
Citation: Pascoli, G.; Pernas, L. Is

Dark Matter a Misinterpretation of a

Perspective Effect? Symmetry 2024, 16,

937. https://doi.org/10.3390/

sym16070937

Academic Editor: Vasilis K.

Oikonomou

Received: 19 May 2024

Revised: 20 June 2024

Accepted: 29 June 2024

Published: 22 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Is Dark Matter a Misinterpretation of a Perspective Effect?
Gianni Pascoli * and Louis Pernas

Faculté des Sciences, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80000 Amiens, France;
louis.pernas@u-picardie.fr
* Correspondence: pascoli@u-picardie.fr

Abstract: Very recently, a straightforward method was proposed to understand galaxies and galactic
clusters without using the very elusive dark matter concept. This method is called the κ-model. The
main idea is to maintain the form of the usual physical laws, especially Newton’s laws of motion
when gravity is weak, but only by applying a local scaling procedure for the related lengths, distances,
and velocities. This local scaling appears as a correspondence principle in the κ-model. In this model,
the fundamental physical constants remain universal, i.e., they are independent of a point in space
and of time. The κ-model is Newtonian in its essence, but there is a relativistic extension that can
easily be built. The aim of the present paper is to detail the mathematical formalism supporting it.
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1. Introduction

The classical laws of physics (for instance, Newtonian dynamics) have been defined
at the meter scale. This scale goes from the sub-micrometric dimension to the scale of the
solar system. However, we know that at the scale of the nanoscopic world, these classical
laws are no longer valid, and the quantum field theory has to be used. Let us note that the
ratio between the radius of an atom and the base unit length (meter) is 10−10. Despite this
statement, when we move in the opposite direction, i.e., toward the macrocosmic scale,
physicists use the same physical laws as those that are valid at the meter scale with no
changes, whereas the ratio between 1 meter and 1 parsec is 10−16. The κ model relies on
the very simple suggestion that matter no longer behaves in the same manner when the
characteristic dimension of the region under study is very large (of the order of 1 parsec
or more). The perception of an observer must then necessarily change [1–4]. Our aim is
also to reduce the modification when compared to the Newtonian laws at the minimal
level. The main idea is that the environment of the observer modifies their perception, a
bit like when an observed object is immersed in different media with various refractive
indices (even though the analogy can strongly be misleading). Furthermore, the lengths
and the velocities, which are measured differently, are scaled following the mean densities
surrounding the observed object. Let us note that this relates only to apparent effects;
the unit of length (for instance, the radius of a hydrogen atom) is obviously the same
everywhere in the Universe. The scaling coefficient, labeled κ, is linked to the local mean
density ρ by a simple relationship, κ = 1/(1+ Ln(1/ρ))), assuming ρ < 1 with the appropriate
normalization [2,3]. In Section 2, some basic mathematical concepts are recalled; Section 3
develops the framework of the κ-model, and in Section 4, the κ-structure for Minkowski
space is presented. Finally, in Section 5, a few illustrative applications to astrophysics are
supplied. A few didactic figures have also been added.
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2. Some Basic Structures for RnRnRn

2.1. Algebraic Structures
2.1.1. Affine and Vectorial Structure

When endowed with its usual vector space structure, the set Rn of the real n-tuples
will be noted by RRRn, and when endowed with its affine structure, it will be denoted simply
by Rn. The affine structure is a 1-transitive action of the additive group (RRRn,+) for Rn:

∀x ∈ Rn,∀uuu ∈RRRn, (x,uuu)↦ x +uuu.

When x +uuu = y, we will sometimes write uuu = y − x.

2.1.2. Euclidean Structures

The vector space RRRn is equipped with a Euclidean structure once a scalar product on RRRn

has been selected. A scalar product is a definite positive bilinear symmetric form; in other
words, it is an application:

⟨., .⟩ ∶RRRn ×RRRn → R

It is linear in each variable and is symmetric and satisfies ∀hhh ∈ RRRn, ⟨hhh,hhh⟩ ≥ 0, with the
cancellation happening only when hhh = 000.

This means that in some base B = (eee1, . . . , eeen) ofRRRn, the matrix representing the bilinear
form ⟨., .⟩, i.e., the matrix (gij)1≤i,j≤n, where gij = ⟨eeei, eeej⟩, is Idn = diag(1, . . . , 1), which means
that gij = δij, which represents the Kronecker symbol.

If hhh = hieeei and kkk = kieeei, we then have

⟨hhh,kkk⟩ = hiδijk
j =

n
∑
i=1

hiki (1)

Such an RRRn base is an orthonormal base (with respect to the particular scalar product
considered).

The application
RRRn → R, hhh ↦ ∥hhh∥ =

√
⟨hhh, hhh⟩ (2)

is a norm on RRRn; in other words, it fulfills the following conditions:
- Positivity (∀xxx ∈RRRn, ∥xxx∥ ≥ 0);
- Separation (∀xxx ∈RRRn, ∥xxx∥ = 0⇐⇒ xxx = 000);
- Homogeneity (∀xxx ∈RRRn,∀λ ∈ R, ∥λxxx∥ = ∣λ∣∥xxx∥);
- Subadditivity (∀xxx,yyy ∈RRRn, ∥xxx +yyy∥ ≤ ∥xxx∥+ ∥yyy∥).

For a scalar product, this is also associated in such a way to measure angles:

∀hhh,kkk ∈RRRn, ⟨hhh,kkk⟩ = ∥hhh∥∥kkk∥cos(θ) (3)

The linear transformations f of RRRn respect the scalar product ⟨., .⟩; in other words, this is
such that

∀hhh,kkk ∈RRRn, ⟨ f (hhh), f (kkk)⟩ = ⟨hhh,kkk⟩ (4)

are called (vectorial) isometries. The set of vectorial isometries is a subgroup of the linear
group (GL(n), ○), called the orthogonal group and is denoted by O(n) (it is not relevant to
note the particular scalar product that one considers because the orthogonal groups of two
different scalar products on RRRn are isomorphic).

When the vectorial space RRRn is equipped with a Euclidean structure, the affine space
Rn is endowed with a distance defined by

∀x, y ∈ Rn, d(x, y) = ∥x − y∥ = ⟨x − y, x − y⟩. (5)

In other words, we have
- Symmetry (∀x, y ∈ Rn, d(x, y) = d(y, x));
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- Separation (∀x, y ∈ Rn, d(x, y) = 0⇐⇒ x = y);
- Triangle inequality (∀x, y, z ∈ Rn, d(x, z) ≤ d(x, y)+ d(y, z)).

Furthermore, this distance will be compatible with the affine structure:
- Invariance by translation:

∀x, y∈Rn,∀ttt∈RRRn, d(x + ttt, y + ttt) = d(x, y);
- Homogeneity:

∀λ∈R,∀x∈Rn,∀ttt,uuu∈RRRn, d(x + λttt, x + λuuu) = ∣λ∣d(x + ttt, x +uuu).
The affine transformations with a linear part in O(n) are the (affine) isometries.

2.1.3. Minkowski Structure

A structure of Minkowski space on RRR4 is the choice of some symmetric bilinear form,
⟪., .⟫ on RRR4 with the signature (1, 3); this means that in some base B = (e0, e1, e2, e3) of RRR4,
the matrix associated with ⟪., .⟫ is J = diag(1,−1,−1,−1). In other words, if hhh = hieeei and
kkk = kieeei, we then have

⟪hhh,kkk⟫ = h0k0 −
3
∑
i=1

hiki. (6)

It is common to refer to the vectors of a Minkowski space as “quadrivectors” and to ⟪., .⟫ as
a Minkowski product.

According to the sign of ⟪hhh, hhh⟫, a quadrivector hhh is
time-like when ⟪hhh, hhh⟫ > 0;
light-like when ⟪hhh, hhh⟫ = 0, with the isotropy cone of ⟪, .,⟫;
space-like when ⟪hhh, hhh⟫ < 0.

The linear transformations, f , ofRRR4 respect the Minkowski product, M; in other words,
this is such that

∀hhh,kkk ∈RRR4,⟪ f (hhh), f (kkk)⟫ = ⟪hhh,kkk⟫ (7)

are called Lorentz transformations. The Lorentz transformation is a subgroup of (GL(4), ○),
called the Lorentz group , and is denoted by L; it is straightforward to see that the Lorentz
transformation f respects quadrivector types.

When the space RRR4 is equipped with a Minkowski structure, the points of the affine
space R4 are usually called events.

Two events, e = (ε0, ε1, ε2, ε3) and e′ = (ε′0, ε′1, ε′2, ε′3), are time-oriented when the unique
quadrivector is uuu, such that E′ = E +uuu is time-like (Figure 1).

x1

x2

x0

time−like
quadrivectors

space−like
quadrivectors

Figure 1. Minkowski space.

2.2. Topological Structure of Rn

Having a topology on a set, E, is a way to give meaning to expressions such as “x and y
are close” without having a way to measure the distance between x and y.

A standard way to do so is to select (for each point x of E) a set of parts of E, Neigh(x),
called the set of the neighborhoods of x. The sets, Neigh(x), fulfilling the conditions expect
the following:

† The set E must contain whatever is “close” to x: ∀x ∈ E, E ∈ Neigh(x);
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† The point x is among what is close to x: ∀x ∈ E,∀V ∈Neigh(x), x ∈ V;

† If two sets contain whatever is close to x, then their intersection, too, must be
∀x ∈ E,∀V, W ∈ Neigh(x), V ∩W ∈ Neigh(x);
† If V contains whatever is close to x, and W contains V, W contains whatever is close

to x:
∀x ∈ E,∀V ∈ Neigh(x), if V ⊂W then W ∈ Neigh(x);
† If V contains whatever is close to x, then there exists W, which also contains whatever

is close to x, such that V contains whatever is close to whatever points are in W:
∀x ∈ E,∀V ∈ Neigh(x),∃W ∈ Neigh(x)/∀y ∈W, V ∈ Neigh(y).
Once a topology on E has been chosen, an open set of E is a part, O, of E, such that

∀x ∈ O, O ∈ Neigh(x).
Different topologies can be defined on Rn; the typical one is defined using the distance,

d, defined in (5). The set B(x, r[= {y ∈ Rn/d(x, y) < r} is the open ball , with a center at x ∈ Rn

and a radius of r. A neighborhood of x is any subset of Rn containing an open ball centered
at x. We will also use this topology on R4 when equipped with its Minkowski affine
structure, even though, in that case, there is no distance directly linked to the topologic
structure.

The notion of topology allows for a correct definition of some very useful “local”
notions; in particular, the notion of continuity at a point for a function f ∶ E → F between
two topological spaces and x ∈ E; f is continuous at x when ∀W ∈ Neigh( f (x)),∃V ∈
Neigh(x)/ f (V) ⊂W. The affine orthogonal transformations (and the affine Lorentz trans-
formations) are continuous on Rn (and on R4).

In the Minkowsi space, the set of light-like quadrivectors has two path-connected
components (a part, C, of a topological space, E, is said to be path-connected when,
for any points (a and b of C), there is a continuous application γ ∶ [0, 1] → E such that
γ(0) = a, γ(1) = b and ∀t ∈ [0, 1], γ(t) ∈ C; in other words, a path in C with source a and
goal b). A Lorentz transformation is orthochrone when the path-connected components are
respected and antichrone when the components are exchanged.

