such that

ω(ℓ)− Θ
(

ξ1(v)−
1
4

φ1(v)θ2
1(v)

)
< 0,

for all v ≥ ℓ1. Then,

S(v) =
∫ v

ℓ
ψ(s)

∫ s

ℓ

1
φ1(µ)

(
ω(µ)− 1

2
φ1(µ)θ1(µ)

)2
dµds

≤ −
∫ v

ℓ
ψ(s)ω(s)ds,

and

S(v) ≤ S(v) +
∫ v

ℓ

1
2

ψ(s)φ1(s)θ1(s)ds

< −
∫ v

ℓ
ψ(s)

(
ω(s)− 1

2
φ1(s)θ1(s)

)
ds

is obtained by condition (14). As shown, the function S(v) is positive, and we obtain

S2(v) ≤
(∫ v

ℓ
ψ(s)

(
ω(s)− 1

2
φ1(s)θ1(s)

)
ds
)2

, v ≥ ℓ1.

We obtain

S2(v) ≤
(∫ v

ℓ

√
φ1(s)ψ(s)

(
1√

φ1(s)

[
ω(s)− 1

2
φ1(s)θ1(s)

])
ds

)2

≤
(∫ v

ℓ
φ1(s)ψ2(s)ds

) ∫ v

ℓ

(
1

φ1(s)

[
ω(s)− 1

2
φ1(s)θ1(s)

]2
)

ds

= Λ(φ1; v, ℓ)S′(v), (19)

by the Schwarz inequality. Note that

S(v) =
∫ v

ℓ
ψ(s)

∫ s

ℓ

1
φ1(µ)

(
ω(µ)− 1

2
φ1(µ)θ1(µ)

)2
dµds

≥
∫ v

ℓ
ψ(s)

∫ ℓ1

ℓ

1
φ1(µ)

(
ω(µ)− 1

2
φ1(µ)θ1(µ)

)2
dµds

= Pψ̃(v, ℓ), (20)
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where

P =
∫ ℓ1

ℓ

1
φ1(µ)

(
ω(µ)− 1

2
φ1(µ)θ1(µ)

)2
dµ.

Using (19) and (20), for every v ≥ ℓ1 and some ς, 0 ≤ ς < 1, we obtain

Pς ψ̃ς(v, ℓ)
Λ(φ1; v, ℓ)

≤ Sς−2(v)S′(v). (21)

Integrating (21) from ℓ1 to v, we obtain

Pς
∫ v

ℓ1

ψ̃ς(s, ℓ)
Λ(φ1; s, ℓ)

ds ≤ 1
1 − ς

1
S1−ς(ℓ1)

< ∞,

in contrast to (15). Thus, we have proved the theorem in full.

Next, utilizing Philos-type integral average conditions, we show some new oscillation
criteria for (1).

Theorem 2. Assume that (S1) and (N1) are satisfied. Equation (1) is oscillatory if there are
ρ ∈ C1([v0, ∞),R+), σ ∈ C1([v0, ∞),R), α ∈ C1([v0, ∞),R+), and H ∈ ℑ such that

lim sup
v→∞

1
H(v, v0)

Φ
(

ξ1 −
1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; v0, v

)
= ∞. (22)

Proof. Following the steps in the proof of Theorem 1, we observe that (18) is true for all
v ≥ ℓ ≥ ℓ0. When we apply operator Φ(.; v, ℓ) to (18), we obtain

Φ(ξ1; ℓ, v) + Φ
((

ϱ − φ1 − αα′
)
ω; ℓ, v

)
+ Φ(φ−1

1 ω2; ℓ, v) ≤ H(v, ℓ)α(ℓ)ω(ℓ). (23)

Completing squares of ω in the above inequality, we obtain

Φ(φ−1
1

(
ω +

1
2

φ1

(
ϱ − θ1 − α−1α′

)2
)

; ℓ, v) + Φ(ξ1 −
1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ, v)

≤ H(v, ℓ)α(ℓ)ω(ℓ).

So,

Φ(ξ1 −
1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ, v) ≤ H(v, ℓ)α(ℓ)ω(ℓ). (24)

Thus, we have

Φ(ξ1 −
1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; v0, v) = Φ(ξ1 −

1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; v0, ℓ0)

+Φ(ξ1 −
1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ0, v)

≤ H(v, v0)

[∫ ℓ0

v0

|ξ1(s)|α(s)ds + α(ℓ0)|ω1(ℓ0)|
]

.

