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Abstract: Numerous logarithmic integrals have been extensively documented in the literature. This
paper presents an algorithmic evaluation of a specific class of these integrals. Our systematic approach,
rooted in logarithmic principles, enables us to extend our findings to other cases within this family of
integrals. Furthermore, we explore special cases derived from our main results, thereby enhancing
the applicability and significance of our work for a wider audience of researchers.
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1. Introduction and Preliminaries

Beginning with the well-known binomial theorem

2 (2] < 1), )

1ot f G
n=0 :

Shen uncovered the following identity (refer to [1], Equation (4)): When ¢ < %,
i ((g)n>2_1 /ZH‘lelt’Zédt_Z_zé r(%_é) (2)
=\ n ) 2o Jr T(1-¢)°

Here, (&), denotes the Pochhammer symbol defined (for &, v € C) in terms of the familiar
Gamma function I" by

_T+v)
r(¢) 5
{1 (v=0; ¢ C\{0}) ©

(g)v :

§E+1)---(¢+n-1) (v=neN; f€C),

it being understood conventionally that (0)y := 1 and N, C are the sets of positive integers
and complex numbers, respectively. Shen employed a technique wherein he expanded each
of the three expressions in (2) as power series centered at ¢ = 0. By aligning coefficients
of equal powers in the resulting Maclaurin series, he unveiled intriguing identities, as
illustrated in [1], Equation (19):

1 27 k .
- 1 ’1 _ it
o /0 n e

dt:(—l)kg Z‘i g (keN). 4)
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Here, the ¢} is defined as
k=1 gn
g =y, on
ol
= n! nl

where s} represents the Stirling numbers of the first kind (see, e.g., [2], Section 1.6). Several
specific instances of (4) were elucidated (refer to [1], Corollary):

1 it

E/o log |1 — | df = 0, )
o [Togt 1~ at = 122 ©)
ol 08 = 25\
Lo 3 it qp_ 9
5= [ 1081 —¢"dt = ~52(3), @)

and | 5

e 410 _ it qr = 27
- /0 log* [1.— | df = 2¢(4). 8)

Inspired by Shen’s findings [1], researchers in [3] tackled the task of solving a sequence of
logarithmic integrals, defined as

1

27 . .
oy /0 11+ re|* log™ |1 + re't| dt. )

Here, n ranges over non-negative integers, m varies from 0 to 4, and r is constrained to the
range between —1 and 1. Here are the formulas being recalled:

1
27T

=¢p(n+1) i (Z)erk - i (Z)zl/)(k—l- 1) r2=%;

k=0 k=0

27 . .
/ |14 re''|* log 1 + re't| dt
0
(10)

l/27T|1—|—re"t|2”10 211 +re't|dt = ) Ai(n,r) (11)
T Jo g ~ AN A

)
where )
Ar(nr) = {292 (n+1) +9/(n+1)} ) (Z) 72,
k=0
0 2n+-2k

Ay(n,r) = 2 r

2/
=1 k("R

and
n

n 2
As(n,r) = —4p(n+1) ) <k> Plk+1) 22

k=0

o\’ o n—2k.
+k§(k) {292 (k+1) = ¢/ (k+1) fr22%;

2 r2m . 3 .
—/ 114 re’ [ 1og? |1 4 re't|dt =
Jo i

3
Bj(n, r), (12)
-1

where
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00 2n+2k oo 2n+2k
By(n,r) =6p(n+1) 2 ! ylk)r 5
k=1 k2 ”*k) k:l k2"

and
n

2
Bs(n,r) =6p(n+1) 2 (Z) {2¢2(k+ 1) — ¢’(k+ 1)}r2"—2k

k=0

—6{2¢*(n+1)+¢'(n +1}Z<) (k+1)r2n—2

_ i (2)2{4473(](4-1) —61[](k—|—])¢’(k+1)+¢(2)(k+1)}r2n72k;
k=0

4 27T i 4 . 3
E/o 11+ reit 2 Tog* [1+ ref'|dt = Y Ci(n,7), (13)
. -

where

Ci(n,r) = {pPn+1) +8y(n+1)p@ (n+1)

+
Fo @)Y 48t 1)} Y <Z r,
k=0

24p?(n+1)¢'(n+1)
2

00 1,2n+2k

Co(n,r) =12{2¢*(n+1)+¢'(n+1)-¢(2)} }_

=PICO

0 (2)
+1 { 17[72 H 1} r2k+2n
k:l K2 (";k)
k) J2k+2n
— 48 +1) ,
l[J " Zl K2 n+k)

C3(n,r) =—{32¢°(n+1) +48¢p(n+1)p'(n +1) +89p@ (n +1)}
n k4 1) p2n—2k
xg()(k) Pkt 1)r
+12{2¢*(n+1) +¢'(n+1)}
n 2
x Y (7)) 2¢2(k+1) — g/ (k+1)} 2%
(1) vt —ven)

n

2
+8yp(n+1) ) (Z) {6pk+1)y'(k+1)

k=0
— 43 (k+1) —pP (k+ 1)} 212

+E<> Btk +1) + 8¢k +1)p@ (k+1)

2492 (k+ 1) ¢/ (k+1) +6 {9/ (k+ 1)} — 9@ (k+1)] P22,

In this investigation, we delve deeper into the analysis of these integrals in (9), partic-
ularly focusing on the cases where n € Z>, m =5, 6, and —1 < r < 1. Our approach is
systematic and firmly grounded in algorithmic principles, facilitating a natural extension
of our conclusions to situations where n € Z>g, m € N, withm > 7 and —1 <r < 1. Also,
we elucidate specific instances derived from our primary findings, thus broadening the
practicality and significance of our results for a broader spectrum of inquisitive researchers.
Furthermore, it is hoped to utilize this algorithmic method to develop a Mathematica
symbolic computation package for evaluating the integrals in (9).
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To achieve our objective, we bring to mind the following functions and symbols. The
psi (or digamma) function, denoted by 1 (7), is defined as

() = 5-{1ogT (1)) = P e o\ 22). 14)

Throughout this discussion, Z represents the set of integers, and Z< (Z>,) denotes the
set of integers less than or equal to (greater than or equal to) some ¢ belonging to Z. The
polygamma function, denoted as y(*) (1), is defined by

0. 4 EPIVAS YRR N S
PO = g ) = (DT L -

= (-7t +1,7) (L€N, 5€C\Ze).

Here, (O (37) = ¢(1), and {(s, ) represents the generalized (or Hurwitz) zeta function,
defined as
> 1
l(s,n) = ——— R(s) >1, 7€ C\Zg). (16)
&M=L gy > L\ 2a)
Additionally, {(s, 1) =: {(s) is the Riemann zeta function. The polygamma functions obey
the following functional equation:

v) oWy = (1 Y L
#0049 ) = ()W Y -

(m, Ve Z;()).

The generalized binomial coefficient, denoted as (}), is defined in terms of the gamma
function as

u\ F(u+1)
(v) “Torru—orn (CECH#EC\Ze). (18)
Given that ﬁ =0 (z € Z«), from Equation (18) we deduce that
(n)_ 1 .F(n+1)_0.1"(n+1)_0
k) Tn-k+1) T(k+1) =~ T(k+1) (19)

(n, k € \Z=o; k > n).