2.3. Differentiable Structure of Rn

RRRn is equipped with a scalar product and the associated norm defined in (2) and Rn,
with the distance defined in (5).

2.3.1. Differential of a Function: Tangent Vectors at a Point

An application f ∶ Rn → Rp is differentiable at x ∈ Rn whenever

∀hhh ∈RRRn, f (x + hhh) = f (x)+ d f/x(hhh)+ o(hhh) (8)

where d f/x is continuous and linear fromRRRn toRRRp (It is well-known that linear applications
between two finite dimensional normed vector spaces are always continuous, so the
condition of continuity of d f /x can be omitted in the definition.) and o(hhh) = ∥hhh∥ε(hhh)with
ε ∶RRRn →RRRp such that ε(000) = 000 and limhhh→000ε(hhh) = 000.

The linear application
d f/x ∶RRRn →∶RRRp

is the differential at x of f .
The application

d f ∶ Rn → L(RRRn,RRRp)

is the differential of f .
At first glance, the definition of the differentiability of f at point x suggests that the

vectors hhh are picked in the “same” space RRRn, independently of the point x we are looking
at; however, this point of view would be barren if we wanted to go further.

Each point x ∈ Rn is associated with a copy of RRRn, called the tangent space to Rn at x,
and this is denoted by TxRn. Its elements are called tangent vectors to Rn at x.
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With those definitions in mind, the definition of differentiability becomes

∀hhh ∈ TxRn, f (x + hhh) = f (x)+ d f/x(hhh)+ o(hhh) (9)

where d f/x ∶ TxRn → T f(x)Rp is linear, and o(hhh) = ∥hhh∥ε(hhh)with ε ∶ TxRn → T f(x)Rp satisfies
ε(000) = 000 and limhhh→000ε(hhh) = 000.

We have to clarify the status of the differential application d f ∶ x ↦ d f/x because its
arrival set has become unclear.

Set
TRn = ⊔

x∈Rn
{x}×TxRn.

and
p ∶ TRn → Rn; (x, hhh)↦ x

The set TRn is the tangent bundle of Rn; it identifies with Rn ×RRRn; then, the projection p
becomes the first projection of Rn ×RRRn on Rn. The tangent bundle TRn also identifies with
the affine space R2n.

Now, let f ∶ Rn → Rp be an application differentiable at each point of Rn. The
application

T f ∶ TRn → TRp; (x, hhh)↦ ( f (x), d f/x(hhh))

is called the tangent application or differential application of f .
Furthermore, the projection

p ∶ TRn → Rn; (x, hhh)↦ x

is a (trivial) “fiber bundle”; in this very simple case, this just means that p is differentiable
on TRn.

The bi-tangent space to Rn at (x,hhh), T(x,hhh)(TRn) identifies with the product vector
space TxRn ×ThhhRn; then,

p((x, hhh)+ (HHH,KKK)) = x +HHH = p(x, HHH)+HHH

and dp(x,hhh)(HHH,KKK) = HHH.
The process of differentiation can be repeated indefinitely, and applications admitting

differentials at all orders are said to be of class C∞. The set of functions from Rn to R of
class C∞ is denoted by C∞(Rn).

2.3.2. Tangent Vector Fields on Rn

A vector field U on Rn is a section of the tangent fiber bundle, i.e., an application:

U ∶ Rn → TRn such that ∀x ∈ Rn, U(x) = (x,UUU(x)) ∈ TxRn.

As the first factor of a tangent vector field is always known, in the sequels, we will note the
tangent vector field U by its second factor UUU.

Let (eee1, . . . , eeen) be the canonical base of RRRn; the tangent vector field x ↦ (x, eeei)will be
denoted by ∂

∂xxxi so that any tangent vector field on Rn has a unique expression,

UUU = Ui ∂

∂xxxi

with U1, . . . , Un having some functions from Rn to R.
The set of tangent vector fields of class C∞ is

ΓΓΓ(Rn) = {Ui ∂

∂xxxi /∀i ∈ {1, . . . , n}, Ui ∈ C∞(Rn)}.

We now clarify the notation ∂
∂xxxi :
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The set C∞(Rn) is endowed with the structure of real algebra according to the follow-
ing:

- Addition, defined by
∀ f , g ∈ C∞(Rn),∀x ∈ Rn, ( f + g)(x) = f (x)+ g(x);

- Multiplication by a real scalar, defined by
∀( f , λ) ∈ C∞(Rn)×R,∀x ∈ Rn, (λ f )(x) = λ f (x);

- Inner multiplication, defined by
∀ f , g ∈ C∞(M),∀x ∈ M, ( f .g)(x) = f (x)g(x).

The set ΓΓΓ(Rn) is endowed with the structure of C∞(Rn)-modulus according to the
following:

- Vector field addition, defined by
∀ UUU,VVV ∈ ΓΓΓ(Rn),∀x ∈ Rn, (UUU +VVV)(x) =UUU(x)+VVV(x);

- Multiplication by a real scalar, defined by
∀ UUU ∈ ΓΓΓ(Rn),∀λ ∈ R,∀x ∈ Rn, (λUUU)(x) = λUUU(x);

- Multiplication by a function, defined by
∀( f ,UUU) ∈ C∞(Rn)×ΓΓΓ(Rn),∀x ∈ Rn, ( fUUU)(x) = f (x)UUU(x).

A derivation of the real algebra C∞(Rn) is a linear application

D ∶ C∞(Rn)→ C∞(Rn)

satisfying
∀ f , g ∈ C∞(Rn), D( f g) = D( f )g + f D(g).

For UUU ∈ Γ(Rn), we have a corresponding derivation DUUU on C∞(Rn)where ∀ f ∈C∞(Rn),
DUUU( f ) ∶ Rn → R; x ↦ d f/x(UUU(x))
Indeed, we have

∀ f , g ∈ C∞(Rn), DUUU( f g) = DUUU( f ).g + f DUUU(g) (10)

and
∀a, b ∈ R,∀ f , g ∈ C∞(Rn), DUUU(a f + bg) = aDUUU( f )+ bDUUU(g) (11)

DUUU( f )(x) can be seen as the directional derivative of f in the direction of UUU at x.
The notations ∂

∂xxxi introduced previously for a tangent vector field are now clear:
If the expression of a tangent vector field is UUU = Ui(x) ∂

∂xxxi and
f ∈ C∞(Rn) for x ∈ Rn, then

DUUU( f )(x) = Ui(x) ∂ f
∂xxxi (x) (12)

The Lie bracket of two tangent vector fields, UUU = Ui ∂
∂xxxi and VVV = Vi ∂

∂xxxi , is defined by

[UUU,VVV] = (U j ∂Vi

∂xxxj −V j ∂Ui

∂xxxj )
∂

∂xxxi (13)

where we have
D[UUU,VVV] = DUUU ○DVVV −DVVV ○DUUU (14)

When endowed with this bracket, the vector space ΓΓΓ(Rn) is Lie algebra.

2.3.3. Covariant Derivation

A covariant derivation on Rn is an application:

∇ ∶ ΓΓΓ(Rn)×ΓΓΓ(Rn)→ ΓΓΓ(Rn); (UUU,VVV)↦ ∇UUUVVV

satisfying
∀a, b ∈ R,∀ UUU,VVV,WWW ∈ ΓΓΓ(Rn),∀ f ∈ C∞(Rn),
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∇aUUU+bVVVWWW = a∇UUUWWW + b∇VVVWWW (15)

∇UUU(aVVV + bWWW) = a∇UUUVVV + b∇UUUWWW (16)

∇ fUUUVVV = f∇UUUVVV and ∇UUU( fVVV) = DUUU( f )VVV + f∇UUUVVV. (17)

A covariant derivation, ∇, on Rn is entirely defined by the family of tangent vector

fields (∇ ∂

∂xxxi

∂

∂xxxj )i,j=1...n
. If

∇ ∂

∂xxxi

∂

∂xxxj = Γk
i,j

∂

∂xxxk (18)

the functions Γk
ij are called the Christoffel symbols of ∇.

For UUU = Ui ∂
∂xxxi and VVV = Vi ∂

∂xxxi , we have

∇UUUVVV = Ui ∂V j

∂xxxi
∂

∂xxxj +UiV jΓk
ij

∂

∂xxxk (19)

2.3.4. Flat Covariant Derivation

The flat covariant derivation ∇ is the covariant derivation for which all Christoffel
symbols are null; in that case, we have

∇UUUVVV =
n
∑

i,j=1
Ui ∂V j

∂xxxi
∂

∂xxxj

∇UUUVVV can be seen as the derivative of VVV in the direction of UUU.

2.3.5. Covariant Derivation along a Curve: Parallel Transport

Let
γ ∶ R→ Rn; t ↦ γ(t) = (γ1(t), . . . , γn(t))

be a class C∞ function.
A tangent vector field of Rn along γ is an application:

U ∶ R→ TRn

such that
∀t ∈ R, U(t) = (γ(t),UUU(t)) ∈ Tγ(t)Rn.

The set of tangent vector fields of class C∞ along γ is denoted by ΓΓΓ(γ); it is a C∞(R)-
modulus.

The velocity γ̇̇γ̇γ is the tangent vector field along γ, defined by

t ↦ γ̇̇γ̇γ(t) = (γ(t), γ̇i(t) ∂

∂xxxi ) (20)

where γ̇i = dγi

dt . Its value depends only on the differential structure of Rn and ∀t ∈ R,∀h ∈
R, dγ/t(h) = h.γ̇̇γ̇γ(t).

Let ∇ be a covariant derivation on Rn. There is exactly one operator ∇ d
dt

(The usual
notation can sometimes be tricky because the dependence on the curve γ is not noted) on
the C∞(R)-modulus of the tangent vector fields along γ, such that

∀ f ∈ C∞(R),∀UUU ∈ ΓΓΓ(γ),∇ d
dt
( f .UUU)(t) = f ′(t).UUU(t)+ f (t).∇ d

dt
UUU(t)

and if UUU is the restriction to γ of a tangent vector field VVV on Rn, then

∇ d
dt

UUU(t) = ∇γ̇̇γ̇γ(t)VVV(t)
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For UUU(t) = Ui(t) ∂
∂xxxi , we have

∇ d
dt

UUU(t) = (U̇k(t)+ Γk
ijU

i(t)U j(t)) ∂

∂xxxk (21)

When Rn is equipped with the flat covariant derivative (The application U ○ γ ∶ R→
TRn can be seen as a section of the trivial vector bundle over R with fibers Tγ(t)Rn; the
covariant derivation along γ is then the flat covariant derivative of U ○ γ relative to the
tangent field d

dttt over R), the covariant derivative of U with U(t) = (γ(t), Ui(t) ∂
∂xxxi ) along γ

is the tangent vector field along γ, defined by

∇ d
dt

UUU(t) = (γ(t), U̇i(t) ∂

∂xxxi ) (22)

A tangent vector field, UUU, along γ is said to be parallel with respect to the covariant
derivation ∇ whenever ∇ d

dt
UUU = 0. The general results for differential equations ensure

that a parallel tangent vector field along γ is determined by its value at one point of the
trajectory of γ. For t0, t1 ∈ R, the application is

//t1
t0
∶ Tγ(t0)R

n → Tγ(t1)R
n; (γ(t0),UUU(γ(t0))↦ (γ(t1),UUU(γ(t1))

where UUU is parallel along γ, which is called the parallel transport along γ between time t0
and t1.