We derive a contradiction to condition (22) by dividing both sides of the inequality
mentioned above and taking the lim sup in it as v → ∞. The proof of this theorem is
therefore finished.
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Theorem 3. Assume that (S1) and (N1) are satisfied. Equation (1) is oscillatory if there are
ρ ∈ C1([v0, ∞),R+), σ ∈ C1([v0, ∞),R), α ∈ C1([v0, ∞),R+), ρ1, ρ2 ∈ C([v0, ∞),R+), and
H ∈ ℑ such that

lim sup
v→∞

1
H(v, ℓ)

Φ(ξ1; ℓ, v) ≥ ρ1(ℓ), (25)

and

lim sup
v→∞

1
H(v, ℓ)

Φ
(

φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ, v

)
≤ ρ2(ℓ), (26)

where ρ1 and ρ2 satisfy

lim inf
v→∞

1
H(v, ℓ)

Φ

(
φ−1

1 α−2
(

ρ1 −
1
4

ρ2

)2
; ℓ, v

)
= ∞. (27)

Proof. As in the proof of Theorem 2, we find that (23) and (24) hold. By dividing (24) by
H(v, ℓ), we may determine that

ρ1(ℓ)−
1
4

ρ2(ℓ) ≤ α(ℓ)ω1(ℓ) for ℓ ≥ ℓ0,

by the use of (25) and (26). This implies that

1
φ1(ℓ)α2(ℓ)

(
ρ1(ℓ)−

1
4

ρ2(ℓ)

)2
≤ 1

φ1(ℓ)
ω2(ℓ). (28)

From (23), we obtain

1
H(v, ℓ)

Φ
(

φ−1
1 ω2 +

(
ϱ − θ1 − α−1α′

)
ω; ℓ, v

)
≤ α(ℓ)ω(ℓ)− 1

H(v, ℓ)
Φ(ξ1; ℓ, v).

Together with (25), this yields

lim inf
v→∞

1
H(v, ℓ)

Φ
(

φ−1
1 ω2 +

(
ϱ − θ1 − α−1α′

)
ω1; ℓ, v

)
≤ α(ℓ)ω(ℓ)− ρ1(ℓ) ≤ c,

for v ≥ ℓ ≥ ℓ0 and where c is a constant. Currently, we claim that

lim inf
v→∞

1
H(v, ℓ)

Φ
(

φ−1
1 ω2; ℓ, v

)
< ∞. (29)

In the case that (29) is not satisfied, there is a sequence {vn}∞
n=1 ⊂ [v0, ∞) with

limn→∞ vn = ∞ such that

lim
n→∞

1
H(vn, ℓ)

Φ
(

φ−1
1 ω2; ℓ, vn

)
= ∞. (30)

Observe that (30) and

1
H(vn, ℓ)

Φ
(

φ−1
1 ω2; ℓ, vn

)
+

1
H(vn, ℓ)

Φ
((

ϱ − θ1 − α−1α′
)

ω; ℓ, vn

)
≤ c + 1,

can be used for a large enough n. For a sufficiently large n, this and (30) indicate that

1 +
Φ
((

ϱ − θ1 − α−1α′
)
ω; ℓ, vn

)
Φ
(

φ−1
1 ω2; ℓ, vn

) <
1
2

,
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that is, ∣∣Φ((ϱ − θ1 − α−1α′
)
ω; ℓ, vn

)∣∣
Φ
(

φ−1
1 ω2; ℓ, vn

) >
1
2

. (31)

Hence,(
Φ
((

ϱ − θ1 − α−1α′
)

ω; ℓ, vn

))2
≤ Φ

(
φ−1

1 ω2; ℓ, vn

)
Φ
(

φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ, vn

)
(32)

following the Schwarz inequality. Our result is

Φ
(

φ−1
1 ω2; ℓ, vn

)
≤ 4Φ

(
φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ, vn

)
, (33)

based on (31) and (32). Contrary to (30), the right hand side of (33) is bounded by (26).
Therefore, using (28), we obtain

lim inf
v→∞

1
H(v, ℓ)

Φ

(
φ−1

1 α−2
(

ρ1 −
1
4

ρ2

)2
; ℓ, v

)

≤ lim inf
v→∞

1
H(v, ℓ)

Φ
(

φ−1
1 ω2; ℓ, v

)
< ∞.