)

The generalized harmonic number H,SS of order s is given by

| =

n
HY =Y = (n€Zs,5€C). (20)
k=1
Here, H(()S) = 0 and H,Sl) := H,, denote the regular harmonic numbers. In all cases, an

empty sum is to be understood as zero. Here are the recalled relations rephrased:
Hy=v+y¢n+1) (n€Zy), (21)

where 7 is the Euler-Mascheroni constant (referenced in, for example, [2], Section 1.2);

HY = gm+1) + (_ni‘)mlp(m)(n +1) (meN,n e Zs) (22)
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(see, for instance, [4], Equation (1.25); and (15)). These Equations (21) and (22) are employed
(m)

to define extended harmonic numbers H,"’ of order m € N with indexn € C\ Z<_1 as
follows (referenced in [5]):

o [ R+ (m=1),
H; " = _qym-1 23
' { Lm) + Sl gy £1) (m € Zoo). *)
Combining Equations (17) and (20), we derive
Pa P (0 41) — =P (0 —j+1)
= ()T P (g = pyt{HY T 24
(€, j,q, pPE€EZ20,0<p<q 0<j< ).
The polylogarithm function Li,(z) is defined by (see, for instance, [2], p. 185; [6])
A - <
Liy(z) =) = (|z| £1, n € Z3y)
k=1 (25)
i
:/ Y1l 44 (4 € 29).
0 t
Clearly, we have
Li,(1) =¢(n) (n € Zxy). (26)
The dilogarithm function Li,(z) is defined by
. =2z Z log(1—t
Lip(z) := ) 7= —/0 #dt (|z| <1). (27)
n=1

The polylogarithm function Li, (1) of order z € C can be extended as follows (refer to, for
example, [2], p. 198):

um

— (28)

Li(u) = .
1

agk

m

(zeCand |u| <1; R(z) >1and |u| =1).

2. Preliminary Lemmas

This section revisits several findings, presenting them as lemmas, and introduces a
new lemma.

Lemma 1. The following assertions are true:

(i) T(z)and ¢(z) are meromorphic functions across the entire complex z-plane, exhibiting simple
poles at z = —k (k € Zx). The residues at these poles are as follows:

k
Iigsk I'(z) = linjk(z +K)I(z) = (;{1') (k € Z>p) (29)
and
ZIie_sk P(z) = zlinjk(z +k)yp(z) = -1 (k€ Zxp). (30)

(ii) The reciprocal of the gamma function, ﬁ, is an entire function that displays simple zeros at
z=—k (k S Z;()).
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(iii) The Laurent series expansion for (z) around z = —k (k € Zx) is expressed as
$E) =~ v+ + 1wz 0" (31)
n=2

where the coefficients w,, are determined by
an = (~1)" () + H". (32)

(iv) The Laurent series expansion for the polygamma function p(*) (z) around z = —k (k € Z=g)
is provided as

(-t &

pl0(z) = Rt + n;é {n}ewni1 (z+K)"" (LeN), (33)

where ¢ € N, {A}y (A € C) denotes the falling factorial given by

(1 (¢ =0)
(A '—{ AA=1)---(A=L+1) ((L€N),

and wy is determined as in Equation (32).

Proof. One can consult the proof offered in [7], Lemma 1. Additionally, references [2], pp. 4
and 24, and [8], Section 1.2, provide relevant information. Equation (33) is obtained by
iteratively differentiating both sides of (31) ¢ times. Formulas (31) and (33) are documented
in reference [9], conveniently placed within a box at the beginning of page 20. O

Lemma 2. The following statements are valid: For k € Z >y,

¥(z) _ k-1
Zﬁk@ = (=1)"k, (34)

- Y(z) o2
Jim 2y = RS (35)

and e 2)
¢ -z)
I TErEr %)

Proof. For (34) and (35), one can consult [7], Lemma 2, and [3], Lemma 1.1. For (36), we

find from (29) that
o yty(l-z) D Y P —2)
fai= i, i VR
1k i T YA 2)
_( 1) k!{zlﬁkr(z)jLzlﬁk F(Z) }
= (—1)kk! {0+21311k l”’(rl(;)z) }

For L3 = 0, it suffices to show that

o p(-z) _
zl—1>n—1k l"(z) =0
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Recall the familiar identity (see, e.g., [2], p. 3, Equation (12)):

I'(z)T(1-2z)= (ze C\Z). (37)

sin(71z)
Taking the logarithmic derivative of both sides of (46), we obtain

p(1-z)  ¢(z) meos(nz)  ¢(z)
I@ T & T@sintm) T L33 cosna),

which, upon using (34), gives

l/J(l _Z) _ =179 _ | —
lim, OR (=1t 4+ (=1)*k! = 0.

O

Remark 1. Considering (23), Equation (36) is an extended version of

: H_,
S T@PETR

Likewise, an analogous limit can be derived:

. H™
SaS e

Lemma 3. Let r € R, the set of real numbers, where |r| < 1and x > 0. Also, let p € N. Then,

op—1 r2m ) .
?/o |1+ 7[> log? |1 + re't| dt

o Pl p—1 di [x\?
LR COED o
X {4)(”’1’” (x+1) — P 1D (x — k+ 1)} 72k,

Here,

i@zzz(i)z{w(wl)w(xk+1)}; (39)
A
+2{y/(x+1) — ¢/ (x—k+ 1} ;
i (3)'= () Btoern v xeny

F12{p(x+1) —px—k+ D Hp' (x+1) —¢'(x—k+1)} (41)
+2{p D (x+1) —p@(x —k+ 1} ;

(40)
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4 x 2 x 2
;;(k> = <k> [16{1p(x+1)—1p(x—k+1)}4

+48{p(x+1) —p(x —k+ 1)} (x +1) — ¢/ (x —k+ 1)} 42)
+16{p(x+1) —p(x —k+ 1) }H{pP(x +1) —p@ (x —k+1)}
+12{1p’(x+1)—w’(xfk+1)}2+2{1p(3)(x+l)7¢(3)(x—k+1)}};

(
(

2 2
ﬂ(i) = (i) {32{¢(x+1)71p(x—k+1)}5
+160{(x +1) = p(x —k+ 1)} {'(x+1) = ¢/(x —k+1)}
+80{p(x +1) —p(x —k+ D {pP (x +1) 9P (x —k+1)}
F120{p(x+1) —p(x —k+ D)/ (x +1) — ¢/ (x —k+ 1)}
+20{p(x+1) = p(x =k + )P (x +1) = p¥ (x —k +1)}
+40{y'(x +1) — ¢/ (x —k+ D }{pP (x +1) 9@ (x —k+ 1)}
+2{lp(4)(x+1)_¢(4)(x—k+1)}]

(43)

Proof. One can refer to [3], Theorem 2.2 for consultation. Indeed, first, we revisit the
content in [3], Theorem 2.1: Let r € R with |r| < 1 and x > 0. Then,

1 27 it it
E/ |1+ re" | log |1+ re'| dt
0
0 x 2 " (44)
=% (§) D —plx—ke )
k=0
In particular, when x = n € Zy,,
1 27 , .
7 / |1+ re' | log |1 + re't| dt
0
(45)

=¢p(n+1) i (’Z)Zr% _ i <Z>2¢(k+ 1) 22

k=0 k=0

The proof of (44) heavily relies on the following five identities provided in [3],

Lemma 1.3: -
I(z)T(1—z) = sin(72) (ze C\Z); (46)
P+ =pe) + 2 @)
r
ng;g = O(z"‘*’g) (]z| = oo, |argz| < 7); (48)
P(z) = longrO(i) (]z| = oo, |argz| < m); (49)
lP(P)(Z) = O(;p) (|z] = oo, |argz| < 7, p € N). (50)

After performing (p — 1)-fold differentiation on both sides of Equation (44) with respect
to the variable x, while applying term-by-term differentiation on the right-hand side, we
arrive at Equation (38). This result is established by leveraging the identities (46)—(50), along
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with Leibnitz’s derivative formula for the product of two functions. The proof methodology
closely parallels that of (44), although the specific details are omitted for brevity. [

Lemma 4. The following assertions are true:

) 2 n 2
Z <Z> 2k = Z (Z) 12, (51)

k=0 k=0
0 n 2 n n 2
Y (k) pn—k+1)r* =Yy (k> Pk +1) 2% (52)
k=0 k=0
00 2 n n 2
¥ () w0 =y () e
=0 \k k=0
i p2n+2k (53)
+ 5
e
00 n 2 n n 2
Y ( ) Y'(n—k+1)r* =Y ( ¢ (k4 1)r2n—2
i=o \k i=o \k
i 7,2;1Jr2k (54)
+ 57
k=1 k2(" 15
© /u 2 n/u 2
Y <k) fn—k+1)r* =Y <k Flk+1) 2k, (55)
k=0 k=0
Here, the function f(z) is meromorphic and satisfies
°f
f(z) = Z+k+O(z+k) (z = —k), (56)
where cg is a constant independent of the variable z;
) n 2 n n 2
Y. ( ) gn—k+1)r*F = ) ( ) gk +1) 22
k=0 k k=0 k 7
o 2nt2k (57)
+cq 5
k=1 k2(" R
Here, the function g(z) is meromorphic and satisfies
c
g(z) = ﬁ +0(z+k) (z— —k), (58)

where cg is a constant independent of the variable z.