When ∇ is the flat covariant derivation for any class C∞ curve γ, the parallel vector
fields along γ are simply the constant vector fields.

2.3.6. Acceleration

Let γ ∶ R→ Rn be a class C∞ function.
The covariant derivative of the vector field γ̇γγ along γ is the covariant acceleration of

γ denoted by γ̈̈γ̈γ; note that, unlike the velocity, γ̈̈γ̈γ depends on the choice of a covariant
derivation on Rn.

When a curve, γ, satisfies ∇ d
dt

γ̇̇γ̇γ = 0, it is called the geodesic curve of the covariant
derivation ∇. For the flat covariant derivation, the geodesics are the parametrizations with
the constant velocity of straight lines.

2.4. Riemannian Structures on Rn

A Riemannian metric on Rn is an application, G, that associates with each point x ∈ Rn

of a scalar product Gx on TxRn, with the condition that

∀ UUU,VVV ∈ ΓΓΓ(Rn), the application f ∶ Rn → R defined by f(x) = Gx(UUU(x),VVV(x)) is in C∞(Rn).

The general expression of a Riemannian metric on Rn is

Gx = gij(x)dxidxj (23)

where the coefficients gij(x) ∈ C∞(Rn) are such that ∀x ∈ Rn, the matrix (gi,j(x))1≤i,j≤n is
symmetric definite positive and dxi is defined on ΓΓΓ(Rn) by dxi(U j ∂

∂xj ) = Ui.
Let G be a Riemannian metric G and γ ∶ I → Rn be a class C∞ application defined on

some interval of R, where the real

∥γ̇̇γ̇γ(t)∥G =
√

Gγ(t)(γ̇̇γ̇γ(t), γ̇̇γ̇γ(t)) (24)

is the speed of γ at instant t with respect to the Riemannian metric G , also known as G-speed;
the application

t ↦ (γ(t), ∥γ̇̇γ̇γ(t)∥G)

is a scalar field along γ.
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The G-length of γ is

LG(γ) = ∫
b

a
∥γ̇̇γ̇γ(t)∥Gdt. (25)

The G-kinetic energy of γ is

EG(γ) =
1
2 ∫

b

a
∥γ̇̇γ̇γ(t)∥2Gdt. (26)

The G-length does not depend on the parametrization γ, but the G-kinetic energy does.
We can obtain a distance on Rn by setting it for x, y ∈ Rn

dG(x, y) = In f{LG(γ), γ differentiable with γ(a) = x, γ(b) = y}.

Although dG is, in general, not associated with any norm onRRRn, the topology of Rn induced
by dG is always the usual topology of Rn.

For uuu,vvv ∈ TxRn, the G-angle, θG(uuu,vvv)), of uuu and vvv is defined by

G(uuu,vvv) = ∥uuu∥G∥vvv∥Gcos(θG(uuu,vvv)). (27)

2.4.1. Levi-Civita Connection

Let G be a Riemannian metric on Rn; a covariant derivation, ∇, on Rn is compatible
with G when

∀ UUU,VVV,WWW ∈ Γ(Rn), DUUU(G(VVV,WWW)) = G(∇UUUVVV,WWW)+G(VVV,∇UUUWWW) (28)

For any Riemannian metric, G, on Rn, there is exactly one torsion-free (∀UUU,VVV ∈
Γ(Rn),∇UUUVVV −∇VVVUUU = [UUU,VVV]) covariant derivation compatible with G, which is called the
Levi-Civita connection of G.

The Christoffel symbols of the Levi-Civita connection have the following expressions:

Γk
ij =

1
2

gkℓ(∂giℓ

∂xxxj +
∂gjℓ

∂xxxi −
∂gij

∂xxxℓ
) (29)

where (gij)1≤i,j≤n is the inverse matrix of (gij)1≤i,j≤n.

2.4.2. Some Riemannian Metrics

(1) The usual affine Euclidean structure of Rn can be seen as a Riemannian structure
on Rn:

GEuc = δijdxidxj (30)

When Rn is equipped with the metric GEuc, the Levi-Civita connection is the flat covariant
derivation ∇ defined previously. The distance dGEuc is the usual Euclidean distance, and the
angle measurement is the usual angle measurement. The geodesics are the parametrizations
of straight lines with constant velocities.

(2) For λ ∈ R∗+, we use

GEuc
λ = λ2GEuc = λ2δijdxidxj (31)

The Levi-Civita connection of GEuc
λ is also the flat covariant derivation.

The associated distance is
dGEuc

λ
= λdGEuc . (32)

The associated angles measurement satisfies

∀x ∈ Rn,∀uuu,vvv ∈ TxRn, θGEuc
λ
(uuu,vvv) = θGEuc(uuu,vvv). (33)

The application IdRn from (Rn, GEuc) to (Rn, GEuc
λ ) is for scaling.

The geodesics are straight lines parametrized with constant velocities.
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For GEuc and GEuc
λ , the parallel transport is trivial, and the parallel tangent vector

fields are of the form UUU = ∑n
i=1 ui ∂

∂xxxi
, where ui are constants.

(3) For µ ∈ C∞(Rn) such that ∀x ∈ Rn, µ(x) ∈]m, M[, (m > 0), we use

Gµ = µ2δijdxidxj (34)

The Levi-Civita connection is not the flat covariant derivation anymore; a straightforward
computation gives the expressions of the Christoffel symbols:

Γk
ij =

1
µ

δkl(δil
∂µ

∂xj + δl j
∂µ

∂xi − δij
∂µ

∂xm ) (35)

The geodesics are not straight lines anymore. The application IdRn from (Rn, GEuc) to
(Rn, Gµ) is conformal.

2.5. Pseudo-Riemannian Structure on R4

A pseudo-Riemannian metric on R4 is an application, G, where each point x ∈ R4 is
associated with a Minkowski product Gx on TxR4, with the condition that

∀UUU,VVV ∈ Γ(R4), the application F ∶ R4 → R defined byGx(UUU(x),VVV(x)) is in C∞(R4).

The general expression of a pseudo-Riemannian metric on R4 is

Gx = gij(x)dxidxj (36)

where the coefficients gij ∈ C∞(Rn) are such that ∀x ∈ R4, the matrix (gij(x)) is symmetric
with signature (1, 3).

Let ηij be the coefficient of the matrix diag(1,−1,−1,−1). The usual affine Minkowski
structure of R4 is a pseudo-Riemannian structure:

GMink = ηijdxi.dxj (37)

It will be practical to limit the summation to i ∈ {1, 2, 3}. With this convention, we have

GMink = dx0dx0 − δijdxi.dxj (38)

As in the Riemannian case, for any pseudo-Riemannian structure on R4, the Levi-
Civita connection is the unique, torsion-free covariant derivation satisfying

∀UUU,VVV,WWW ∈ Γ(R4), DUUU(G(VVV,WWW)) = G(∇UUUVVV,WWW)+G(VVV,∇UUUWWW) (39)

The Levi-Civita connection of GMink is, once again, the flat covariant derivation.
For λ > 0, later, we will consider the pseudo-Riemannian metric defined by

GMink
λ = dx0dx0 − λ2δijdxidxj (40)

For this pseudo-Riemannian metric, the Levi-Civita connection is still the flat covariant
derivation.

3. Framework for the κ-Model
3.1. κ-Structure on a Riemannian Metric

A κ-structure on R3 or a Riemannian metric affected by a κ-effect is a couple (G, κ)where

† G = gijdxidxj is a fixed Riemannian metric on R3.
† κ is an application of class C∞ from R3 to ]m, M[with m > 0.

Then, when (G, κ) is a κ-structure on R3, we have
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(1) On one hand, for two Riemannian metrics on R3, we have

(R3, G) and (R3, Gκ)

where Gκ = κ2gijdxidxj, Gκ is a metric conformal to G.

(2) On the other hand, for each point, a ∈ R3 is associated with the Riemannian metric
(R3, Gκ(a)), which is a rescaling of G.

A point in R3 endowed with a κ-structure will be called a sitting observer.

We can think of this situation as the trivial bundle R3×]m, M[→ R3, where each
constant section R3 × {λ} is equipped with the Riemannian metric Gλ, where the function
κ is associated with each point a of R3 for the constant section R3 × {κ(a)}.

3.2. κ-Structure on the Euclidean Metric

Let us equip R3 with a κ-structure (GEuc, κ) and choose, once and for all, a global
system of co-ordinates (σ1, σ2, σ3) such that GEuc = δijdσidσj. The associated distance is the
Euclidean distance, dEuc.

Each sitting observer, a ∈ R3, is equipped via κ with the flat Riemannian metric GEuc
κ(a),

defined by

∀a ∈ R3,∀σ ∈ R3,∀uuu,vvv ∈ TσR3, Gκ(a)(uuu,vvv) = κ2(a)⟨uuu,vvv⟩ (41)

from which the distance on R3 is deduced:

da(x, y) = κ(a)de(x, y). (42)

However, there should be no confusion between the collection of flat Riemannian met-
rics GEuc

κ(a) = κ2(a)∑(dσi)2, which are rescalings of (R3, GEuc), and the nonflat Riemannian

metric Gκ = κ2∑(dσi)2 (Figure 2).

R3
λ

R3
µ

R3
ν

.c

.c

.c

ρ

ρ

ρ

Figure 2. Circles with same radii and centers in R3
µ,R3

ν, and R3
λ with λ > µ > ν.

Any information retrieved using the flat Riemannian metric GEuc
κ(a) on R3 will be called

an observation made by the sitting observer a.
The application Id ∶ (R3, da)→ (R3, db) is not an isometry but is, nevertheless, a scaling.

The observations made by two sitting observers are linked; for example,

∀a, b ∈ R3,∀σ, σ′ ∈ R3, da(σ, σ′) = κ(a)
κ(b)db(σ, σ′). (43)
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while
∀a, b ∈ R3,∀σ ∈ R3,∀uuu,vvv ∈ TσR3, θa(uuu,vvv) = θb(uuu,vvv). (44)

This means that two sitting observers will agree on angle measurements but not on
length measurements. If they exchange their measurements, two sitting observers would
disagree.

3.2.1. Speed Fields

Let (GEuc, κ) be the Euclidean metric on R3 affected by a κ-effect; let γ ∶ R→ R3 be a
smooth curve and t ↦ γ̇̇γ̇γ(t) be its velocity.

† The Euclidean speed of γ is the scalar field along γ, defined by

vEuc(t) = ∥γ̇̇γ̇γ(t)∥GEuc . (45)

† The a-speed of γ is the speed observed by a sitting observer at a; it is the scalar field
along γ, defined by

va(t) = ∥γ̇̇γ̇γ(t)∥GEuc
κ(a)
=
√

κ2(a)⟨γ̇̇γ̇γ(t), γ̇̇γ̇γ(t)⟩ = κ(a)vEuc(t) (46)

The a-velocity of γ is the tangent vector field along γ, defined by

vvva(t) = κ(a)γ̇̇γ̇γ(t) (47)

so that the a-speed at time t is ∥vvva(t)∥GEuc .

