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Abstract: Limitations inherent to existing statistical distributions in capturing the complexities of
real-world data often necessitate the development of novel models. This paper introduces the
new exponential generalized inverse generalized Weibull (NEGIGW) distribution. The NEGIGW
distribution boasts significant flexibility with symmetrical and asymmetrical shapes, allowing its
hazard rate function to be adapted to many failure patterns observed in various fields such as
medicine, biology, and engineering. Some statistical properties of the NEGIGW distribution, such as
moments, quantile function, and Renyi entropy, are studied. Three methods are used for parameter
estimation, including maximum likelihood, maximum product of spacing, and percentile methods.
The performance of the estimation methods is evaluated via Monte Carlo simulations. The NEGIGW
distribution excels in its ability to fit real-world data accurately. Five medical and engineering datasets
are applied to demonstrate the superior fit of NEGIGW distribution compared to competing models.
This compelling evidence suggests that the NEGIGW distribution is promising for lifetime data
analysis and reliability assessments across different disciplines.

Keywords: T-X family; exponential-X family of distributions; generalized inverse generalized Weibull;
maximum likelihood; maximum product of spacing; percentile estimators; Monte Carlo simulations

1. Introduction

Probability distributions are essential for data modeling in many disciplines, including
economics, engineering, biology, business, and the medical sciences. Therefore, several
extended distributions have been proposed to enhance the functionality and adaptability of
the density and hazard rate functions to model data diversity. The techniques for extending
distributions include compounding, adding parameters, composing, and transforming.
For instance, the beta-generated method by [1], the Kumaraswamy-generated method
by [2], and the transformed-transformer approach by [3] among others.

A new lifetime family named the exponential-X (NLTE-X) was developed by [4]. This
family is based on the T-X generator with T ∼ Exp(1) and W(F(x)) = − log

{
1−F(x)
eθF(x)

}
.

The cumulative distribution function (CDF) and probability density function (PDF) of
NLTE-X are given by:

G(x; θ, ξ) = 1 −
{

1 − F(x; Θ)

eθF(x;Θ)

}
; θ > 0, x > 0, (1)

g(x; θ, ξ) = f (x)
{1 + θF(x; Θ)}

eθF(x;Θ)
; θ > 0, x > 0, (2)

where Θ is the vector of distribution parameters, and θ is a parameter of the NLTE-X family.
Various distributions were generated from the NLTE-X family, such as the exponential
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Fréchet distribution [5], exponential inverted Topp–Leone distribution [6], and exponential-
X power family of distribution [7].

Inverted distributions have attracted many researchers’ interest. Studies have shown
that inverted distributions have more flexible density and hazard function structures than
non-inverted ones. In addition, the applications of inverted distributions are significant
in various domains, including the biological sciences, life test problems, chemical data,
and medicine. For example, In reliability analysis, the inverse Weibull distribution (IW)
can accurately model the lifetime of various systems [8,9]. The inverted Kumaraswamy
distribution introduced by [10] was applied to precipitation, repairable items, and vinyl
chloride data. Moreover, the inverted Topp–Leone distribution was applied to the failure
times of Aarset data [11].

Recently, some generalizations of the inverse distributions were studied in the liter-
ature. These include the Kumaraswamy–inverse Weibull distribution proposed by [12],
the Kumaraswamy inverse exponential distribution developed by [13], the alpha power
inverse Rayleigh distribution developed by [14], the exponentiated inverse Rayleigh distri-
bution introduced by [15], and the Weibull inverted exponential distribution by [16]. The
Marshall–Olkin alpha power inverse Weibull distribution by [17], the alpha-power exponen-
tiated inverse Rayleigh distribution proposed by [18], the odd Weibull inverse Topp–Leone
distribution proposed by [19], the odds generalized exponential-inverse Weibull distribu-
tion proposed by [20], the generalized inverted Kumaraswamy distribution introduced
by [21], the Kumaraswamy generalized inverse Lomax distribution developed by [22],
and the inverse Weibull generator of distribution proposed by [23] .