Proof. Upon finding that
o0 2 n 2 0 2
n\" ok _ (”) 2% (”) 2%
E() =L ()2 2 ()
k=0 (k) k=0 k k=n+1 k

and recognizing that the second sum evaluates to zero according to Equation (19), this
confirms (51).
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We obtain
) 2 2
y <Z> Y —k+1)* =y (Z) Y(n—k+1) 1%
k=0 k=0
2
+ Z () (n—k+1)r%*
k=n+1

By letting k — n — 1 = k’ in the last summation and removing the prime from k, with the
aid of Equation (34), we derive

0 2
)3 (Z) p(n—k+1)r%
k=n+1
_ o0 (n!)z 1 . 55 rn
S L kP TR AT T
oo nl)Z o N
- L e 0 (U e

Thus, we arrive at (52).
Splitting the following summation into two parts, we obtain

i<z>2¢(n—k+1 i() "(n—k+1)r%

k=0

(59)
+ Z ( ) (n—k+1)r*
k=n+1
Letting k — n — 1 = k/, and then, removing the prime on k, we derive
0 2 0 2
n ¥ (k) p2n+2k+2
Y (n—k+1)r
k:;rl <k> kZ;') ”+k+1) 12 F( 0z’
_ i (n!)? im (“) 2n2k+2
S+ k+1)12 use 26T )2 '
Using Equation (35), this leads to
i (n) 2 /( ) % i p2n+2k+2 i p2n+2k
Y (n—k+1)r = .
k1 N 0 (k+ 1205 SR
This expression is then substituted into (59) to yield (54).
Dividing the given sum into two distinct parts yields
0o n 2 n n 2
) <k> fn—k+1)r% = ) (k) fn—k+1)r%
k=0 k=0 (60)

+ Z <>2 (n—k+1)r%

k=n+1

By substituting k — n — 1 = k’ in the latter summation and removing the prime notation,
using Equations (29) and (56), we derive
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) 2
) ( ) fn—k+1)r%
k=n+1
= i n')z 1 . lim ; r21’l+2+2k
= {(n+k+1)! 12 T(—k) ok (x + k) T(x)
o (n1)? kpp . 2
_ N\ 0. 1. 2n+2+2k —
; CES TS (—1)%k!-r 0.
Thus, we deduce (55).
Breaking down the given summation into two segments yields
) n 2 n n 2
Y. (k) gm—k+1)* =Y <k) gn—k+1)r¥*
k=0 k=0 61)

+ Z () (n—k+1)r¥*

k=n+1

By substituting k — n — 1 = k/, and then, removing the prime notation from k, we derive

> (n)? = (n!)? 8(=k) oy

k:;_l <k> g(l’l —k—l—l)I’Zk ZO {(n+k+1) }2 r( k)z 1’2 +2k+2
- (n!)? g(u) o
; (kD02 ™ T2 P,

Using Equations (29) and (58), this simplifies to

i (Tl) 2 ( L ) ok i p2n+2k+2 i p2n+2k
gm—k+1)r" =cq =cq .
ktmi1 \K 0 (k+1)2 (”+k+1) Sy

This expression is then substituted into Equation (61) to yield Equation (57). O

3. Main Results

We delve deeper into solving these integrals in (9), considering n as a non-negative
integer, and allowing m to vary from 5 to 6, while keeping r within the range of —1 to
1. Our methodical approach is firmly grounded in algorithmic principles, facilitating a
smooth extension of our results to cases where 7 is a non-negative integer, m is greater than
or equal to 7, and r remains within the boundaries of —1 to 1. Here are the main results.

Theorem 1. Let n € Zxand r € R with |r| < 1. Then,
§/2n|1+re”|2” log® |1+ re't|dt = i Dj(n,r) (62)
T 0 ]:1 ] 4 7

where

Di(n,r) = [1/;(4)(;1 +1)+10p(n + 1)p® (n+ 1) + 4092 (n + 1)p@ (n + 1)
+ 209 (n 4+ 1)p@ (n +1) + 809> (n + 1)y (n + 1)

60p(n+ 1) {9 (n+ 1)) +1693(n +1)] Y (n)zrzk;

k=0 k
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Dy(n,r) = [f 1093 (n+1) — 80yp(n + 1)p® (n + 1) — 24092 (n + 1)y (n + 1)

n

_ 60{'1[],(71 -+ 1)}2 — 80¢4(n + 1)] Z (Z)z w(k + 1) r2n72k;

k=0

D3(n,r) =40{pP (n+1) +6p(n+1)¢'(n +1) + 49> (n + 1)}
XZ() 2(k +1) r22k
Dy(n,r) =—20{4p>(n + 1) + 69 (n + 1)y’ (n+1) + @ (n +1)}

8 (1) v

Ds(,1) ==209/(1+1) ) <k>2

k=

AW D (k1) = 69k 1)y (k1) + 49 (k1)) 2

0
1)
n 2
Do(nr) =109 (n +1) (Z) { =9 (k+1) +8p(k+ 1)p@ (k+1)
k=0
= 2497 (k+ 1)y (k+ 1) + 6(y/ (k +1))* +8¢* (k + 1) } 1277
2
Dy(n,r) =8¢*(n+1) ) (’; { = 39p@ (k+1) +30p(k+ 1)¢p' (k + 1)
k=0
— 2093 (k +1) — 29p@) (k + 1)} 272
)”: < ) P (k+1) + 109k +1)p®) (k +1)
k=0
— 4092 (k+ 1)@ (k+1) + 209/ (k+ 1)@ (k + 1)
+ 80y (k+ 1)’ (k+1) —60p(k + 1) (¢ (k+1))?
—161/)5(k+1)}r2”*2k;
Dy(n,r) =20 {4p*(n+1) + 6p(n + 1) (n + 1) + ¢ (n + 1)}
ol r2n+2k

X e —
2 7
=yt

0 2n+2k
Dro(n,r) = —120{2¢(n+1) +9'(n + 1} }, 9(K) kz(+k>2
k
© 2n+2k
Diq(n,7) = 1209p(n +1) k; (2¢2(k) - ¢(2) - H ) k:(”;k)z;

Dua(n,r) = —40 Y {29°(K) —39p(0)(2(2) + BZ,) — 13) + HY,)
k=1
72n+2k
“ e ("

Proof. The proof follows a similar path as that of Theorem 2. Specific details are left
out. O
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Theorem 2. Let n € Zxqand r € R with |r| < 1. Then,

16 (27 : :
p= |14 ret|?" log® |1 + re't| dt
0

(63)