We obtain a contradiction with (27). The proof is now complete.

3.2. Oscillation Theorems for Case (S2)

Theorem 4. Assume that (S2), (N1), and (N2) are satisfied. Equation (1) is oscillatory if there are
ψ ∈ Ψ(v0, v), ρ ∈ C1([v0, ∞),R+), and σ ∈ C1([v0, ∞),R) such that

ρ′(v)
ρ(v)

+
2k2Lg′(v)σ(v)

a(g(v))
:= θ2(v) ≥ 0, (34)

∫ ∞

v0

ψ̃ς(ℓ, s)
Λ(φ2; ℓ, s)

ds = ∞, ς ∈ [0, 1), ℓ ≥ v0, (35)

and

lim
v→∞

Θ
(

ξ2 −
1
4

φ2θ2
2 ; ℓ, v

)
= ∞, ℓ ≥ v0, (36)

where

φ2(v) =
1

k2L
ρ(v)

a(g(v))
g′(v)

,

and

ξ2(v) = ρ(v)
(

q(v)F(Ωm(g(v))) +
k2Lg′(v)
a(g(v))

σ2(v)− σ′(v)
)

.

Proof. Assume the contrary, that x ∈ S+. From Lemma 5, we find that (6) and (9) hold for
some ℓ > v0. Taking into account the function ω(v) as stated by (17), we arrive at

ω′(v) ≤ ρ′(v)
ρ(v)

ω(v)− ρ(v)q(v)F(Ωm(g(v)))

−ρ(v)g′(v)F′(z(g(v)))
a(g(v))η(x(g(v)))

(
a(v)η(x(v))z′(v)

F(z(g(v)))

)2

+ ρ(v)σ′(v).
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Using x(g(v)) > z(g(v)) and (N2), we can now determine that

F′(z(g(v)))
η(x(g(v)))

>
F′(z(g(v)))
η(z(g(v)))

≥ k2.

Hence,

ω′(v) ≤ ρ′(v)
ρ(v)

ω(v)− ρ(v)q(v)F(Ωm(g(v)))

− k2ρ(v)g′(v)
a(g(v))

(
a(v)η(x(v))z′(v)

F(z(g(v)))

)2

+ ρ(v)σ′(v)

= −ξ2(v) + θ2(v)ω(v)− 1
φ2(v)

ω2(v). (37)

The remaining portions of the proof follow Theorem 1.

Likewise, as in Case (S1), we can obtain the following two theorems, so their proof has
been omitted.

Theorem 5. Assume that (S2), (N1), and (N2) are satisfied. Equation (1) is oscillatory if there are
ρ ∈ C1([v0, ∞),R+), σ ∈ C1([v0, ∞),R), α ∈ C1([v0, ∞),R+), and H ∈ ℑ such that

lim sup
v→∞

1
H(v, v0)

Φ
(

ξ2 −
1
4

φ2

(
ϱ − θ2 − α−1α′

)2
; v0, v

)
= ∞. (38)

Proof. We begin with inequality (37) and continue as in the Theorem 2 proof.

For the sake of completeness, we declare an analogous theorem to Theorem 3 below.
This may be obtained by following the same technique as in the proof of Theorem 3.

Theorem 6. Assume that (S2), (N1), and (N2) are satisfied. Equation (1) is oscillatory if there are
ρ ∈ C1([v0, ∞),R+), σ ∈ C1([v0, ∞),R), α ∈ C1([v0, ∞),R+), ρ1, ρ2 ∈ C([v0, ∞),R+), and
H ∈ ℑ such that

lim sup
v→∞

1
H(v, ℓ)

Φ(ξ2; ℓ, v) ≥ ρ1(ℓ), (39)

and

lim sup
v→∞

1
H(v, ℓ)

Φ
(

φ2

(
ϱ − θ2 − α−1α′

)2
; ℓ, v

)
≤ ρ2(ℓ), (40)

where ρ1 and ρ2 satisfy

lim inf
v→∞

1
H(v, ℓ)

Φ

(
φ−1

2 α−2
(

ρ1 −
1
4

ρ2

)2
; ℓ, v

)
= ∞. (41)