† The κ-speed of γ at time t is the speed observed by the sitting observers coincident
with γ(t); it is the scalar field defined by

vκ(t) = ∥γ̇̇γ̇γ(t)∥GEuc
κ(γ(t))

=
√

κ2(γ(t))⟨γ̇̇γ̇γ(t), γ̇̇γ̇γ(t)⟩ = κ(γ(t))vEuc(t) (48)

The κ-velocity of γ is the tangent vector field along γ, defined by

vvvκ(t) = κ(γ(t))γ̇̇γ̇γ(t). (49)

so that the κ-speed at time t is ∥v̇̇v̇vκ(t)∥GEuc .

The relations between the different speeds are

∀a, b ∈ R3, va(t) =
κ(a)
κ(b)vb(t) (50)

and
∀a ∈ R3, vκ(t) =

κ(γ(t))
κ(a) va(t) (51)

A smooth curve γ ∶ R→ R3 is κ-uniform when its κ-speed is constant; in other words,
when

dκ/γ(t)(γ̇̇γ̇γ(t))∥γ̇̇γ̇γ(t)∥+ κ(γ(t))< γ̈̈γ̈γ(t), γ̇̇γ̇γ(t) >
∥γ̇̇γ̇γ(t)∥ = 0 (52)

or

⟨GGGradγ(t)κ, γ̇̇γ̇γ(t)⟩vEuc(t)+ κ(γ(t))< γ̈̈γ̈γ(t), γ̇̇γ̇γ(t) >
vEuc(t)

= 0 (53)

3.2.2. κ-Uniform Straight Lines

Let σ and σ′ be two distinct points of R3. For any sitting observer, a, the parametrization

γ ∶ R→ R3, t ↦ σ + t(σ′ − σ) (54)
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is the geodesic passing through σ at time 0 and σ′ at time 1 with constant a-speed va =
da(σ, σ′).

Since ∀t ∈ R, vκ(t) = ∥σ′ − σ∥κ(γ(t)) is not a constant function, the smooth curve γ is
not κ-uniform (unless κ is constant along it).

Nevertheless, we can reparametrize the support of γ in a κ-uniform way.
Consider c ∶ R→ R3, defined by

c(t) = σ + ϕ(t)uuu (55)

where
† ϕ ∶ R→ R is some class C∞ function with ϕ(0) = 0.
† uuu = 1

∥σ′−σ∥(σ
′ − σ) ∈RRR3.

The κ-speed of c is vκ(t) = κ(σ + ϕ(t)uuu)∣ϕ′(t)∣.
The parametrization c is κ-uniform with constant κ-speed V if and only if

∀t ∈ R, ∣ϕ′(t)∣ = V
κ(σ + ϕ(t)uuu) (56)

Then, ∀t ∈ R, V
M ≤ ∣ϕ

′(t)∣ ≤ V
m so that the derivative ϕ′(t) never cancels. If c is to reach σ′ at

some positive time, we have ∀t ∈ R, ϕ′(t) > 0.
Let K ∶ R→ R be the function defined by

K(θ) = ∫
θ

0
κ(σ + suuu)ds (57)

as κ is a strictly positive function, K is a strictly increasing bi-objective function from R to
itself; let χ be its reciprocal.

The curve defined by
c(t) = σ + χ(tV)uuu

is κ-uniform with κ-speed V.
Indeed, its κ-speed is

vκ(t) = κ(σ + χ(tV)uuu)χ′(tV) = κ(σ + χ(tV)uuu) 1
K′(χ(tV))V = V (58)

3.2.3. Velocity Fields and Covariant Accelerations

Let γ ∶ R→ R3 be a smooth curve.
For a given sitting observer, a, R3 is equipped with GEuc

κ(a), the Levi-Civita connection
is flat, and the solutions to the equation for the cancellation of the covariant derivation of
the a-velocity

∇ d
dt

v̇̇v̇va = 0 (59)

are the parametrizations with the constant a-speed of straight lines; these are the a-
geodesics.

Two sitting observers (a and b) will agree that a given curve is a geodesic but will
observe two different speeds.

A straightforward computation gives the equation for the cancellation of the flat
covariant derivation of the κ-velocity

∇ d
dt

v̇̇v̇vκ = κ(γ(t))γ̈̈γ̈γ(t)+ ⟨GGGradγ(t)κ, γ̇̇γ̇γ(t)⟩.γ̇̇γ̇γ(t) = 0 (60)

The flat covariant derivation is not the Levi-Civita of the metric GEuc
κ , so Equation (60)

is not the equation for the geodesics of GEuc
κ . The solution curves are the parametrizations

of straight lines with constant κ-speed.
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This can be checked easily: Equation (60) admits one unique solution with the given
initial conditions (γ(0), γ̇̇γ̇γ(0)). By using an adapted frame, we can assume that γ(0) = O
and γ̇̇γ̇γ(0) are colinear with ∂

∂σσσ1 .
We have seen that the κ-uniform parametrization of the straight line γ is such that

γ(0) = O and κ-speed 1 is
γ(t) = (χ(t), 0, 0)

where χ is the reciprocal of the function K defined by

K(θ) = ∫
θ

0
κ(O + s

∂

∂xxx1 )ds.

The velocity of γ is

γ̇̇γ̇γ(t) = χ′(t) ∂

∂xxx1 =
1

κ(γ(t))
∂

∂xxx1 ,

and then

γ̈γγ(t) = ∇ d
dt

γ̇̇γ̇γ(t) =
− ∂κ

∂x1 (γ(t))χ′(t)
κ2(γ(t))

∂

∂xxx1 = −
1

κ(γ(t))3
∂κ

∂x1 (γ(t))
∂

∂xxx1

from where, again, we find Equation (60).

3.2.4. Laser Distance

Let σ, σ′ be two distinct points of R3 and uuu = 1
dEuc(σ,σ′)(σ

′ − σ). Consider

γ ∶ R→ R3; t ↦ σ + tuuu (61)

we have
γ(0) = σ, γ(dEuc(σ, σ′)) = σ′.

and as ∀t ∈ R, γ̇̇γ̇γ(t) is the Euclidean-unit tangent vector uuu, the κ-speed is vκ(t) = κ(γ(t)).
The laser distance dlas(σ, σ′) is defined by the GEuc

κ -length of γ between σ and σ′,
which is

dlas(σ, σ′) = LGEuc
κ
([σ, σ′]) = ∫

dEuc(σ,σ′)
0

κ(σ + tuuu)dt. (62)

This laser distance can also be obtained by using the κ-uniform parametrization of
[σ, σ′], with κ-speed equal to 1.

γ̃ ∶ R→ R3; t ↦ x = σ + χ(t)uuu

where χ = K−1 with K(θ) = ∫
θ

0 κ(x + suuu)ds.
Llas(σ, σ′) is the “distance” obtained by compiling the observations (of the speed)

made by sitting observers along the straight line segment [σ, σ′] (which is not a GEuc
κ -

geodesic).
In general, the application (σ, σ′) ↦ dlas(σ, σ′) is not a distance because it fails to

satisfy the triangle inequality; however, nevertheless,
the positivity ∀σ, σ′ ∈ R3, dlas(σ, σ′) ≥ 0.;
the separation ∀σ, σ′ ∈ R3, dlas(σ, σ′) = 0⇐⇒ σ′ = σ;
and the symmetry ∀σ, σ′ ∈ R3, dlas(σ, σ′) = dlas(σ′, σ)

are satisfied.
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3.2.5. Circular Motions

Let γ ∶ R→ R3 be a parametrization of class C∞ of some Euclidean circle C of R3; in a
well-chosen orthonormal co-ordinate system (σ1, σ2, σ3), we have

γ(t) = R( cos θ(t), sin θ(t), 0)) (63)

with R > 0 and θ of some class C∞ function.
For θ ∈ R, let us define the tangent vector fields:

uuu(θ) = cos(θ) ∂

∂σσσ1 + sin(θ) ∂

∂σσσ2 and vvv(θ) = −sin(θ) ∂

∂σσσ1 + cos(θ) ∂

∂σσσ2 . (64)

For a sitting observer, a, the apparent radius is κ(a)R, and the a-velocity at time t is

vvva(t) = κ(a)Rθ′(t)vvv(θ(t)) (65)

whereas the κ-velocity at time t is given by

vvvκ(t) = κ(γ(t))Rθ′(t)vvv(θ(t) (66)

The (covariant) a-acceleration of γ is

∇ d
dt

v̇̇v̇va(t) = κ(a)R[θ′′(t)vvv(θ(t))− θ′(t)2uuu(θ(t))] (67)

The (covariant) κ-acceleration of γ is

∇d
dt

v̇̇v̇vκ(t) = ∇d
dt
((κ ○ γ)γ̇̇γ̇γ)(t) = d(κ ○ γ)

dt
(t)γ̇̇γ̇γ(t)+ κ ○ γ(t)∇d

dt
γ̇̇γ̇γ (68)

3.2.6. a-Uniform and κ-Uniform Circular Motions

When a circular motion, γ, is a-uniform, in other words, when the a-speed for a sitting
observer a is a constant, the expression of θ has the form θ(t) = φ +ωt, with φ and ω as
some constants. By changing the origin of time, we may assume that φ = 0, and by changing
the orientation, we may assume that ω ≥ 0.

Then,
γ(t) = R(cos(ωt), sin(ωt), 0)

(in polar co-ordinates γ(t) = (R, ωt)).
For any sitting observer a ∈ R3, the motion will also be circular a-uniform with the

angular speed ω but with an apparent radius of the trajectory as Ra = κ(a)R.
The a-speed and the κ-speed give

va(t) = Rκ(a)ω and vκ(t) = Rκ(γ(t))ω (69)

The derivative of the κ-speed is

dvκ

dt
(t) = R2ω2⟨GGGradσ(t)κ,vvv(ωt)⟩ = Rω2 ∂g

∂θ
(σ, ωt) (70)

where g is defined by
g(r, θ) = κ(rcos(θ), rsin(θ), 0).

Of course, if κ happens to have radial symmetry, in other words, if ∂g
∂θ = 0, the motion

is also κ-uniform.
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3.3. κ-Structure on a Minkowski Metric

Let us equip R4 with the Minkowski metric GMink. We chose, once and for all, a global
system of co-ordinates (σ0, σ1, σ2, σ3) such that the expression of the pseudo-metric is

GMink = dσ0dσ0 − δijdσidσj

Then, ∀e ∈ R4,∀uuu = ui ∂

∂σσσi ,vvv = vi ∂

∂σσσi ∈ TeR4,

GMink
e (u,vvv) = ⟪u,vvv⟫ = u0v0 − (u1v1 + u2v2 + u3v3) (71)

The choice of the global co-ordinates system provides a trivial foliation of R4, for which the
leaves are the equivalence classes of the relation (σ0, σ1, σ2, σ3) ≃ (σ′0, σ′1, σ′2, σ′3) when
(σ1, σ2, σ3) = (σ′1, σ′2, σ′3). Each leaf of that foliation will be called a sitting observer relative
to the chosen global co-ordinate system. A unique sitting observer ā is associated with each
point a in R3.

Changing the choice of the co-ordinate system will, of course, change the sitting
observers.