Moreover, a new generalization of both the IW and generalized inverse Weibull
distribution (GIW) [24], named the generalized inverse generalized Weibull (GIGW), with
CDF and PDF is given by

FGIGW(x) = 1 −
(

1 − e−γ(λ/x)β
)α

; x > 0, γ, λ, α, β > 0, (3)

fGIGW(x) = αλβββγx−(β+1)e−γ(λ/x)β
(1 − e−γ(λ/x)β

)α−1; x > 0, (4)

where λ is the scale parameter and α, β, and γ are the shape parameters. Some of the
properties of this distribution are studied by [25]. In addition, ref. [26] has obtained
some estimators of the parameter of GIGW using maximum likelihood and the Bayesian
estimation methods.

The main purpose of this article is to introduce a new generalization of the IW and
inverse generalized Weibull based on the NLTE-X family of distributions called the new
exponential generalized inverse generalized Weibull (NEGIGW). The significance of the
NEGIGW distribution and its desirable characteristics include the following:

• The NEGIGW will improve the features and adaptability of the density and hazard
rate functions, accurately capturing the behavior of several real-world phenomena.
The hazard rate function of the NEGIGW exhibits a wide range of forms, including
decreasing, bath-tab and upside-down bath-tab, and reversed J-shape. The density
can take symmetrical and asymmetrical shapes. This will enable NEGIGW to fit a
wide range of data from the engineering, medicine, and reliability fields.

• The NEGIGW introduces new generalizations of the IW, inverse generalized Weibull
(IGW), and GIGW distributions by adding new parameters, thus increasing their
flexibility and improving their ability to characterize tail shapes more accurately as
observed from the different shapes of the NEGIGW density and hazard functions.
Therefore, this generalization will help IW, IGW, and GIGW’s inability to fit real-world
data such as the lifetime of some cancer data that showed a non-monotone failure rate
when it attained a maximum after a finite period and then decreased gradually.

• The CDF and hazard rate functions, moments, and entropy of the NEGIGW are in
closed forms, which are useful in analyzing complete and censored data.
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• The applications of five medical and engineering data illustrate that the NEGIGW
performs better than other competing lifetime models when modeling bladder cancer,
failure of the engine’s turbocharger, fatigue Fracture of Kevlar 373/epoxy and failure
and service times of aircraft windshield data.

Additionally, this study extends its investigation by evaluating the performance of var-
ious estimation methods for the parameters of the NEGIGW distribution. Three prominent
techniques are compared: maximum likelihood (ML), maximum product of spacing (MPS),
and percentile (PC) methods. A simulation study is conducted to assess the effectiveness
of these estimators across a range of sample sizes and parameter values. The statistical
analysis of the simulation results will provide valuable insights into the behavior and
accuracy of each method under different conditions. Moreover, the applicability of the
NEGIGW distribution is explored by demonstrating its superior fit to five practical applica-
tions compared to competing distributions. This comparative analysis strengthens the case
for the NEGIGW distribution as a versatile tool for modeling real-world phenomena.

This article is structured as follows: Section 2 presents the NEGIGW with some
graphical representations. We derived some of the NEGIGW properties in Section 3.
In Section 4, three methods of estimation are used to estimate the parameter of the NEGIGW.
Section 5, demonstrates extensive simulation studies to examine the performance of the
various estimators. In Section 6, five applications in various domains are investigated
to examine the NEGIGW’s effectiveness. Finally, some concluding remarks are made in
Section 7.

2. New Exponential Generalized Inverse Generalized Weibull Distribution

The CDF and PDF of the NEGIGW can be derived by substituting (3) and (4) in (1)
and (2) as follows

G(x) = 1 −

(
1 − e−γ(λ/x)β

)α

e
θ

(
1−

(
1−e−γ(λ/x)β

)α
) , x > 0, θ, γ, α, λ, β > 0, (5)

g(x) = αλββγx−(β+1)e−γ(λ/x)β
(1 − e−γ(λ/x)β

)α−1

[
1 + θ

(
1 − e−γ(λ/x)β

)α]
e

θ

(
1−

(
1−e−γ(λ/x)β

)α
) . (6)

The survival S(x) function is expressed as

S(x) =

(
1 − e−γ(λ/x)β

)α

eθ(1−
(

1−e−γ(λ/x)β
)α

)
. (7)

The hazard rate function (HF), which is frequently utilized in lifetime modeling as it
indicates the likelihood of failure, is defined as

HF = αλββγ x−(β+1) e−γ(λ/x)β

[
1 + θ

(
1 − e−γ(λ/x)β

)α]
(1 − e−γ(λ/x)β

)
. (8)