3.3. Oscillation Theorems for Case (S3)

Theorem 7. Assume that (S3) is satisfied. Equation (1) oscillates if there are ψ ∈ Ψ(v0, v),
ρ ∈ C1([v0, ∞),R+), and σ ∈ C1([v0, ∞),R) such that

ρ′(v)
ρ(v)

+
2k2Lg′(v)σ(v)

a(g(v))
:= θ3(v) ≥ 0, (42)

∫ ∞

v0

ψ̃ς(s, ℓ)
Λ(φ3; s, ℓ)

ds = ∞, ς ∈ [0, 1), ℓ ≥ v0, (43)

and

lim
v→∞

Θ
(

ξ3 −
1
4

φ3θ2
3 ; v, ℓ

)
= ∞, ℓ ≥ v0, (44)
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where

φ3(v) =
1
L

ρ(v)
a(g(v))

g′(v)
,

and

ξ3(v) = ρ(v)
(

k3q(v)Ωm(v) +
Lg′(v)
a(g(v))

σ2(v)− σ′(v)
)

.

Proof. Assume the contrary, that x ∈ S+. From Lemma 6, we find that (6) and (12) hold for
some ℓ > v0. The function ω1(v) is defined by

ω1 = ρ

(
aη(x)z′

z(g)
+ σ

)
, (45)

for all v > ℓ0. After applying (12) and differentiating (45), we obtain

ω′
1(v) ≤ ρ′(v)

ρ(v)
ω1(v)− ρ(v)k3q(v)Ωm(v)

− ρ(v)g′(v)
a(g(v))η(x(g(v)))

(
a(v)η(x(v))z′(v)

z(g(v))

)2

+ ρ(v)σ′(v)

≤ ρ′(v)
ρ(v)

ω1(v)− ρ(v)k3q(v)Ωm(v)

− Lρ(v)g′(v)
a(g(v))

(
ω1(v)
ρ(v)

− σ(v)
)2

+ ρ(v)σ′(v)

= −ξ3(v) + θ3(v)ω1(v)−
1

φ3(v)
ω2

1(v). (46)

The type of inequality (46) is the same as that of inequality (18). Therefore, we can
finish the Theorem 7 proof using a similar process.

Likewise, as in Case (S1), we can obtain the following two theorems, so their proof has
been omitted.

Theorem 8. Assume that (S3) is satisfied. Equation (1) oscillates if there are ρ ∈ C1([v0, ∞),R+),
σ ∈ C1([v0, ∞),R), α ∈ C1([v0, ∞),R+), and H ∈ ℑ such that

lim sup
v→∞

1
H(v, v0)

Φ
(

ξ3 −
1
4

φ3

(
ϱ − θ3 − α−1α′

)2
; v0, v

)
= ∞. (47)

Theorem 9. Assume that (S3) is satisfied. Equation (1) oscillates if there are ρ ∈ C1([v0, ∞),R+),
σ ∈ C1([v0, ∞),R), α ∈ C1([v0, ∞),R+), ρ1, ρ2 ∈ C([v0, ∞),R+), and H ∈ ℑ such that

lim sup
v→∞

1
H(v, ℓ)

Φ(ξ3; ℓ, v) ≥ ρ1(ℓ), (48)

and

lim sup
v→∞

1
H(v, ℓ)

Φ
(

φ3

(
ϱ − θ3 − α−1α′

)2
; ℓ, v

)
≤ ρ2(ℓ), (49)

where ρ1 and ρ2 satisfy

lim inf
v→∞

1
H(v, ℓ)

Φ

(
φ−1

3 α−2
(

ρ1 −
1
4

ρ2

)2
; ℓ, v

)
= ∞. (50)

4. Special Cases

In this section, to facilitate the application of the results, we present some results by
identifying special cases of functions Ψ and H.
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Corollary 1. Assume that (S1) and (N1) are satisfied. Equation (1) is oscillatory if there are
Ψ ∈ C1([v0, ∞),R+), and σ ∈ C1([v0, ∞),R) such that (14) holds,∫ ∞

v0

1
φ1(s)

ds = ∞,

and ∫ ∞

v0

(
ξ1(s)−

1
4

φ1(s)θ2
1(s)