Here,
A1(n,r) = Ay (n) f <Z>2 2% (64)
where
Ar(n) =32p(n +1)° +2409(n + 1)*p'(n +1)
+3601p(n + 1)y (n +1)2+ 60y (n+1)°
+1609(n +1)%p@ (n +1)
+2409(n + )¢ (n + 1)@ (n + 1) + 209 (n + 1)?
+60y(n+1)%p (n+1) + 309 (n + 1)p®) (n + 1)
+129(n+ 1)@ (0 +1) + 9 (0 +1).
ratnr) = 32 (1) datnto
k=0
5 3t + 602 H ), +2180{H,Ez_)1}2
= kz(n+k)
o 180 HY, + 480 (k) H) — 120 72 (k)2
k=1 kz("tk)
—720 p(k)2 H, + 240 (k)* — 4802 (3) (k) 2042k

i R

1’2”+2k

(65)

r2n+2k

where

Aa(nk) = —pO(n—k+1)+12¢p(n —k+1)p® (n —k 4+ 1)
—60y(n —k+ 1293 (n —k+1) +30¢' (n —k+ 1)y (n —k+1)
+160p(n —k+1)3p@ (n —k +1) —2409(n —k+1)*¢' (n —k +1)
+20p@ (n —k+1)> = 2409 (n —k + 1)’ (n —k + 1)@ (n —k +1)
+360p(n —k+1)%¢'(n —k+1)% — 609’ (n — k+1)°
+32¢(n — k+1)°.

n 2
As(n,r) =A3(n) Y (Z) Pp(n—k+1)r* (66)



Symmetry 2024, 16, 932

14 of 32

where

where

where

where

—12p®(n+1) - 1204;(;1 + 1)y +1)
— 480y (n +1)%y
— 960y (n+1)%y
—192¢(n+1)°.

—2409' (n +1)p@ (n + 1)
— 7209 (n+ 1)’ (n + 1)

2
n,r) =As(n) ). (Z) Pp(n—k+1)2r%

Cn+1)+ 4801/)(71 +1)p®@
1) 4 360¢' (n + 1) + 480y (n + 1)*.

+ 19 (n +1)

— 240y (n 4+ 1)* — 720p(n + 1)%¢' (n + 1) — 180y’ (n + 1)

)1—0—24077: p(k)

+1p(n+1)2

+4807(3 +1)y ——,
ZB)p(n )k;l@ (”Zk)z
Ae(n,k) = —12p@)
+1209p(n —k+ 1) (n — k4 1) + 2409/ (n —
+960p(n — k + 1)y (n —
—192¢(n — k+1)°.

—480p(n —k+1)*p@ (n —k+1)

—720p(n —k+ 1)y’ (n —

n 2
Ay(n,r) = 2 n A (n, k 2k
7(n,r) =9p(n+1) k;o (k) 7(n,k)r

, & 1440 (k)2 —

2 2 r
— 1207t (n+1) Z .

(67)

(68)

(69)

(70)
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where

where

where

where

where

= —609®) (n —k+1) + 4809 (n —k+ 1)p® (n —k +1)
—k+1) + 360y (n — k4 1)?

/\7(?1,]()
— 14409 (n — k +1)%¢' (n
+480p(n — k+1)%

Ag(n,r)

ot £ (2

k=0

—960p(n+1)° Y )2k
k=1 k2( ; )

Ag(n,k) = — 16093 (n —k+1) +960p(n —k+1)¢'(n —k +1)
— 640 (n —k+1)°.

"n+1) i() Ag(n, k) r

Ag(n,r)

360 g2

. 720 (k) k=1 2n+2k

! 1

00 r2n+2k

—k+1)+2409p(n —k+ 1)@ (n —k+1)
720¢(n —k+1)2¢' (n —k +1)

Ao(1,k) = — 3093 (n
+240yp(n —k +1)* —
+180¢' (n — k+1)2

n 2
Alo(i’l,i’) lp(z) Tl+1 Z( ) /\10

o 240#) Z 2n+2k
k=1 k2( Z )

= —160p(n —k+1)° +240p(n —k+1)¢'(n —k +1)
—40p@ (n —k +1).

)\10(”/ k)

An(n,r) =p(n+1)y'(n+1) i, ( ) A (n k) 2

2n+2k
7

— 14409 (n + 1)y’ (n +1) Z
k=1 k2 ;g)

Ai(n, k) = — 2400 (n —k+1) —960p(n — k4 1)°
+ 14409 (n —k+ 1)y’ (n —k +1).

(71)

(72)

(73)

(74)
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By using (39)—(43) and expanding the summands, we obtain

[e9)

-L ( ) {0 0n+1) =P —k+ 1)}

o

= ( ) [10p(n + 1)p® (n+1)

k=0
—10p® (n+ Dp(n —k+1) —109p(n + D™ (n —k + 1)
+10p(n —k+ )™ (n —k + 1)} 2k

(o]

(n,r) =Y. (Z)z [40¢2(n +1)p® (n+1)

k=0

—80¢(n + 1) (n+ V)p(n —k+1) + 4093 (n + 1) p(n — k +1)?
+20¢ (n +1)p® (n+1) — 209 (n + 1)y (n —k + 1)
—40yp(n+1)2pP) (n —k+1) +80p(n + 1) p(n —k+1)p® (n —k 4+ 1)
—40yp(n —k+ 1)@ (n —k +1) — 209’ (n + 1) (n —k +1)
+20¢" (n —k+ 1)y (n —k + 1)} 12k

Qy(n,r) = i (Z)Z[soq;(n 1)@ (04 1)

k=0
— 2409 (n 4+ 1)p(n +1)2p(n — k+1) + 2409 (n + 1)@ (n + 1) p(n — k +1)?
— 80y (n+1)p(n —k+1)% +120p(n + 1)y’ (n + 1)@ (n + 1)
—120¢' (n+ 1) pP (n+ 1) p(n —k+1) —1209(n + 1)p@ (n + 1)’ (n —k + 1)
+ 12092 (n + 1)p(n — k+ 1)y (n — k +1) 4+ 2092 (n + 1)?
—80yp(n+1)%p@ (n —k+1) 4+ 240p(n + 1)2p(n —k + 1)p@ (n —k +1)
— 2409 (n 4+ 1) p(n —k+ 1) (n —k +1) +80y(n — k+ 1)@ (n —k 4+ 1)
—120p(n+ D' (n+1)pP (n —k +1) + 1209’ (n + 1) p(n —k + 1)@ (n —k + 1)
+120p(n+ 1)y’ (n —k+ 1P (n —k+1)
—1209p(n—k+ 1)’ (n—k+1)p@(n—k+1)
— 409D (n +1)p@ (n — k+1) + 209 (n — k + 1)2] r2k

16 of 32
Proof. Setting p = 6 and x = n € Z>( in (38), we find
Te(n, ) 7/' 11+ ref* 2" 1ogb |1+ ret| dt
EEO{@ ( )2}
B j
k=0 j=0 dx x=n (75)
x{lp5] (n+1) )(n—k—i-l)}er
5
=: Z Qj(n,r)
j=0
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Qu(n,7) » (:) 80y (n +1)4¢ (n+1)

—320¢(n+1)3 "4+ 1)p(n —k+1) +480¢(n +1)>¢' (n + 1)p(n — k +1)?
—320p(n+1)¢' (n + 1)p(n — k+1)> + 809" (n 4+ 1)p(n —k +1)*

+2409(n +1)2¢" (n +1)% — 480 (n + 1)y (n + 1)*p(n —k+1)

+ 2409 (n + 1) (n — k +1)% + 60y’ (n + 1)

—80yp(n+1)* (n —k+1) +320p(n +1)3p(n —k+1)¢'(n —k+1)
—480y(n +1)2p(n —k+1)%¢' (n —k+1) + 3209 (n + Dp(n —k +1)3¢ (n —k +1)
—80y(n —k+1)*¢ (n—k+1) —480p(n +1)%¢'(n+ 1)’ (n —k +1)

+960yp(n+ D' (n+ V)yp(n—k+ Dy’ (n —k+1)
— 480y (n + 1)p(n —k+1)%9'(n —k +1)
— 1809 (n 4+ 1)%¢' (n — k +1) + 240 (n + 1)%¢' (n — k +1)2

—480y(n+ 1)y(n —k + 1)y (n —k +1)% +240¢p(n — k + 1)%¢'(n — k + 1)?