A Minkowski metric affected with a κ-effect is a couple ((σ0, σ1, σ2, σ3), κ), where
† (σ0, σ1, σ2, σ3) is a global co-ordinates system, such as GMink, which has the expres-

sion
dσ0dσ0 − δijdσidσj.

† κ ∶ R3 →]m, M[with m > 0 is a class C∞ function.
When ((σ0, σ1, σ2, σ3), κ) is a Minkowski metric affected by a κ-effect, we have, on the

one hand, two pseudo-metrics on R4:
⋅ The Minkowski metric GMink = dσ0dσ0 − δijdσidσj defined in (71).
⋅ The nonflat pseudo-metric Gκ = dσ0dσ0 − κ2δijdσidσj defined by

∀e ∈ R4,∀uuu = ui ∂

∂σσσi ,vvv = vi ∂

∂σσσi ∈ TeR4,

GMink
κ,e (u,vvv) = ⟪u,vvv⟫κ(ē) = u0v0 − κ2(ē)(u1v1 + u2v2 + u3v3) (72)

On the other hand, we have a collection of Minkowski metrics on R4, ∀a ∈ R3 (Figure 3)

GMink
κ(ā) = dσ0dσ0 − κ2(ā)δijdσidσj,

defined by

∀e ∈ R4,∀uuu = ui ∂

∂σσσi ,vvv = vi ∂

∂σσσi ∈ TeR4,

GMink
κ(ā) (u,vvv) = ⟪u,vvv⟫ā = u0v0 − κ2(ā)(u1v1 + u2v2 + u3v3) (73)

Any information retrieved using the pseudo-metric GMink
κ(ā) on R4 is an observation

made by a sitting observer, ā. For example, let e and e′ be two events; if u is the unique
quadrivector such that e′ = e +uuu is the sitting observer, ā will interpret e and e′ separated
by a time-like gap when GMink

κ(ā) (uuu,uuu) > 0. Another sitting observer may interpret e and e′

separated by a space-like gap.
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GMink
κ(ā)

GMink
κ(b̄)

GMink
κ(c̄)

●
e

●
e

●
e

σs

σ0

σs

σ0

σs

σ0

Figure 3. Deformation of the “future-cone” at e, with κ(ā)<κ(b̄)<κ(c̄) the “space component”, σs, is
represented in dimension 1.

3.3.1. Quadrivelocities

Let
Γ ∶ R→ R4, τ ↦ (Γ0(τ), Γ1(τ), Γ2(τ), Γ3(τ))

be a smooth worldline expressed in the co-ordinates system (σ0, σ1, σ2, σ3), where the
triplet (Γ1(τ), Γ2(τ), Γ3(τ)) will be denoted by Γs(τ). The associated sitting observer is
Γ̄(s)(τ).

The quadrivelocity at proper time τ is

Γ̇̇Γ̇Γ(τ) = Γ̇0(τ) ∂

∂σσσ0 + Γ̇i(τ) ∂

∂σσσi ∈ TΓΓΓ(τ)R4 (74)

where the dot is the derivation with respect to the proper time τ, and the summation is on
indexes i ∈ {1, 2, 3}.

The quadrivelocity observed by a sitting observer ā, the ā-quadrivelocity , is defined by

Γ̇̇Γ̇Γā(τ) = Γ̇0(τ) ∂

∂σσσ0 + κ(ā)Γ̇i(τ) ∂

∂σσσi (75)

so that
⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫ā = ⟪Γ̇̇Γ̇Γā(τ), Γ̇̇Γ̇Γā(τ)⟫ (76)

The quadrivelocity observed by a family of sitting observers, Γ̄s(τ), is the κ-quadrivelocity

Γ̇̇Γ̇Γκ(τ) = Γ̇0(τ) ∂

∂σσσ0 + κ(Γ̄s(τ))Γ̇i(τ) ∂

∂σσσi (77)

so that
⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫Γ̄s(τ) = ⟪Γ̇̇Γ̇Γκ(τ), Γ̇̇Γ̇Γκ(τ)⟫ (78)

We have

Γ̇̇Γ̇Γ(τ) = Γ̇0(τ)( ∂

∂σσσ0 +
Γ̇i(τ)
Γ̇0(τ)

∂

∂σσσi ) (79)

If we put

vvvΓ(τ) =
Γ̇i(τ)
Γ̇0(τ)

∂

∂σσσi (80)
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we obtain the equivalence

⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫ > 0⇐⇒ ⟨vvvΓ(τ),vvvΓ(τ)⟩ < 1 (81)

When ∀τ ∈ R, ⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫ > 0, we say that Γ is a Minkowski-particle worldline.
Let ā be a sitting observer so that we have

Γ̇̇Γ̇Γā(τ) = Γ̇0(τ)( ∂

∂σσσ0 + κ(ā) Γ̇i(τ)
Γ̇0(τ)

∂

∂σσσi ) = Γ̇0(τ)( ∂

∂σσσ0 + κ(ā)vvvΓ(τ)) (82)

We obtain the equivalence

⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫ā > 0⇐⇒ ⟨vvvΓ(τ),vvvΓ(τ)⟩ <
1

κ2(ā) (83)

When ∀τ ∈ R, ⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫ā > 0, we say that Γ is a ā-particle worldline.
We also have

Γ̇̇Γ̇Γκ(τ) = Γ̇0(τ)( ∂

∂σσσ0 + κ(Γ̄s(τ))
Γ̇i(τ)
Γ̇0(τ)

∂

∂σσσi ) = Γ̇0(τ)( ∂

∂σσσ0 + κ(Γ̄s(τ))vvvΓ(τ)) (84)

we obtain the equivalence

⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫κ > 0⇐⇒ ⟨vvvΓ(τ),vvvΓ(τ)⟩ <
1

κ2(Γ̄s(τ)) (85)

When ∀τ ∈ R, ⟪Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟫κ > 0 we say that Γ is a κ-particle worldline.
Let us put

vvvā,Γ(τ) = κ(ā)vvvΓ(τ) and vvvκ,Γ(τ) = κ(Γ̄s(τ))vvvΓ(τ) (86)

For two sitting observers, ā and b̄, we have

vvvā,Γ(τ) =
κ(ā)
κ(b̄)

vvvb̄,Γ(τ) (87)

and

vvvκ,Γ(τ) =
κ(Γ̄s(τ))

κ(ā) vvvā,Γ(τ) (88)

Any of the Minkowskian metrics GMink
κ(ā) is flat, so their Levi-Civita connections are all

equal to the trivial covariant derivative. Therefore, we have

∇ d
dτ

Γ̇̇Γ̇Γ = 0⇐⇒ Γ̈i(τ) = 0 for i = 0, 1, 2, 3 (89)

For any metric GMink
κ(ā) , the geodesic worldlines are σ ∶ R→ R4, τ ↦ (σ0(τ), σ1(τ), σ2(τ), σ3(τ)),

where the co-ordinate functions σi are affine functions.

3.3.2. Changing Co-Ordinate Systems

Without the κ-effect:
The choice of a “reference frame” F = (O,B), where O = (x0, x1, x2, x3) is an event and

B = (∂∂∂0,∂∂∂1,∂∂∂2,∂∂∂3) is a base of TTTOR4 such that for uuu = ui∂∂∂i and v = vi∂∂∂i, two tangent vectors
are at O, we have

⟪uuu,vvv⟫ = u0v0 − (u1v1 + u2v2 + u3v3)

which determines a global system of coordinates (σ0, σ1, σ2, σ3) on R4. For example, we
can choose ∂∂∂i = ∂

∂σσσi for i = 0, 1, 2, 3.
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Consider O′ ∶ R → R4, T ↦ (a0T, a1T, 0, 0), with a0, a1 ∈ R as a geodesic worldline.
If we adjust a base B′ = (∂∂∂′0,∂∂∂′1,∂∂∂′2,∂∂∂′3) of TO′(0)R4 so that the global co-ordinate system
(σ′0, σ′1, σ′2, σ′3) generated by the frame F ′ = (O′(0),B′) fulfills the following conditions:

(1) The co-ordinate functions of a geodesic worldline R→ R4 are affine functions;
(2) If e ∈ R4 has co-ordinates (σ0, σ1, σ2, σ3) satisfying

(σ0)2 − ((σ1)2 + (σ2)2 + (σ3)2) = 0

its co-ordinates (σ′0, σ′1, σ′2, σ′3) satisfy

(σ′0)2 − ((σ′1)2 + (σ′2)2 + (σ′3)2) = 0

We obtain

∂∂∂′0 = γ(∂∂∂0 + v∂∂∂1),∂∂∂′1 = γ(v∂∂∂0 +∂∂∂1),∂∂∂′2 = ∂∂∂2,∂∂∂′3 = ∂∂∂3 (90)

where
v = a1

a0
and γ = 1√

1− v2
(91)

Then, if e has the co-ordinates (σ0, σ1, σ2, σ3) in F , its co-ordinates in F ′ are

σ′0 = γ(σ0 − vσ1), σ′1 = γ(−vσ0 + σ1), σ′2 = σ2, σ′3 = σ3.

This is the σ1-boost.
With the κ-effect:
Let (σ0, σ1, σ2, σ3) be an event and Ō be the associated sitting observer. We can choose

a base BŌ = (∂∂∂0,∂∂∂1,∂∂∂2,∂∂∂3) of TOR4 such that for uuu and vvv, two tangent vectors have

⟪uuu,vvv⟫Ō = u0v0 − (u1v1 + u2v2 + u3v3)

Such a base is, for example, given by ∂∂∂0 = ∂
∂σσσ0 and ∂∂∂i = 1

κ(Ō)
∂

∂σσσi . Let FŌ be the frame (O,BŌ);
As previously shown, if we consider an inertial observer, O′, passing by a point of Ō

at T = 0, adjusting the co-ordinates system will give

∂∂∂′0 = γŌ(∂∂∂0 + vŌ∂∂∂1),∂∂∂′1 = γŌ(vŌ∂∂∂0 +∂∂∂1),∂∂∂′2 = ∂∂∂2,∂∂∂′3 = ∂∂∂3 (92)

where
vŌ = κ(Ō) a1

a0
and γŌ =

1√
1− v2

Ō

(93)

We obtain the Ō-σ1-boost.

3.3.3. Observation of a Far-Away Geodesic Worldline

Let Γ ∶ R→ R4, τ ↦ Γ(τ) = (Γ0(τ), Γ1(τ), Γ2(τ), Γ3(τ)) be a geodesic worldline.
Each sitting observer, ā, interprets Γ as a geodesic worldline. The support of Γ is

rectilinear, and the quadrivelocity, Γ̇̇Γ̇Γ(τ), is a constant vector field, Γ̇̇Γ̇Γ, along Γ.
Let ψ ∶ R → R4 be a reparametrization of this geodesic worldline in such a way that

there exists a strictly positive constant Λ; then, we have

∀τ ∈ R, ⟪ψ̇̇ψ̇ψ(τ), ψ̇̇ψ̇ψ(τ)⟫
ψ(τ) = Λ (94)

The support is still rectilinear, but the quadrivelocity field τ ↦ ψ̇̇ψ̇ψ(τ) is no longer constant;
nevertheless, the κ-quadrivelocity is constant.