)
ds = ∞. (51)

Proof. Taking the function Ψ(v) = 1/φ1(v), then

lim
v→∞

∫ v

ℓ

ψ̃ς(s, ℓ)
Λ(φ1; s, ℓ)

ds = lim
v→∞

∫ v

ℓ

1
φ1(s)

(∫ s

ℓ

(
1

φ1(µ)

)ς−1
dµ

)
ds

=
1
ς

lim
v→∞

(∫ v

ℓ

1
φ1(s)

ds
)ς

= ∞,

and

lim
v→∞

Θ
(

ξ1 −
1
4

φ1(v)θ2
1(v); ℓ, v

)
= lim

v→∞

(∫ v

ℓ

1
φ1(s)

ds
)−1 ∫ v

ℓ

1
φ1(s)

∫ s

ℓ

(
ξ1(µ)−

1
4

φ1(µ)θ
2
1(µ)

)
dµds

= lim
v→∞

∫ v

v0

(
ξ1(s)−

1
4

φ1(s)θ2
1(s)

)
ds

= ∞.

Then, Equation (1) oscillates according to Theorem 1.

Corollary 2. Assume that (S1) and (N1) are satisfied. Equation (1) oscillates if there are Ψ ∈
C1([v0, ∞),R+), and σ ∈ C1([v0, ∞),R) such that (14) holds and

lim
v→∞

1
v2

∫ v

ℓ0

φ1(s)ds = 0,

and

lim
v→∞

1
v

∫ v

v0

∫ s

v0

(
ξ1(µ)−

1
4

φ1(µ)θ
2
1(µ)

)
dµds = ∞.

Proof. Assume that Ψ(s) = 1. The oscillation of Equation (1) can be inferred from
Theorem 1.

Corollary 3. Assume that (N1) and (S1) are satisfied. Let limv→∞ ρ(v) = ∞ and

lim inf
v→∞

ρ(v)
∫ ∞

v
[q(s)F(Ωm(g(s)))]ds >

1
4

, (52)

where

ρ(v) =
∫ v

v0

k1Lg′(s)
a(g(s))

ds.

Then, Equation (1) oscillates.

Proof. According to (52), two numbers ℓ > v0 and ϵ > 1/(4c) exist such that

ρ(v)
∫ ∞

v
[q(s)F(Ωm(g(s)))]ds ≥ ϵ, v ≥ ℓ.
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Let H(v, s) = (ρ(v)− ρ(s))2, α(v) = 1, and σ(v) = −1/2ρ(v). Hence,

h(v, s) =
2ρ′(v)

ρ(v)− ρ(s)
, θ1(v) =

ρ(v)
ρ′(v)

and θ1(v) = 0.

Then,

Φ(ξ1 −
1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ, v)

=
∫ v

ℓ
(ρ(v)− ρ(s))2ρ(s)

[
q(s)F(Ωm(g(s)))− ρ′(s)

4ρ2(s)

]
ds − 1

2

(
ρ2(v)− ρ2(ℓ)

)
.

Define K(v) =
∫ ∞

v q(s)F(Ωm(g(s)))ds. Then,

Φ(ξ1 −
1
4

φ1

(
ϱ − θ1 − α−1α′

)2
; ℓ, v)

=
∫ v

ℓ
(ρ(v)− ρ(s))2ρ(s)ds

[
−K(s) +

1
4ρ(s)

]
− 1

2

(
ρ2(v)− ρ2(ℓ)

)
= (ρ(v)− ρ(ℓ))2ρ(ℓ)

[
K(ℓ) +

1
4ρ(ℓ)

]
− 1

2

(
ρ2(v)− ρ2(ℓ)

)
+
∫ v

ℓ

(
ρ(s)K(s)− 1

4

)[
−4ρ(v) + 3ρ(s) +

ρ2(v)
ρ(s)

]
ρ′(s)ds

≥
(

ϵ − 1
4

) ∫ v

ℓ

[
−4ρ(v) + 3ρ(s) +

ρ2(v)
ρ(s)

]
ρ′(s)ds − 1

2

(
ρ2(v)− ρ2(ℓ)

)
≥
(

ϵ − 1
4

)[
ln
(

ρ(v)
ρ(ℓ)

)
− 5

2

]
ρ2(v)− 1

2

(
ρ2(v)− ρ2(ℓ)

)
.