+ 1809 (n+ 1) (n — k+1)% — 609/ (n — k +1)> +809p(n + 1)/ (n + 1)@ (n +1)
—80¢' (n+1)p@ (n+1)p(n—k+1) —80p(n+1)p@ (n+1)¢'(n —k+1)

+ 809 (n+ V) yp(n —k+ 1) (n —k+1) —80p(n + 1)y (n+ 1)p® (n — k +1)

+ 80y (n+1)p(n —k+ 1)@ (n —k+1) + 80y (n + 1)y (n —k + 1)@ (n —k +1)
—80y(n—k+1)p' (n—k+1)p@ (n—k+1) +10¢' (n +1)p® (n + 1)

10O (n+ D' (n—k+1) =109/ (n + 1) p® (n —k +1)

+10¢' (n — k+1)p®) (n — k + 1)] r2k

Qs(n,7) = i (’;)2 [321[1(71 +1)8 —192¢(n + 1)59(n — k + 1)

k=0
+480p(n + )*p(n — k+1)* — 6409 (n +1)3p(n — k +1)°
+480y(n +1)2p(n —k+1)* —192p(n + 1)gp(n —k +1)°
+32¢(n —k+1)0 +160p(n + 1)*p' (n 4+ 1)
— 640 (n +1)%¢ (n 4+ 1) (n —k +1) +960p(n +1)%¢' (n + 1)p(n — k +1)?
—640p(n+ 1)y (n + 1)p(n —k + 1) +160¢' (n + 1)yp(n — k +1)*
+1209(n +1)2¢' (n +1)% — 240 (n + 1)y’ (n + 1)*p(n —k+ 1)
+ 1209 (n 4+ 1)%p(n — k+1)% — 160 (n 4+ 1)y’ (n —k +1)
+ 6409 (n +1)3p(n —k+ 1) (n —k+1) — 9609 (n + 1)*p(n —k +1)%¢'(n —k +1)
+ 6409 (n + 1)p(n —k+1)3¢ (n —k+1) —160¢(n —k +1)*¢'(n —k +1)
—240p(n+1)%' (n+ 1)y’ (n —k +1)
+480p(n+ D' (n+ Vp(n —k+ 1)y’ (n —k+1)
— 2409 (n + 1) p(n —k+1)%¢'(n —k+1) + 1209 (n + 1)>¢p' (n — k +1)2
— 2409 (n+1)yp(n —k+ 1)y (n —k+1)> +120p(n — k+1)%¢'(n — k + 1)?
+80yp(n+1)3p® (n +1) — 2409(n + 1)2p@ (n + V) yp(n —k +1)
+240p(n 4+ 1)@ (n + 1)p(n — k+1)% — 809 (n + 1)p(n — k+1)3
+40p(n+ 1)y (n +1)p@ (n+1) — 409’ (n + D)@ (n + 1) p(n —k +1)
—40p(n+ DD (n+ 1)’ (n —k+1)



Symmetry 2024, 16, 932

18 of 32

Then, recollecting the terms in Qj(n, r)(i=01,...,

()
(ii)

(i)
(iv)

+40p @ (n+ Vyp(n —k+ 1)’ (n —k+1) —80y(n +1)39p (n —k + 1)

+240p(n +1)2p(n —k+ 1) (n —k +1) — 2409 (n + D p(n —k +1)29p@ (n —k + 1)
+80y(n —k+ 1% (n —k+1) —40¢(n + 1)y (n+ 1)pP (n —k +1)

+40¢' (n+1)p(n —k+ 1) (n —k+1) +409(n + 1)y’ (n —k + D@ (n —k +1)

— 409 (n —k+ 1) "(n—k+ 1)@ (n —k+1) +209(n +1)2p®) (n +1)

— 409 (n + 1) (n +1)p(n—k+1) +2093) (n+ 1)p(n —k +1)2

—209(n +1)2p®) (n —k+1) + 409 (n + 1) p(n —k+ Dy (n —k +1)

—20p(n —k+ 129 (n —k+1) + 29 (n + 1)yp® (n +1)

2B (n+Dp(n—k+1) —29p(n+ 1™ (n —k +1)

F2p(n—k+1)pH )(n—k—i—l)] r2k

5) in the eleven sums as follows:
Collecting the constant terms which are not involved in the summation index k, and
using (51), we derive (64).

Collecting the terms which are solely involved in the summation index k, we obtain

k=0
2 oS 2
= Ar(n, k r2k Ar(n, k r2k
kzo(k) 2(n,%) H;H(k) A(n,%)
We have
> (m\? 0 k) 2k — = (n!)? ,)‘gﬂ)(*k)rzn+2+2k
k;l(k) M = Y R TR '
where
A (k) =~ (=k) + 129 (—k)p) (k)
— 60 (—k)*p® (—k) + 309" (—k)p® (—k)
+ 1609 (—k)> D (—k) — 2409 (—k) ' (—k)p® (—k)
+ 209 (—k)? — 2409 (—k) 9’ (—k)

+ 3609 (—k)2y' (—k)? — 60 (—k)> + 32¢(—k)°.

By using (31) and (33), we obtain that, as z — —k,

/\ga)(z):37'c4+607r2H( +180{H®}* — 180 H* + 480 (k + 1) H

(z+k)?
L 1207 (k1) 720k + 12 H® + 240 (k +1)*
(z+k)?
217(3) (2) ;(3)
_ 4803 (i +1) | 2BOCHD A 18OHIHY vete
(z + k)2 Z+k 2T

With the aid of (57) and Remark 1, we obtain (65).

Collecting the terms which are solely involved in (n — k + 1), and using (52), we
obtain (66).

Collecting the terms which are solely involved in ¥(n — k + 1)?, and using (53), we
obtain (67).
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(v) Collecting the terms which are solely involved in ¢/ (n — k + 1), and using (54), we
obtain (68).
(vi) Collecting the terms which are solely involved in (n + 1), we obtain

] n 2
Ng(n,r) =p(n+1) Z (k) Ag(n, k) 2k

k=0
— w(n n”2n1,2k00”2n1,2k
— +1>{k§(k) Nn ks Y (k) Aol k) }
We find
©  /n\ 2 i (n!)? )téa)( k) opioiok
k_%(k) Al = L o D T
2 (2 A9,
_,;){(k+n+1)!} 7 lim, 1‘6‘( )2 P
where

D (—k) = — 129 (k) — 4809 (—k)*p (=)

+ 120¢( K)p) (—k) + 2409 (k) (k)

+9609(—k)>¢' (—k) — 720 (—k)y' (—k)?
—192¢p(—k)°.

By using (31) and (33), we obtain that, as z — —k,

—480 H®) + 240 72 (k + 1) + 1440 (k + 1) H
(z + k)2
4807(3) ~ 9609 (k +1)* , 960k +1)* ~ 48004(3) p(k + 1)
(z+k)? z+k
|36+ 7202 H® +2160{ H?' }* — 2160H* + 4800 (k + 1) H\
z+k
960 72 (k +1)2 + 5760 H>) p(k + 1)2
z+k

/\(ﬂ)( ) =

+

+O0(z +k).