As ψ is a reparametrization of the geodesic worldline Γ, there exists a function, f ∶ R→
R∗+, such that we have
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ψ̇̇ψ̇ψ(τ) = f (τ)Γ̇̇Γ̇Γ (95)

so we have
⟪ψ̇̇ψ̇ψ(τ), ψ̇̇ψ̇ψ(τ)⟫ψ̄s(τ) = f 2(τ)⟪Γ̇̇Γ̇Γ, Γ̇̇Γ̇Γ⟫ψ̄s(τ) (96)

so Equation (94) reformulates into

∀τ ∈ R, f 2(τ) = Λ
⟪Γ̇̇Γ̇Γ, Γ̇̇Γ̇Γ⟫ψ̄s(τ)

(97)

which can be fulfilled only when

∀τ ∈ R,⟪Γ̇̇Γ̇Γ, Γ̇̇Γ̇Γ⟫ψ̄s(τ) > 0 (98)

For the worldline ψ, we also obtain

⟨vvvκ(τ),vvvκ(τ)⟩ =
1

κ2(ψs(τ))
(1− Λ

ψ̇0(τ)
) (99)

Let us remark that

vvvā,ψκ(τ) =
κ(ā)

κ(ψκ,s(τ))
vvvκ,σκ(τ) (100)

To a distant sitting observer, ā, the worldline ψ appears to be rectilinear, even though
it is not a a-geodesic worldline. For example, this means that if along a geodesic worldline,
Γ, the function κ is decreasing, we may obtain a reparametrization ψ of Γ such that vvvκ,ψ is
constant while vvvā,ψ is not. It is then possible that a distant sitting observer, a, observes the
ā-quadrivelocity of κ-particle worldline as being time-like on some portion of the trajectory
and space-like on some other portion.

4. Applications

Let us specify that these applications are only given here for illustrative purposes.
Concrete and much more complex situations in the case of spiral galaxies and galactic
clusters have been discussed elsewhere [2–4].

We need to clarify “where” the objects we will be considering are and “where” the
observers actually are. A κ-structure is conceived as the trivial bundle R3×]m, M[→ R3,
where each constant section, R3

λ = R
3 × {λ}, is equipped with the metric GEuc

λ , and the base
space is equipped with the metric GEuc. Each leaf, R3

λ, of the bundle is accessible to a sitting
observer, a, such that λ = κ(a); those sitting observers are subject to an illusion (associated
with the surrounding density). The real space is the base space where the objects are, but
no real observer can see the geometry of that space per se. Rather, these observers see the
base through the magnifying glass provided by both their own environment and that of
the perceived object. Any potential observer in the base space accessing GEuc would be a
“shadow observer”.

4.1. What a Sitting Observer Sees: Size and Measurement

Let a and b be two sitting observers. As the Levi-Civita connections of GEuc
κ(a) and GEuc

κ(b)
are both equal to the trivial covariant derivation, a and b will agree on which tangent vector
fields along a smooth curve γ joining them are parallel (the constant vector fields). Assume
that κ(a) /= κ(b), and let U and V be two constant tangent vector fields along γ such that
(Figure 4)

da(a, a +U(a)) = κ(a)∥U∥GEuc = κ(b)∥V∥GEuc = db(b, b +V(b))

we have
da(a, a +V(a)) = κ(a)∥V∥GEuc /= κ(b)∥U∥GEuc = db(a, a +U(a))
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a

b
a +U

U

a +V

V

b +U

U

b +V

V

Figure 4. Discrepancy in size measurement: da(a, a+U) = db(b, b+V), and da(a, a+U) ≠ da(b, b+V).

Practically, this means that two different sitting observers each holding a stick, could
agree in saying that the two sticks have the same length when they exchange their obser-
vations of their own stick; however, if one of the observers uses their own measurement
system to measure both sticks, they would say that the two sticks have different lengths.

This can be illustrated in the following Figure 5, where two sitting observers compare
the radii of their own unit ball; a sees the unit ball held by b as bigger than their own.

Figure 5. Discrepancy in size measurement for a disk.

Another illustrative point of view appears very interesting. Here, we assume that
there is no gravity. The base is equipped with a Euclidean metric. Consider a free particle
emitted at some instant from point a (Figure 6). When arriving at b, the particle emits a
photon in the direction of observer A. Then, observer A sees the particle at position b’. They
measure the spectroscopic velocity κB∥σ̇σσ∥ (shown in orange). Likewise, observer B sees the
particle starting from a at position a’ and measures the spectroscopic velocity κA∥σ̇σσ∥.

κ-aberrationκ-aberrationκ-aberration
In Figure 6, a linear variation of κ as a function of σσσ is assumed. Then, the image of

the straight line ab taken in the base (the real trajectory of the particle, P) is represented
by a multiplet of parallel straight lines ab’, a’b, ..., with each of these lines being attached
to a real observer. Let us note that the real trajectory of the particle, P, in the base space,
does not seem to be parallel to the corresponding multiplet of its images in the bundle. In
fact, there is no reason why this should be so. The base space is linked to the bundle by a
projection, which can diversely tilt by any small portion of a trajectory, even though this tilt
is fictitious. Moreover, the base space is not accessible to the real observers present in the
bundle. Then, an unreflected comparison of a vector in the base to the “same” vector in the
bundle makes no sense regarding its apparent direction. In the base, the vector σ̇σσ (denoted
by σ̇bσbσb) is constant for a free particle, whereas in the bundle, it is κσ̇σσ that is a constant vector.
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In the sheet of observer A, we have the radial (spectroscopic) and (apparent) tangential
components of the velocity, respectively, as seen by this observer (dA = 10 AU)

vspec = κ∥σ̇σσ∥ vt = κA
κ̇

κ2
dA

2
(101)

the dot over κ denotes the Lagrangian time derivative of κ. We can verify that if κ̇ = 0, then
the tangential velocity cancels out.

Figure 6. Two observers (A and B) separated by a very large distance of≫1 pc. Very close to each
of them, a universal “atom” that is small in size, ∼ 10 AU, is represented. The dashed straight line
ab’ (respectively, a’b) is a geodesic of the sheet of observer A (respectively, B) equipped with κA

(respectively, κB). Let us note that the norm of vector σ̇σσ is a constant in the base, but this norm
varies by 1

κ in the respective sheets of the observers. On the other hand, the curve ab" displayed
in blue is a geodesic of the bundle equipped with the variable κ (Let the action for a free particle

be S = ∫ κ(σ)
√
( dσ

ds )
2
ds By applying Hamilton’s principle, we find the geodesic equation (curve

displayed in blue in Figure 6). d
ds(κ

dσ
ds )−∇κ = 0 ).

Overlapping images.
Let a be a sitting observer, ∆ be a straight line passing through a, S and P be two

planes orthogonal to ∆, B be a disk, and C be a small, concentric, flattened annulus, both in
P and centered at ∆ ∩P . Assume that dEuc(a,P)≫ RB = RC ≫ dEuc(a,S), where RB is the
radius of B and RC is the thickness of C; for example, dEuc(a, P)≫ 1pc, RB = RC = 10 AU
and dEuc(a,S) = is a few meters.

The points of B are all affected by a κ coefficient, κb, and the points of C are all affected
by the coefficient κc.

We have ∀x ∈ B ∪C, d(a, x) ≃ d(a,P). Let b ∈ B and c ∈ C, where we have db(a, b) =
κb
κa

da(a, b) and dc(a, c) = κc
κa

da(a, c). Photons are emitted by b and c in the direction of a,
but, of course, each emitter estimates the direction of a using its own tools; the ratio κb/κc
induces a magnification of the image received by a on a screen in the plane S , as shown in
Figure 7.

In order to illustrate this phenomenon, let us consider three cases; in the first case
(Figure 7a), κb

κc
= 1; in the second case (Figure 7b), we assume that κb

κc
> 1 (3 in Figure 7b); in

the third case (Figure 7c), we assume κb
κc
< 1 (1/3 in Figure 7c)

If for κb = κc, there is no κ-effect, observer a perceives an image with no magnification,
as shown in Figure 7a. The second case is represented in Figure 7b; it shows the modification
of the image received by a, where the image of the flattened annulus is stretched. The
third case is represented in Figure 7c, where the image of the central disk is stretched and
overlaps the image of the flattened annulus (We considered the use of a noncontinuous
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function κ for a better visualization of the overlapping aspects, but if we had considered a
continuous function κ, we would have found a “smooth” overlapping with three layers).

●a
s s

(a)

●a
s

●
a′

s′ s

(b)

●a
s

●
a′

s′ s

(c)

Figure 7. (a) Images obtained without the κ-effect; the annulus is represented in yellow; the central
disk is represented in red. (b) Images obtained using the kappa-effect; the emitter in the annulus sees
observer a three times closer. The gap in the image is a consequence of κ discontinuity at the border
between the annulus and the central disk. (c) Images obtained with kappa-effect; the emitter in the
central disk sees a three times closer. The image of the central disk overlaps the image of the annulus;
the overlapping region is colored orange.

4.2. The Circular Motion of a Test Mass m = 1 around a Motionless Mass M
4.2.1. Without the κ-Effect

Without the κ-effect, in other words, for any observer considering R3 endowed with
the Euclidean metric GEuc, the motion is the usual Newtonian motion.

Let us consider the elementary situation of a very massive point of mass, M, located at
the origin O of some co-ordinates and surrounded by a spherical gas cloud that is very weak
in density ρ with radial symmetry. When limited to an examination of the circular motion,
t ↦ σ(t), of a test mass, m = 1, around this point, the dynamic equation is (assuming the
gravitational constant G = 1)

d
dt
(σ̇) = −M(R)

R2 uuu(t) (102)

where uuu = σ(t)−O
∥σ(t)−O∥ is the radial GEuc unit vector at σ(t) and R is the constant GEuc distance

from σ(t) to O and M(R) = M + 4π ∫
R

0 ρ(r)r2dr.
It is a very simple affair to show that the Newtonian speed vNewt,0 is that which would

be measured by a fictitious observer using the metric GEuc. We find the trivial result

vNew,0 = (
M + 4π ∫

R
0 ρr2dr

R
)

1
2 =
√

M(R)
R

(103)

The index 0 indicates that this is what is measured by the fictitious observer. In the
κ-model framework, the Newtonian speed vNew,0, as defined above (103), is fictitious; it
cannot be measured by any real sitting observer (Figure 8).
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Figure 8. Circular Newtonian motion.

4.2.2. With κ-Effect

Consider a local sitting observer, aloc, situated on the trajectory of the test mass, they
see the whole space endowed with the metric GEuc

κ(a); but, of course, this observer does

not have access to either κ(a) or GEuc. As the κ-effect affects the distances but does not
affect the masses, the apparent radius of the trajectory is κlocR, while the mass M remains
unchanged. By applying Newtonian dynamics with this modified metric, sitting observer a
measures the speed:

vNew,loc =
¿
ÁÁÀM(R)

κlocR
=
√

κE

κloc
vNewt,E (104)

where vNew,E is the Newtonian velocity calculated (but not measured) by a terrestrial
observer, aE.