It follows that

lim
v→∞

1
H(v, ℓ)

Φ
(

ξ1 −
1
4

φ1

(
h − θ1 − α−1α′

)2
; ℓ, v

)
= ∞,

which is the same as (22). Equation (1) oscillates, as Theorem 2 indicates.

We define
H(v, s) = (v − s)n,

where n is an integer and n > 1. Furthermore,

h(v, s) = n(v − s)n−1.

As such, we derive the following oscillation criteria as a result of Theorems 2 and 3.

Corollary 4. Assume that (N1) and (S1) are satisfied. If there exist a ρ ∈ C1([v0, ∞),R+) and an
integer n > 1 such that

lim sup
v→∞

1
(v − ℓ)n

∫ v

v0

(
(v − s)nξ1(s)−

n2

4
(v − s)n−2 φ1(s)

)
ds = ∞,

then Equation (1) oscillates.

Corollary 5. Assume that (S1) and (N1) are satisfied. Equation (1) is oscillatory if there exists a
ρ ∈ C1([v0, ∞),R+), ρ1, ρ2 ∈ C([v0, ∞),R+), and an integer n > 1 such that

lim sup
v→∞

1
(v − ℓ)n

∫ v

ℓ
(v − s)nξ1(s)ds ≥ ρ1(ℓ),
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and
lim sup

v→∞

1
(v − ℓ)n

∫ v

ℓ
(v − s)n−2 φ1(s)ds ≤ ρ2(ℓ),

where ρ1 and ρ2 satisfy

lim inf
v→∞

1
(v − ℓ)n

∫ v

ℓ

(v − s)n

φ1(s)

(
ρ1(s)−

1
4

ρ2(s)
)2

ds = ∞.

In the following example, we apply our results to a form of (1) and also compare the
results with previous results in the literature.

Example 1. Consider(
1

1 + δ sin2(x(v))

[
(x(v) + p0x(λv))′

])′
+

q0

v2

[
βx3(µv) + x(µv)

]
= 0, (53)

where λ, µ ∈ (0, 1], δ, β ≥ 0, and q0 > 0. It is easy to see that k1 = 1, L = 1, l0 = 1
1+δ , κ = 1+ δ,

h[2j](v) = λ2jv, and

Ωm(v) = (1 − p0)

[
1 +

m

∑
j=1

p2j
0 λ2(1+δ)j

]
= p̂0.

For Corollary 1, if we choose ρ(v) = v and σ(v) = −1/(2µv), then θ1(v) = 0, φ1(v) = 1
µ v,

and

ξ1(v) =
1
v

(
q0 p̃0 −

3
4µ

)
,

where p̃0 := β p̂3
0 + p̂0. So, ∫ ∞

v0

1
φ1(s)

ds =
∫ ∞

v0

µ

s
ds = ∞,

and ∫ ∞

v0

(
ξ1(s)−

1
4

φ1(s)θ2
1(s)

)
ds =

∫ ∞

v0

(
q0 p̃0 −

3
4µ

)
1
s

ds

= ∞,

if

q0 >
3

4µ p̃0
. (54)

Therefore, Equation (53) oscillates if (54) holds.
On the other hand, using Corollary 3, we find ρ(v) = µv, and

lim inf
v→∞

ρ(v)
∫ ∞

v
[q(s)F(Ωm(g(s)))]ds = lim inf

v→∞
µv
∫ ∞

v

[ q0

s2 p̃0

]
ds

>
1
4

,

if

q0 >
1

4µ p̃0
. (55)

Therefore, Equation (53) oscillates if (55) holds. We note that Corollary 3 provides a more
efficient criterion than Corollary 1. Figure 1 shows one of the numerical solutions to (53).
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Remark 2. Consider the special case of Equation (53) when δ = β = 0. In this case, condition (55)
reduces to

q0 >
1

4µ p̂0
. (56)

In 2018, Grace et al. [32] investigated the oscillatory behavior of solutions of the neutral
differential equation (NDE) (

a(v)
(
z′(v)

)α
)′

+ q(v)xα(g(v)) = 0,

where α is a ratio of odd natural numbers. They used the Riccati method and the comparison method
with a first-order equation. Their results are essentially an improvement on results in the literature
that preceded their work. For testing the oscillation of

(x(v) + p0x(λv))′′ +
q0

v2 x(µv) = 0,

the best results they obtained (in Example 3 [32]) were

(1 − p0)q0µϵ >
1
4

, (57)

where
ϵ =

1
1 + (1 − p0)q0µ

.