Finally, by employing the approach outlined for obtaining A, (,7), we arrive at (69).
(vii) Collecting the terms which are solely involved in ¢(n + 1)2, we obtain

[e)

2
Az(n,r) =p(n+1)> Z (Z) Ay (n, k) 17,

k=0
where
A7(n,k) = — 6093 (n —k +1) + 4809 (n —k + 1)@ (n —k +1)
— 1440 (n —k +1)%¢'(n —k +1) + 360y’ (n — k + 1)
+ 480y (n — k +1)%.
Then,

A7 (k) = —60p (k) + 4809 (—k)p? (k)
— 14400 (—k)?y' (—k) + 3609’ (—k)? + 480y (—k)*.
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By using (31) and (33), we obtain that, as z — —k,

12072 — 720H7 + 1440 g (k + 1)2

(a)
A7u (Z) (Z+k)2
—2400H>) + 960729 (k + 1) + 57609 (k + 1) H.”)
+ z+k
—1920¢(k +1)% + 24
+ O 4;+)k+ 005(3) +O(z + k).

By following the method detailed for deriving A, (n,r), we reach Equation (70).

(viii) Collecting the terms which are solely involved in ¢(n + 1), we obtain

(ix)

9] 2
_ 3 n 2k
Ag(n,r) =p(n+1) kgo (k) Ag(n, k) ¥,
where
Ag(n, k) = — 16093 (n — k 4+ 1) + 9609 (n — k + )¢’ (n — k + 1)
—640p(n — k4 1),
Then,
M (—k) = = 160p®) (—k) + 960p(—k) 9/ (n — k+1)
— 640y (—k)°.
By using (31) and (33), we obtain that, as z — —k,

(2)
AD () = —3207% — 1920H,” + 19209 (k + 1)?
8 z+k

+O(z+k).

960y (k + 1)
(2 +k)2

By adhering to the prescribed procedure for deriving Ay (n,r), we arrive at Equation (71).
Collecting the terms which are solely involved in ¢’ (n + 1), we obtain

[e)

2
Ng(n,r) =¢'(n+1) ) (Z) Ao(m, k) 12,

k=0
where
Ao(n, k) = — 309 (n — k +1) +240p(n — k +1)p® (n —k + 1)
+ 240 (n — k+1)* = 7209 (n — k+1)*¢'(n —k + 1)
+180¢' (n — k4 1)2
Then,

A7 (k) = = 309) (—k) + 2409 (—k)p ) (—K)
+ 2409 (—k)* — 7209 (—k)%¢' (—k)
+ 180y’ (—k)2.
By using (31) and (33), we have that, as z — —k,
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—607% — 360H>) + 720 p(k + 1)
(z+k)2
—1200H>) + 480729 (k + 1) + 28809 (k 4+ 1)H\>
+ z+k
N —960¢(k +1)3 + 12007 (3)
z+k

Ag(z) =

+O0(z+k).

By following the designated procedure for deriving A, (n,r), we reach Equation (72).
(x) Collecting the terms which are solely involved in () (1 + 1), we obtain

[e9)

Aao(n,r) =pP(n+1) 3 (Z)Z Ao (n k) 1%,

k=0

where
Mo(1,k) = — 160 (n — k+ 1) +240p(n —k+ 1)g'(n —k +1)

—40p@ (n —k +1).
Then,
ASE) (—k) = = 160p(—k)? + 2409 (—k) ' (k)
— 409 (—k).
By using (31) and (33), we find that, as z — —k,
AD) () = —807% — 480H %) + 480 p(k + 1)
z+k

K
—W+O(z+k).

By adhering to the specified procedure for deriving A, (n, ), we arrive at Equation (73).
(xi) Collecting the terms which are solely involved in

p(n+ 1) (n+1),
we obtain )
All(Tl, 1’) :lIJ(n + 1)1P/(n + 1) 2 (Z) M1 (1’1, k) er/
k=0
where

A (1, k) = — 2409 (n —k +1) — 9609 (n — k +1)°
+ 14409 (n —k+ 1)y’ (n —k +1).

MY (—k) = — 240p®) (—k) — 960p(—k)3 + 1440p(—k) 9/ (—k).
By using (31) and (33), we obtain that, as z — —k,

—48072 — 2880 H®) + 2880 ¢ (I + 1)?
z+k

44 k
- w +0(z+k).

Mi(z) =

Following the prescribed method to determine Ay (n,r) leads us to Equation (74).
O

It is worth noting that the integral formulas presented here are undoubtedly novel
and capable of generating various specific cases. Additionally, the algorithmic method can
be used to evaluate the integrals
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27T , ,
/ |14 rett > log™ |1+ re't| dt
0
forn € Zzpandm =7,8,9, ...
4. Certain Variants of Euler Sums
The following series involving harmonic numbers,
ad H, 1 & H,
1y ), (76)
n‘; (n+1)2 2 ’; n?

was discovered by Euler in 1775 and has a long history (see, e.g., [10], [p. 252 et seq.];
see also [11]). By applying Parseval’s identity to a Fourier series and the contour integral
to a generating function, D. Borwein and J. M. Borwein [12] established the following
interesting identity (see also [13], [Equation (2.16)]; [14], [p. 280]; [15], [Equation (9)]):

0 H2 11 & HZ 11
I P B (] @
n=1 n—=

Euler initiated this line of investigation in the course of his correspondence with Gold-
bach from 1742 and he was the first to consider the linear harmonic sums (see, e.g., [9,16])

00 H,(f)

Spaq = Z

n=1

i (78)

Euler, whose investigations were completed by Nielsen in 1906 (see [17]), showed that the
linear harmonic sums in (78) can be evaluated in the following cases: p =1, p=¢q;p +4
odd; p + g even, but with the pair (p, q) being the set {(2,4), (4.2)}. Of these special cases,
in the ones with p # g, if S, ; is known, then S, , can be found by means of the symmetry
relation

Spq+Sqp=0(p)C(q) +(p+9) (79)

and vice versa (see, e.g., [18]). A rather extensive numerical search for linear relations
between linear Euler sums and polynomials in zeta values (see [9,19]) strongly suggests
that Euler found all the possible evaluations of linear harmonic sums; for example,

2S1,=(q+2)¢(g+1) - Zé q—NCG+1) (9€Zsy). (80)

The nonlinear harmonic sums involve products of at least two (generalized) harmonic
numbers. Let P = (py, ..., pk) be a partition of an integer p into k summands, so that

p=p1+---+prand p; < pp < -+ < pr. The Euler sum of index P, q is defined by
o pr(p1) py(p2) (px)
o HY Y . Hy
SP,q - n;l nq 4 (81)

where the quantity g + p; + - - - + py is called the weight, and the quantity k is the degree.
For simplicity, repeated summands in partitions are denoted by powers, for example,

) HZ H(2) 3H(5)
S2350 = S1122250 = Y o {F )

n=1

nq

The alternating version of (81) is given by
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(82)

To explore a wide range of the literature concerning multiple zeta values and Euler sums of
varying degrees, interested readers are encouraged to consult the comprehensive survey
and expository paper [20]. Since its publication, research in this field has remained vibrant
and dynamic, as evidenced by numerous subsequent works: For instance, Eie and Wei [21]
evaluated several exceptional quadruple Euler sums of even weight by using identities
among multiple zeta values with variables and the relation obtained from the shuffle
formula of two multiple zeta values; Espinosa and Moll [22] presented an explicit formula
for the Tornheim double series, expressed through integrals involving the Hurwitz zeta
function; Freitas [23] demonstrated that two types of integrals involving polylogarithmic
functions satisfy specific recurrence relations, enabling their expression in terms of Euler
sums; Furdui [24] proved two series involving products of harmonic numbers. One of

these series is given by
T2

Z 'n?:i _?+25(3);