We are aware that in astrophysics, the radial velocity (the velocity component directed
along the line of sight) is measured by spectroscopy, while the component of the velocity
projected on the sky plane is deduced from the measurement of the proper motions.
Thus, within the κ-model framework, a clear distinction must be made between these two
components. We will call the spectroscopic velocity the (radial) velocity measured by any
observer. This velocity is independent of the sitting observer and is defined by

vspec = vNew,loccos(θ) =
√

κE

κloc
vNew,Ecos(θ) (105)

where θ is the projection angle along the line of sight.
It is very commonly observed in the outskirts of the spiral galaxies that the density

is ρ(r) ∼ exp(−r), where r is the distance to the center of a galaxy, as measured by a
terrestrial observer, i.e., κER. If we assume that κ(r)

κE
= 1

1+Ln( 1
ρ(r) )

(The detailed relationship

is κ(r)
κM
= 1

1+Ln( ρM
ρ(r) )

, where ρM denotes the maximal density in the galaxy (galaxy center).

Here, we assume that ρM ∼ ρE and the density ρ are normalized to this value), we obtain
κ(r)
κE
≃ 1

r for r ≫ 1. In this case, we can conclude that vNewt,loc becomes constant and, by
consequence, vspec becomes constant as well. In other words, the observed flatness of the
rotational curves of the spiral galaxies is correlated with the variation of the density in
the disk as a decreasing exponential function of the radius r. A few concrete examples are
given in Figure 9.

In contrast, the tangential velocity measured by a terrestrial observer aE is

vtan =
κE

κloc
vNewt,locsin(θ) = κE

κloc

√
1

κloc
vNewt,0sin(θ). (106)
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Figure 9. Galaxy rotation velocity profiles. (a) The Milky Way in the vicinity of the Sun; (b) M33;
(c) NGC 1560; (d) NGC6946. For more details, see [2].

4.3. An Analysis of the Spiral Substructure

Spiral galaxies are dominant in the Universe. It is, therefore, most interesting to
understand the link existing between the observation of a tight spiral substructure, as it
would be seen by a fictitious Newtonian observer (i.e., one located in Euclidean space
without the κ-effect), compared to the point of view of a sitting observer affected by the
κ-effect. If the κ-effect is now taken into account (each real observer lives in the bundle
and not in the base, which is an unreachable place for them), in a spiral galaxy, the density
varies, as ρ(σ) ≃ e−σ and 1

κ(σ) ≃ 1+ σ.
Without the κ-effect, the equation supporting the spiral substructure is that of a tight

logarithmic spiral of a maximal extension equal to the unit

σ = eθ (θ < 0) (107)

With the κ-effect, the equation becomes

σ

1+ σ
= eθ (108)
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or

σ = eθ

1− eθ
(109)

For any sitting observer, a,

r = κ(a) eθ

1− eθ
θ < 0 (110)

While a hypothetical Newtonian observer would see a tightly coiled spiral, any sitting
observer would see a grand design spiral (Figures 10 and 11). Two distinct sitting observers,
a and b, see the same grand design spiral, but it differs according to a homothety ratio κ(a)

κ(b) .

Figure 10. A model example: A well-developed conservative spiral substructure seen in the bundle,
as opposed to its counterpart existing in the base (a tightly coiled spiral).

Figure 11. A conservative grand design spiral produced by a numerical simulation in the κ-model
framework (for more details, see [2]). The elapsed time is given in the unit of 100 Myr. The Newtonian
equivalent would be a much tighter spiral with a larger number of turns.
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A side-on galaxy
If we assume (for simplicity) that a terrestrial observer measures a constant thickness

for a disk galaxy, then (Figure 12)

δE(σ) = δ0

In addition, we have

κ

κE
= 1

1+ κEσ

Then, the local thickness is

δL(σ) =
κ

κE
δE(σ) =

δ0

1+ κEσ

Without the κ-effect, a side-on galaxy—seen as a very extended flat disk with a constant
thickness by a terrestrial observer—would appear as a much more compact object (for
κEσ = 10, δL(σ) = δ0

11).

a 
a 

b b 

Figure 12. A side-on galaxy, as seen by a terrestrial observer (a) in contrast to its compact counterpart
existing in the base (b). In this illustrative example, the terrestrial observer measures the density
ρ(r, z) = exp(−r − (5+ r)∣z∣).

4.4. Galaxy Clusters

The application of the κ-model to galaxy clusters is examined in [3]. We have shown
that the κ-model can greatly reduce the major of dark matter content in the galaxy clusters.
The current dark matter:baryons mass ratio amounts to approximately 10 in the outskirts
of these objects, and the κ-model can strongly reduce this ratio to within a much more
acceptable range of between 0 and 1. The fits are not optimal in the inner regions of the



Symmetry 2024, 16, 937 28 of 36

galaxy clusters, but by lowering the gas temperature in these regions, the problem can also
be easily solved. An example is the well-studied COMA cluster (Figure 13).

1010  
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�
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⨀
)

 

Figure 13. The short dashed blue curve is the Newtonian dynamic mass; the dashed-dotted cyan
curve is the MOND dynamic mass. The dynamic mass for the κ-model is displayed as the amber
curve (dynamic mass with a constant temperature T = 8.38 keV) and green curve (assuming a non-
isothermal temperature profile). The long, red dashed curve is the ICM (intracluster medium) gas
mass derived from X-ray observations (for more details, see [3]).

4.5. The Bullet Cluster

The Bullet Cluster (1E 0657-56) consists of two colliding clusters of galaxies, where
a clear separation appears between the stars (compact matter) and the hot gas (diffuse
matter). It is a relatively rare situation, even though other cases exhibiting very similar
properties are also known (for instance, MACS J0025.4-1222). The Bullet Cluster is claimed
to provide strong evidence for the existence of dark matter and, on the other hand, seems
to severely challenge MOND. Yet, the κ-model validates the test when a comparison is
made between the gravitational lensing diagrams coming from both the dark matter and
κ-model paradigms (Figure 14).

Figure 14. A comparison between the gravitational lensing diagrams resulting from the application
of both dark matter and κ-model paradigms in the case of the Bullet Cluster (for more details, see [3]).

4.6. Translation of an Extended Object and the κ-Effect

We have assumed that the coefficient κ is linked to the average mass density, ρ, via the
relationship

κ

κE
= 1

1+ ln ρE
ρ

(111)
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where the index E designates the values associated with any baseline observer (for instance,
the terrestrial observer). The way we carry out this averaging operation at a given point
may depend on what we are observing. If we observe the inner motion of a little part of a
galaxy, the observed zone must be affected by a coefficient κi deduced from an averaging
of ρ on a “small” ball, Ui, with a radius of δi ≃ 1 pc; now, if we observe a galaxy as a whole,
taken to be in a galaxy cluster, we need to affect this galaxy with a coefficient κe deduced
from an average of ρ on a ball, Ue, containing the whole galaxy, with a radius of δe ≃ 1 Mpc.

Let us consider a unit Gaussian distribution, wδ, centered on r (Figures 15 and 16).

wδ(r′ − r) = ( δ

π
) 3

2 e−[
r′−r

δ ]
2

(112)

The convolution with any quantity gives the mean value of this quantity. For instance,
for the mean mass density

ρ̄δ(r) = ∫
Uδ

wδ(r′ − r)ρ(r′)dV (113)

Figure 15. Averaging over a ball surrounding a star or a galaxy.

Figure 16. Stacking of balls covering a galaxy or a galaxy cluster.

The simultaneous consideration of both the inner motions in a galaxy and the global
motion of a galaxy, as a whole in a galaxy cluster, will necessitate the consideration of
two values of κ.

A sitting observer in the observed galaxy corresponds to the selection of two sheets in
the bundle R3×]m, M[→ R3 or two different ways of measuring distances: (R3, GEuc

κe ) and
(R3, GEuc

κi
).
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As previously shown, whether they are associated with the internal motions in a
galaxy or with the global movement of a galaxy, spectroscopic velocities are universally
accessible, meaning they can, therefore, slide along a fiber without changing.

Let us consider a galaxy moving in a cluster and two small regions (I and J) of that
galaxy moving into that galaxy (Figure 17).

Figure 17. Point of view of different observers.

With no κ-effect:
The velocities of I and J decompose into the sums

İ̇İI = σ̇̇σ̇σt + σ̇̇σ̇σint and J̇̇J̇J = σ̇̇σ̇σt + σ̇̇σ̇σ′int

With the κ-effect inside the galaxy:
At I, the coefficients κ are κext for translational movement and κi(I) for internal

movements. An observer O′i traveling with the galaxy coinciding with I only perceives
the internal movements, i.e., at I, that observer measures κi(I)σ̇σσint. The fixed observer Oi
measures the speed of the observer O′i, which is κeσ̇̇σ̇σt. Finally, the observer O′i transmits
the internal velocity of I to Oi. The observer Oi then makes the sum to obtain the speed

κeσ̇̇σ̇σt + κi(I)σ̇̇σ̇σint

At J, the κ coefficients are κe for the translation motion and κi(J) for the inner motions.
The fixed observer, Oj, measures the speed

κeσ̇̇σ̇σt + κi(J)σ̇′σ̇′σ̇′int

With the κ-effect outside the galaxy :
For a sitting observer, a, outside of the galaxy, the coefficient κ is locally computed,

κ(a). By canceling the translation velocity of the galaxy, this observer only perceives the
internal motions, respectively, κiσ̇σσint at I and κjσ̇σσ′int at J. The fixed observer, Oe, measures
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the speed of observer O′e, which is obviously unique, i.e., κeσ̇σσt. On the other hand, observer
O′e transmits the values of the internal velocities of I and J to Oe. Observer Oe then makes
the respective sums

at I:
κeσ̇̇σ̇σt + κi(I)σ̇̇σ̇σint

and at J:
κeσ̇̇σ̇σt + κi(J)σ̇′σ̇′σ̇′int

4.7. The Relativistic Extension

In the world of galaxies and galaxy clusters, as both gravity and velocities are weak, a
relativistic extension may not appear very useful. However, this extension is needed at the
cosmological level.

In general relativity, the background, i.e., R4, is equipped with a pseudo-Riemannian
metric. In some local co-ordinate systems, (σ0, σ1, σ2, σ3), the expression of the metric at
point φ has the form

ds2
φ = g00(φ)(dσ0)2 + g11(φ)(dσ1)2 + g22(φ)(dσ2)2 + g33(φ)(dσ3)2

where gii are some functions of φ with g00 > 0 and gii < 0 for i ∈ {1, 2, 3}.
Hence, the background is equipped with a pseudo-distance. An ideal observer having

access to this pseudo-metric would use this metric for the measurement of the space–
time interval between two events, φ1 and φ2; in other words, the pseudo-length of the
ds2-geodesic segment joining φ1 to φ2.