In the case where µ = 0.5, p0 = 0.5, and λ = 0.9, criteria (56) and (57) reduce to q0 ⪆
0.79750 and q0 ⪆ 0.88227, respectively. Therefore, our results improve the results in [32].

Remark 3. It is worth noting that if Equation (53) is reduced by setting δ = β = p0 = 0, we
obtain Euler’s equation

x′′(v) +
q0

v2 x(µv) = 0.

Thus, condition (56) becomes q0 > 1
4µ . Thus, in the ordinary case (µ = 1), we obtain the

sharp criterion for the oscillation of Euler’s equation q0 > 1/4.

Figure 1. A numerical oscillatory solution to Equation (53).

5. Conclusions

The investigation of the oscillatory features of delay equations is rich in analytical
issues. Therefore, there are always attempts to improve the relationships, inequalities,
and techniques used in oscillation theory. In this study, we investigated the oscillatory
properties of solutions to a class of neutral-type FDEs. We deduced a new relationship
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between x and z, which is one of the vital relations in the oscillation theory of NDEs. Next,
we utilized the Riccati method to derive Coles-type oscillation criteria. Moreover, we
introduced many conditions for the oscillation of the examined equation by considering
cases (S1)–(S3). It is worth noting that our results are a direct improvement on previous
relevant results. This is clear by setting M = 0, so we find that

Ωm(v) ≥ Ω0(v) =
0

∑
j=0

p(v)
[

1
p(v)

− 1
][

£v1(v)
£v1(v)

]κ

= 1 − p(v),

and the relation (11) reduces to the traditional relationship x > (1 − p)z. In future work, we
look forward to using the same approach to study oscillatory behavior in the non-canonical
case as well as the oscillation of higher-order equations. Moreover, we will work in the
future to obtain oscillation standards with fewer restrictions than those imposed here.
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13. Şahiner, Y. On Oscillation of Second Order Neutral Type Delay Differential Equations. Appl. Math. Comput. 2004, 150, 697–706.

[CrossRef]
14. Erbe, L.; Hassan, T.S.; Peterson, A. Oscillation of Second Order Neutral Delay Differential Equations. Adv. Dyn. Syst. Appl. 2008,

3, 53–71.
15. Alsharidi, A.K.; Muhib, A. Oscillation criteria for mixed neutral differential equations. AIMS Math. 2024, 9, 14473–14486.

[CrossRef]
16. Jadlovská, I.; Džurina, J. Kneser-Type Oscillation Criteria for Second-Order Half-Linear Delay Differential Equations. Appl. Math.

Comput. 2020, 380, 125289. [CrossRef]

http://doi.org/10.1090/S0002-9939-68-99981-4
http://dx.doi.org/10.14232/ejqtde.2000.1.1
http://dx.doi.org/10.2478/BF02475950
http://dx.doi.org/10.1016/S0096-3003(03)00300-X
http://dx.doi.org/10.3934/math.2024703
http://dx.doi.org/10.1016/j.amc.2020.125289


Symmetry 2024, 16, 931 21 of 21

17. Jadlovská, I. New Criteria for Sharp Oscillation of Second-Order Neutral Delay Differential Equations. Mathematics 2021, 9, 2089.
[CrossRef]

18. Muhib, A. On oscillation of second-order noncanonical neutral differential equations. J. Inequal. Appl. 2021, 2021, 79. [CrossRef]
19. Guo, R.; Huang, Q.; Tian, H. Nonoscillation and Oscillation Criteria for a Class of Second-Order Nonlinear Neutral Delay

Differential Equations with Positive and Negative Coefficients. Axioms 2022, 11, 281. [CrossRef]
20. Moaaz, O.; Muhib, A.; Owyed, S.; Mahmoud, E.E.; Abdelnaser, A. Second-Order Neutral Differential Equations: Improved

Criteria for Testing the Oscillation. J. Math. 2021, 2021, 1–7. [CrossRef]
21. Hassan, T.S.; Moaaz, O.; Nabih, A.; Mesmouli, M.B.; El-Sayed, A.M.A. New Sufficient Conditions for Oscillation of Second-Order

Neutral Delay Differential Equations. Axioms 2021, 10, 281. [CrossRef]
22. Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp Results for Oscillation of Second-Order Neutral Delay Differential Equations. Electron.