Li and Chu [25] explored two summation theorems for the »F; (%)—series by Gauss and
Bailey using the coefficient extraction method. They evaluated forty infinite series involv-
ing harmonic numbers and binomial /multinomial coefficients in closed form, including
eight conjectures; by selecting various kernel functions and base functions, Li and Qin [26]
derived certain Euler sums with parameters; Mez6 [27] investigated formulas for nonlinear
Euler sums that involve multiple zeta values. He used these formulas to derive new closed-
form expressions for several nonlinear Euler series; Pilehrood et al. [28] introduced new
binomial identities for multiple harmonic sums under specific conditions. They demon-
strated several congruences for these sums modulo a prime p; Qin et al. [29] introduced a
kernel function incorporating a complex parameter. They applied this function to derive
identities involving linear extended Euler sums with parameters, as well as novel Euler
sums. These findings extend the known identities of standard Euler sums; Qin et al. [30]
presented certain intriguing identities on the Hurwitz zeta function and some extended
Euler sums: For example,

S Hyy  (2m4+1)7(2m+1) & i '
n_1”22m_<m )i(m )_];22]§(2]—|—1)§(2m—2]) (m € N);

Si et al. [31] used integrals of polylogarithm functions to investigate the analytic rep-
resentations of specific types of quadratic- and cubic Euler-related sums involving
harmonic numbers and reciprocal binomial coefficients. An example of their findings is
expressed as

© H2-HY 1 H? +3H,HY +2H"  H2 4+ HP
P G R e WO

Sofo [32] introduced novel closed-form expressions for the sums involving quadratic
alternating harmonic numbers and reciprocal binomial coefficients; Sofo [33] presented an
explicit analytical representation for Euler-type sums of harmonic numbers with multiple
arguments; Wang and Lyu [34] employed Bell polynomials along with generating functions
and integration techniques to construct diverse mixed Euler sums and Stirling sums. They
also introduced a unified method for evaluating unknown Euler sums; Xu [35] derived
various series expressions that incorporate harmonic numbers and Stirling numbers of the
first kind, expressed in terms of multiple zeta values. Additionally, Xu uncovered novel
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connections between multiple zeta values and multiple zeta star values. An instance of his
findings is given as

Si204 = $20(8) +22(3)Z(5) — 20(2)7%(3) + 3 Sa6 = 1.29069;

Xu [36] utilized contour integral representations, residue calculus, and integral representa-
tions of series to investigate the analytic representations of parametric Euler sums involving
harmonic numbers. This exploration connected these sums with zeta values and rational
function series, both in linear and nonlinear forms; Xu [37] demonstrated that sums of
multiple harmonic numbers with specified indices can be expressed using multiple zeta
values, multiple harmonic numbers, and Stirling numbers of the first kind. He also pro-
vided an explicit formula for these sums; Xu [38] established some relations involving
cubic, quadratic, and linear Euler sums. An example of his findings is offered as

Stz 44 =Te06(10) = 144(2)C(3)5(5) + 38*(3)5(4) — B22(3)(7)
—167%(5) + 11855 + 3¢(2)S26 ~ 1.23696;

Xu [39] introduced a new set of identities for Euler sums and polylogarithm integrals using
generating function techniques and series integral representations. He then utilized these
identities to derive the closed forms of all quadratic Euler sums with a weight of ten. An
instance of his findings is given as

Spp = — 13¢(10) — 807 (2)5(3)¢(5) —2¢*(3)G(4) +98¢(3)¢(7)
+302%(5) — 14858 + 200 (2)S2 6 ~ 1.74226;

Xu and Cai [40] explored the analytic representations of Euler sums in terms of the values of
the polylogarithm function and the Riemann zeta function; Xu and Cheng [41] developed a
method for evaluating Euler sums that incorporate both harmonic numbers and alternating
harmonic numbers; Xu et al. [42] developed an approach to evaluate Euler sums and
integrals of polylogarithm functions based on computations using the simple Cauchy
product formula. An example of their findings is given as

S106 = — 552(9) +32(2)2(7) + 27(3)7(6)
+32(4)2(5) — 2¢3(3) ~ 1.03381;

Xu et al. [43] explored some explicit formulae for double nonlinear Euler sums involving
harmonic numbers and alternating harmonic numbers. As applications of these formu-
lae, they gave new closed-form representations of several quadratic Euler sums through
Riemann zeta function and linear sums: An instance of their findings is offered as

0 2
2(4)"—11:2 = ﬁ (4) + C( ) In —%ln‘*z—gg(m 1n22Li4<;)_

n=1

This section delves into specific variations of Euler sums, which will be referenced in
the subsequent section. These sums are presented in the following theorems and corollary.

Theorem 3. The following formula holds:

o gl
Z k+1 I(n+1) (neN). (83)

Proof. Let L 4 be the left-hand side of (83). Then, we have
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k=1 j=1 j 1j
N k k+1 ]
1 1 1 1 1
i LY s |+ L
N—eo (=4 [k =k +1 i B kn+1
1 N1 ® 1
=Ilm|(1—-—— — |+
N—roo N+1 = ]”) k:ZZ kn+1
Note that
N+1 1 N+1 1
2?< 7:HN+1 (TIGN),
=1/ =17
and
Hyni1 ~1log(N+1) as N — oo.
We, finally, obtain
[ee]
La=1+Y) T =f(n+1)
k=2
O

Particular cases of (83) can be derived through Mathematica.

Theorem 4. The following formulas hold:

Z k +1 37(3); (84)
i i =100(4); (85)
= k(k+1)

) 4

L ji =307(5) +62(2)2(3). (86)

Proof. We prove only (86). The other two can be verified similarly. Let Lp be the left-hand
side of (86). Then, as in the proof of Theorem 3, we find

c 11m§: T L m +4i Hy

P NS BT T k) T A e 1)2
o0 [e 0] [o0] 1
Z k+1 Z k+1 k;ﬁ

We obtain .
L3 =1~ fim g
+ 4{_5( ) +3 Sl,4 - 3812;3 + 813;2}
+ 6{812;3 - 2 81,4 + €(5)} + 4{81/4 — €(5>} _|_ Z ﬁ/
k=2

which, upon employing the results in Remark 6, leads to the right-hand side of (86).
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Remark 3. Formula (85) represents a specific instance derived from the overarching identity found
(87)

in [44], p. 378. Formula (84) can be obtained through Mathematica 13.0.
Likewise, we can evaluate the following general sum,
S HP
k ( S Z>5)/
Ligrn PeZ

in terms of a finite combination of Riemann zeta functions, provided that the involved linear and

nonlinear Euler sums of weight p + 1 are already known.
(88)

Theorem 5. The following formulas hold:
© [, HIEZ)
=2((4);
k:le k(k+1) 4
(89)

- k
by k(k+1)
(90)

1)

+
. ks = B2(5) - 3(2)003),

k=1
Proof. By following the same procedures as outlined in Theorems 3 and 4, we can derive

the results here. The detailed steps are omitted. [
Remark 4. Formula (88) can be obtained as a particular case of Problem 4.19 in [44], [p. 290].
Similarly, we can evaluate the following general sum,
o HP H(Q)
k "7k
4 € L), 92

in terms of a finite combination of Riemann zeta functions, provided that the involved linear and

nonlinear Euler sums of weight p + q + 1 are already known.
The following corollary presents some identities that will be used in the subsequent

section.
Corollary 1. The following formulas hold:
= 1
1
7 =403) ~30(2) +4. ©4)
(95)

k;ka(m

> 1
kgm =((4) —20(3) +44(2) - 5.
={(5) —C(4)+¢(8)—d(2) +1

(96)

o 1
k; Ko(k+1)
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ko_'il ST~ S0 X)) -5 6 o7)

¥ feger e = £(6) ~2£(5) +30(4) — 406) + 62(2) -7 98)
¥ e — -1 -1 )

¥ e = %) - 20) (100

¥ gy — ) 50 + K2 (o)