For i, j ∈ {1, 2, 3} distinct, the Christoffel symbols are

Γ0
00 =

g00

2
∂g00

∂σσσ0 , Γ0
i0 = Γ0

0i =
g00

2
∂g00

∂σσσi , Γ0
ii = −

g00

2
∂gii

∂σσσ0 , Γ0
ij = 0

For i ∈ {1, 2, 3} and j, k ∈ {0, 1, 2, 3}∖ {i} distinct (with no summation over i),

Γi
ii =

gii

2
∂gii

∂σσσi , Γi
ji = Γi

ij =
gii

2
∂gii

∂σσσj , Γi
jj = −

gii

2

∂gjj

∂σσσi , Γi
jk = 0

In the κ-model, each sitting observer, a, associates with the background of a modi-
fied pseudo-metric. The modification is a rescaling of the spatial co-ordinates of tangent
quadrivectors with no change in time co-ordinates. Then, the general form of the modified
pseudo-metric is

ds2
λ,φ = g00(φ)(dσ0)2 + λ2(g11(φ)(dσ1)2 + g22(φ)(dσ2)

2
+ g33(φ)(dσ3)2)

Each current sitting observer, a, is provided with a value for λ = κ(a).
The modification of the pseudo-metric induces a modification of the Christoffel sym-

bols. If we note
λ
gij for the coefficients of the modified metric ds2

λ, we have

λ
g00 = g00, and for i ∈ {1, 2, 3}, λ

gii = λ2gii,

then,
λ
g00 = g00 and

λ
gii = 1

λ2 gii

the Christoffel symbols of the modified metric and the initial metric are linked

λ
Γ0

00 = Γ0
00,

λ
Γ0

i0 = Γ0
i0,

λ
Γ0

ii = λ2Γ0
ii,

λ
Γ0

ij = Γ0
ij = 0
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λ
Γi

ii = Γi
ii,

λ
Γi

ji = Γi
ji,

λ
Γi

jj = Γi
jj,

λ
Γi

00 =
1

λ2

λ
Γi

00,
λ
Γi

jk = Γi
jk = 0

This means that the supports of geodesic curves may differ from one observer to another.
The full background is also equipped with a modified pseudo-metric.

ds2
κ,φ = g00(φ)(dσ0)2 + κ2(φ)(g11(φ)(dσ1)2 + g22(φ)(dσ2)

2
+ g33(φ)(dσ3)2)

If we note
κ
gij for the coefficients of the modified metric ds2

κ , we have

κ
g00 = g00, and for i ∈ {1, 2, 3}, κ

gii = κ2gii,

then,
κ
g00 = g00 and

κ
gii = 1

λ2 gii

the Christoffel symbols of this modified metric and the initial metric are linked (with no
summation over i)

κ
Γ0

00 = Γ0
00,

κ
Γ0

i0 = Γ0
i0,

κ
Γ0

ii = κ2Γ0
ii −

1
κ

∂κ

∂σσσ0 ,
κ
Γ0

ij = Γ0
ij = 0

κ
Γi

ii = Γi
ii +

1
κ

∂κ

∂σσσi ,
κ
Γi

ji = Γi
ji +

1
κ

∂κ

∂σσσj ,
κ
Γi

jj = Γi
jj −

giigjj

κ

∂κ

∂σσσi ,

κ
Γi

00 =
1
κ2 Γi

00,
κ
Γi

jk = Γi
jk = 0

The geodesics of this pseudo-metric are not geodesics for any metric used by sitting
observers.

4.7.1. Without Gravity

Without gravity, the metric ds2 is Minkowskian, and we have

g00 = η00 = 1, g11 = g22 = g33 = η11 = η22 = η33 = −1.

In this special case, the κ-effect does not affect the Christoffel symbols, and the geodesic
equation was considered in Section 3.3.3.

4.7.2. With Weak Gravity

Without the κ-effect
In the case of weak gravitational fields, the metric coefficients are slightly modified

For i ∈ {0, 1, 2, 3}, gii = ηii becomes g̃ii = ηii + hii

With hii functions of the position and ∣hii∣≪ 1, we then have g̃ii ≃ ηii − hii.
Furthermore, if we assume that the weak gravitation field is stationary, we have

for i ∈ {0, 1, 2, 3}, ∂hii

∂σσσ0 ≃ 0

In this situation, for i, j ∈ {1, 2, 3} distinct, the Christoffel symbols are

Γ0
00 ≃ 0, Γ0

i0 = Γ0
0i ≃

η00

2
∂h00

∂σσσi , Γ0
ii ≃ 0, Γ0

ij = 0

For i ∈ {1, 2, 3} and j, k ∈ {0, 1, 2, 3}∖ {i} distinct (with no summation over i),

Γi
ii ≃

ηii

2
∂hii

∂σσσi , if j /= 0, Γi
ji = Γi

ij ≃
ηii

2
∂hii

∂σσσj , and Γi
0i = Γi

i0 ≃ 0
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Γi
ji = Γi

ij ≃ 0, Γi
jj ≃ −

ηii

2

∂hjj

∂σσσi , Γi
jk = 0

If τ ↦ γ(τ) = (γ0(τ), γ1(τ), γ2(τ), γ3(τ)) is a geodesic, we have

( d
dτ

γ̇k + Γk
ijγ̇

iγ̇j) ∂

∂σσσk = 0 (114)

where γ̇i = dγi
dτ .

For the first component, we obtain

d
dτ
(γ̇0) ≃ 0 (115)

In the case of low velocities, i.e., γ̇1, γ̇2, γ̇3 ≪ γ̇0, the spatial components of the geodesic
equation reduce to

d
dτ
(γ̇i)+ Γi

00(γ̇0)2 ≃ 0 (116)

For i ∈ {1, 2, 3}.
With the κ-effect
The metric coefficients are changed to ηii + hii → κ2(ηii + hii) for i ∈ {1, 2, 3}. With the

same hypothesis of weak stationary gravity and low speed, the geodesic equation simplifies
(for Equation (117), see Equation (60)):

d
dτ
(γ̇0) ≃ 0 (117)

d
dτ
(κ[γ(τ)]γ̇i)+

κ
Γi

00(γ̇0)2 ≃ 0 (118)

for i ∈ {1, 2, 3}with
κ
Γi

00 ∼
1

2κ2
∂h00
∂σσσi . By using the variable γ0(τ), for i ∈ {1, 2, 3},

dγi

dτ
= γ̇0 dγi

dγ0

and
d

dτ
[κ[γ(τ)]dγi

dτ
]+

κ
Γi

00(γ̇0)2 = d
dτ
[γ̇0κ[γ(τ)] dγi

dγ0 ]+
κ
Γi

00(γ̇0)2

= d
dτ
[γ̇0].κ[γ(γ0)] dγi

dγ0 + γ̇0κ[γ(γ0)] d
dτ
[ dγi

dγ0 ]+
κ
Γi

00(γ̇0)2

= (γ̇0)2 d
dγ0 [κ[(γ

0)] dγi

dγ0 ]+
κ
Γi

00(γ̇0)2

Eventually, Equation (118) becomes

d
dγ0 [κ[γ(γ

0)] dγi

dγ0 ] = −
κ
Γi

00 = −
1

2κ[γ(γ0)]2
∂h00

∂σσσi . (119)

We use the Schwarzschild metric (with the attractive mass M situated at the origin of
the co-ordinates and very far from the singularity). Then, we have h00 = − 2M

σ .
For any sitting observer, a, equipped with their own co-ordinates and located along

the trajectory of the test mass, the motion equation is (γ0 ≡ t with the speed of light, c = 1)

d
dt
[κ[γ(t)]

κ(a)
drarara

dt
] = −( κ(a)

κ[γ(t)])
2

M
rarara

r3
a

(120)

where the right side of this equation can be compared to Equation (60). More specifically,
for a terrestrial observer equipped with usual co-ordinates (rrr(x, y, z)),
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d
dt
[κ[γ(t)]

κE

drrr
dt
] = −( κE

κ[γ(t)])
2

M
rrr
r3 (121)

The motions perceived by two sitting observers are homothetic to each other. All
observers are equivalent, and there is no privileged observer.

Gravitational Tide
Let A and A′ be two particles submitted to the gravitational action of a massive particle

of mass M and located at the origin of co-ordinates. The two particles are assumed to
be very close to each other. Let rrr and rrr′ be their respective position vectors. By putting
δrrr = rrr′ − rrr, the relative motion is given by the following equation:

d
dt
[κ[γ(t)]

κE

d
dt

δrrr] = −( κE

κ[γ(t)])
2

M
[r2δrrr − 3(δrrr.rrr)rrr]

r5 (122)

Let us note that when κ[γ(t)] < κE, the self-interaction is strengthened.
Two “paradoxes” that emerge from the motion of free particles
For a free motion, the equation is

d
dt
[κ[γ(t)]

κE

drrr
dt
] = 000 (123)

or
d
dt
[drrr

dt
] = − d

dt
[κ[γ(t)]

κE
]drrr

dt
(124)

i. A free particle (not submitted to any force) may exhibit an (apparent) auto-accelerated
(or auto-decelerated) motion for a terrestrial observer. This result seems to be inconsistent
with the first law of Newton. In fact, the motion perceived by a terrestrial observer is
fictitious. This motion is the image of a real motion taking place in the base. In the base, the
first law of Newton is obviously respected.

ii. Let two free particles, A and A′, that are sufficiently close to each other share the
same κ when moving along parallel straight lines in the base. Paradoxically enough, for a
terrestrial observer, these particles can now appear to move toward and away from each
other (Figure 18), following the sign of κ̇.

Figure 18. Apparent variation of a disk of constant size, as seen from the point of view of a terrestrial
observer. The real size is the disk shown in gray.

In other words, the trajectories of these particles no longer appear as two absolutely
continuous parallel lines. Rather, each of these lines appears as a kind of “Devil’s Staircase”.
The relative motion of these two particles reflects the apparent variation in the size of
any astronomical object (a planetary system in a galaxy or a galaxy in a galaxy cluster),
represented by a gray disk in Figure 18. The variation represented in the latter figure has
been artificially magnified. In reality, such a variation is very slow and cannot be detected
on the scale of a few hundred millennia. In the base, the velocity σ̇σσ (denoted by σ̇σσb in
Figure 18), as measured by a fictitious observer, obeys the equation (free particle)

dσ̇σσ

dt
= 000 (125)

and σ̇σσ = const, whereas in the bundle, the velocity κσ̇σσ (measured by a local observer) obeys
the equation

d
dt
[κσ̇σσ] = 000 (126)
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and in this case, σ̇σσ ∝ κ−1. If Figure 18 displays the projection of a moving disk on the
sky plane, for instance, as seen by a terrestrial observer E, then the measured velocity is
κEσ̇σσ. For them, the size of the disk (shown in orange) increases in the first phase and then
decreases in the second phase. Likewise, the velocity of the disk varies as κE

κ (increasing in
the first phase and decreasing in the second phase). In fact, the motion perceived by the
terrestrial observer is fictitious; the real velocity is constant (free particle).

5. Conclusions

In this paper, we have presented the formalism of the κ-model. The basic hypotheses
of this new paradigm are reasonably simple, and the κ-model exhibits some common points
with the MOND theory [5,6]. Thus, at least in its original form, MOND, which relies on
a unique universal parameter, a0, also constitutes a straightforward way to predictively
generate the rotational curves of individual galaxies. Unfortunately, some issues persist for
MOND at the scale of galactic clusters, even though some solutions have been proposed to
circumvent the problem [7]. The κ-model has the same level of efficiency as MOND in fairly
predicting the profiles of the rotational curves of individual spiral galaxies [4]; moreover, it
can also help to understand the physics of galactic clusters [3]. Other interesting ways have
also been suggested to circumvent the dark matter conundrum [8–12]. We have already
noticed that the latter theories share some common points with the κ-model [4]. Finally,
we can report that, in parallel, a study focusing on the cosmological implications of the
κ-model is in progress.
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