J. Qual. Theory Differ. Equ. 2023, 1–23.. [CrossRef]
23. Moaaz, O.; Mahmoud, E.E.; Alharbi, W.R. Third-Order Neutral Delay Differential Equations: New Iterative Criteria for Oscillation.

J. Funct. Spaces 2020, 2020, 6666061. [CrossRef]
24. Guo, R.; Huang, Q.; Liu, Q. Some New Oscillation Criteria of Even-Order Quasi-Linear Delay Differential Equations with Neutral

Term. Mathematics 2021, 9, 2074. [CrossRef]
25. Nithyakala, G.; Ayyappan, G.; Alzabut, J.; Thandapani, E. Fourth-Order Nonlinear Strongly Non-Canonical Delay Differential

Equations: New Oscillation Criteria via Canonical Transform. Math. Slovaca 2024, 74, 115–126. [CrossRef]
26. El-Gaber, A.A. Oscillatory Criteria of Noncanonical Even-Order Differential Equations with a Superlinear Neutral Term. Bound.

Value Probl. 2024, 2024, 67. [CrossRef]
27. El-Gaber, A.A.; El-Sheikh, M.M.A.; El-Saedy, E.I. Oscillation of Super-Linear Fourth-Order Differential Equations with Several

Sub-Linear Neutral Terms. Bound. Value Probl. 2022, 2022, 41. [CrossRef]
28. Alzabut, J.; Grace, S.R.; Santra, S.S.; Samei, M.E. Oscillation Criteria for Even-Order Nonlinear Dynamic Equations with Sublinear

and Superlinear Neutral Terms on Time Scales. Qual. Theory Dyn. Syst. 2024, 23, 103. [CrossRef]
29. Philos, C.G. Oscillation Theorems for Linear Differential Equations of Second Order. Arch. Math. 1989, 53, 482–492. [CrossRef]
30. Wong, J.S.W. On Kamenev-Type Oscillation Theorems for Second-Order Differential Equations With Damping. J. Math. Anal.

Appl. 2001, 258, 244–257. [CrossRef]
31. Moaaz, O.; Cesarano, C.; Almarri, B. An Improved Relationship between the Solution and Its Corresponding Function in

Fourth-Order Neutral Differential Equations and Its Applications. Mathematics 2023, 11, 1708. [CrossRef]
32. Grace, S.R.; Džurina, J.; Jadlovská, I.; Li, T. An Improved Approach for Studying Oscillation of Second-Order Neutral Delay

Differential Equations. J. Ineq. Appl. 2018, 2018, 193. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math9172089
http://dx.doi.org/10.1186/s13660-021-02595-x
http://dx.doi.org/10.3390/axioms11060281
http://dx.doi.org/10.1155/2021/6665103
http://dx.doi.org/10.3390/axioms10040281
http://dx.doi.org/10.14232/ejqtde.2023.1.4
http://dx.doi.org/10.1155/2020/6666061
http://dx.doi.org/10.3390/math9172074
http://dx.doi.org/10.1515/ms-2024-0008
http://dx.doi.org/10.1186/s13661-024-01873-z
http://dx.doi.org/10.1186/s13661-022-01620-2
http://dx.doi.org/10.1007/s12346-024-00961-w
http://dx.doi.org/10.1007/BF01324723
http://dx.doi.org/10.1006/jmaa.2000.7376
http://dx.doi.org/10.3390/math11071708
http://dx.doi.org/10.1186/s13660-018-1767-y

	Introduction
	General NDE of Second Order
	Related Literature

	Preliminary Results
	Oscillation Results
	Oscillation Theorems for Case (S1)
	Oscillation Theorems for Case (S2)
	Oscillation Theorems for Case (S3)

	Special Cases
	Conclusions
	References