L e g = %06) ~ 3 +700) - 4(2) ~£)20) (102

= ek +1)? (103)
+12¢(4) - 9¢(3) +5¢(2)
S i - e3) (104
= k2 (k+1)2 ’
o 2
¥ i — 305~ $8)-+920) LK) (105)
o _gr(e) - 2002 - 705)
S (k122 (106)
+2(2)2(3) + $L(4) —124(3),
oo 3
¥ e = 409 - 20004) + 22203 (107)
) 3
L gr g = 006 - 202 - 3@00) - F29) +300). a09
o 4
Y e gz = ) + 62037 - 1202080) - 60265 (109)
.
L o~ - %0) (110)
© g
kZ Bl ~ X @E0) —36() ~ F2(4) +30(3) (111)
=1
T
L i —o0 16 -420) 620070 )
+4(3)>+9¢(5)
CY
L BT = 100 — 423 ~ 2 (4). (113)
=1
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3 HISB) 1 1 2_ 31
L i = 2600 3 + L)) +30()° - $L05) (114)
o g
L ey =606 ~260) ~2405). (115)
=1
S Sy 116
k;m—zé()— (4). (116)
3 HkHIEZ) 101 5 2 1
L o1z~ 0¢W — W6 ~ L)) + 3067 - FL06) (117)
) kz(llzi_:l)z = D77(6) +6¢(2)7(3) —3¢(3)* — 157(5). (118)
k=1
0 HZH(Z)
L s e {0+ -1006). (119)
=1
o {H]EZ)}Z "
) R 12~ 16(6) ~128(2)8(3) +205(5). (120)
k=1

Proof. Formulas (93)-(95), (97) and (99) can be proven through the application of partial
fractions to their respective summands:

1 1 1 2 2
IS A R PR I S R S (121)
1 1 2 1 3 3
Phei? © B G+x1)? kF k1 (122)
1 1 2 3 1 4 4
Br+1?2 K R etaro kv (123
1 1 2 3 4 1 5 5
BhkiiZ © BTe ’@ G+l k kU (124)
and 1 1 1 1 1 1
ISy R R A (129)

Using Equation (122) to rewrite Formula (105), we derive

where all the sums on the right-hand side, along with (84), are previously established.
Similarly, the other formulas can be verified, though the specific details are not in-
cluded here. O

Remark 5. Formulas (102), (104) and (110) can be obtained through Mathematica.
Similarly, we can evaluate the following general sum,
HP H(ﬂ)
k +1)s

Mz

(p,q € Zsp; 1, s €N), (126)

in terms of a finite combination of Riemann zeta functions, provided that the involved linear and
nonlinear Euler sums of weight p + q + j, where j € N and j < max{r, s}, are already known,
along with the known evaluation of the general sum in (92).
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In this context, the evaluations of the general sums given in (83), (87) and (92) are essential
for evaluating the general sum presented in (126), such as those identities in Corollary 1.

5. Particular Cases and Remarks

This section delves into specific instances of the main findings outlined in Section 3,
supplemented by pertinent observations, as needed.
We begin with the following corollary.

Corollary 2. The following identities hold: For —1 < r <1,

1 27 5 it _ . 5
571/ log |1+rel|dtf3L15(r)
H
—92 o 2k+62 ksk r 22 (127)

(2)

0o 3
ZH H
_3k—1 kk3 er_E kk 2k 32

" L/zn log’ 1+ e[ dt = L/ZH log® {2(1 £ cost)}dt
5l 8 1607 Jo %

~34(2)53) + 5 4(5).

(128)

Proof. Setting n = 0 in the result in Theorem 1 yields (127). Further putting r = +1 in (127)
gives (128). Here, for the six linear and nonlinear Euler sums of weight 5, refer to the
subsequent remark. [

Remark 6. It is intriquing to note that when r = %1 in (127), the resulting right-hand side
encompasses all possible six linear and nonlinear Euler sums of weight 5. These sums have already
been assessed as follows:

S14= 3§( ) —C(2)C(3);  S23=30(2)7(3) — 34(5);

S32=50(5) —20(2)(3); Spg = 30(5) —¢(2)C(3);

S3p = 5(2)5( ) +102(5);  Si22 =2(2)2(3) +£(5).
Corollary 3. Let r € R with |r| < 1. Then,

16 (27 :
= log® 1 + ret| dt
7T JO

© H ) HZ
— 1800 Lig (rz) 2880 ) 22160 )
k=1 k=1

<) 4 00 ()
—9602—r2k+24 Z%ﬂk—ms Z k r?
k=1 k=1

<2> o 2p®@ (129)
H H} H
+ 1440 Z —720 Z r?
{ } 00 H(3)
+180 Z r?* — 480 k; &5
3) o g®

ooHka 2k k 2k
+480k_21 il —180k_zlk—zr
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and

27T . 27T
E/ log® |1 £ ¢'t|dt = 1 / log®{2(1 + cost)} dt
T Jo 471 Jo
(130)
27578

42

+720¢(3).
Proof. When we substitute n = 0 into the outcome stated in Theorem 2, we obtain
Equation (129). Moreover, if we substitute r = £1 into Equation (129), we arrive at
Equation (130). O
Corollary 4. The following integral formula holds:

27 , .

/ IT+e")? log® |1 +¢'t| dt
0

1 27
=1 / (14 cost) log”{2(1 4 cost)} dt
0
1257 (131)
6

= 22571 — 90y 7T + 909% 7 — 30937 —

1097 297° N 277
3 24 9
+307Z(3) — 573¢(3) — 907Z (5).

+ 10973 — 109% 7% +

Proof. By substituting n = 1 and r = %1 into Equation (62), and utilizing the identities
provided in Section 4, we can readily obtain the result presented here. [

Corollary 5. The following integral formula holds:
27 . .
/ 11+ e"*)? log® |1 +¢'t| dt
0

1 27
=5 / (1= cost) log®{2(1 + cost)} dt
0
25957

+ 1620y 7T — 1035927 + 280937 — 30947
(132)

1 3 5
917.[ - 8077‘[3 + 75727r3 — 40')/37'(3 + 10747'(3 — 3%

B 11ym®
2

+

103 77
112
+ 360927 (3) — 25 3¢ (3) 4 209773Z(3) + 507 (3)?

+ 27077 (5).

20 + 2077 (3) — 420717 (3)

Proof. By substitutingn = 1and r = £1 in Equation (63), and using the identities provided
in Section 4, we can readily derive the result presented here. [

Remark 7. It is interesting to observe that when v = %1 in Equation (129), the resulting right-
hand side includes all possible eleven linear and nonlinear Euler sums of weight 6. These sums have
already been evaluated as follows:

Sp4 = —30(6) +2(3);
S33 = Suo = 352(6) — 2*(3);
Spa = 74(6 Sz = 124(6) — 32%(3);
Sy = 220(6) +32%(3);  Sips = —14(6) + 32
S130 = 5 0(6) = 30%(3);  Sppn = 1730(6) +25°(3
Syzy = 53(6) +22(3).

N
N
—
W
Nyl

S15=%0(6
1
2

N
—
(@)Y
S— S—
S— _|_
| N—= Nj—=
N ™Y
~ N
—
P
S R
Nt
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6. Concluding Remarks

In this investigation, we conducted an in-depth analysis of specific integrals discussed
in the Abstract. Our systematic approach, firmly rooted in algorithmic principles, allows
for a natural extension of our conclusions to cases where n € Z>p, m € Nwithm > 7,
and —1 < r < 1. Additionally, we elucidated specific instances derived from our primary
findings, thereby broadening the applicability and significance of our results for a wider
range of researchers.

Remarks 6 and 7 highlight the close relationship between the integrals considered here
and Euler sums. Notably, it is serendipitous that the specific integrals in Corollaries 2 and 3
encompass all possible linear and nonlinear Euler sums of weights 5 and 6, respectively.

It is noted that some of the involved computations, particularly those in Equa-
tions (65), (69) and (70), are nearly impossible without the assistance of Mathematica.

It is noted that interested researchers, including the authors, are hoped to develop a
Mathematica symbolic computation package for evaluating the integrals discussed in this
paper in a future publication, utilizing the algorithmic method presented here.
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