The NEGIGW distribution’s versatility in representing real-world data is evident in
its ability to generate a wide range of shapes for its PDF and HF. The density plots in
Figure 1 show decreasing, right-skewed, left-skewed, and symmetrical shapes, indicating
its ability to fit complicated data. The HF plots of the NEGIGW in Figure 2 exhibit diverse
asymmetrical forms such as unimodal, decreasing, and upside-down bathtubs, allowing
for modeling failure rates that change over time. This flexibility of NEGIGW makes it a
powerful tool for researchers and analysts. Researchers can tailor the NEGIGW to capture
the underlying patterns of diverse real-world phenomena. This capability can lead to more
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precise modeling and improved decision-making across various fields, from finance and
engineering to ecology and medicine.

Figure 1. The NEGIGW density plots.

Figure 2. The NEGIGW HF’s plots.

2.1. Linear Representation for the Density of NEGIGW

A linear representation of the PDF of NEGIGW has been developed using mathemati-
cal expansions. The derivation begins with the binomial theorem, given by

(1 − x)n =
n

∑
i=0

(−1)i
(

n
i

)
xi. (9)

By applying (9), the PDF of NEGIGW will become

g(x) =
1

∑
v1=0

α λβ β γ θv
1

(
1
v1

)
x−(β+1) e−γ(λ/x)β

(1 − e−γ(λ/x)β
)α+αv1−1 e

−θ

[
1−

(
1−e−γ(λ/x)β

)α
]
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The exponential expansion with a positive exponent is given by

ex =
∞

∑
i=0

xi

i!
. (10)

Then, the PDF will be

g(x) =
1

∑
v1=0

∞

∑
v2=0

(
1
v1

)
αλββγ θv1+v2 e−θ

v2!
x−(β+1) e−γ(λ/x)β

(1 − e−γ(λ/x)β
)α(v1+v2+1)−1

Applying (9) again, the PDF of NEGIGW will reduced to

g(x) =
∞

∑
v3=0

ηv3 λβ β γ x−(β+1)e−(v3+1)γ(λ/x)β
, (11)

where

ηv3 =
1

∑
v1=0

∞

∑
v2=0

(
1
v1

) (
α(v1 + v2 + 1)− 1

v3

)
(−1)v3 α θv1+v2 e−θ

v2!
. (12)

2.2. Some Special Cases of NEGIGW

Special cases of NEGIGW can be obtained as follows:

• When γ = 1 and α = 1, the NEGIGW reduces to the exponential Fréchet distribution
with parameters β, θ, and λ presented in [5].

• When β = 1 and γ = 1, the NEGIGW reduces to the exponential generalized inverse
exponential distribution with parameters α, θ, and λ; (not been previously studied).

• When β = 2 and α = 1, the NEGIGW reduces to the exponential generalized inverse
Rayleigh distribution with parameters γ, θ, and λ; (not been previously studied).

3. Properties of the NEGIGW

In this section, some characteristic properties of the NEGIGW are derived.

3.1. Quantile Function

The uth quantile function (0 < u < 1) of X ∼ NEGIGW can be derived by inverting (5)
and solving the non-linear equation by the Lambert function W[.].

xu = λ

− 1
γ

log

1 −
{

W
(
θeθ(1 − u)

)
θ

} 1
α




−1
β

, 0 ≤ u ≤ 1. (13)

The median of the NEGIGW can be obtained by substituting u = 0.5 into Equation (13).

Median(x) = λ

− 1
γ

log

1 −
{

W
(
θeθ(0.5)

)
θ

} 1
α




−1
β

. (14)

3.2. Moment

The rth moment of X ∼ NEGIGW is obtained as follows

µr = E(xr) =
∫ ∞

0
xrg(x)dx

=
∞

∑
v3=0

ηv3 λβ β γ
∫ ∞

0
xr x−(β+1)e−(v3+1)γ(λ/x)β

dx.
(15)
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By substituting y = (v3 + 1) γ (λ/x)β, therefore, the rth moment can be defined as

µr =
∞

∑
v3=0

ηv3 λr γ
r
β (v3 + 1)

r
β −1Γ

(
1 − r

β

)
, β > r, (16)

where ηv3 is given by (12)

3.3. Moment Generating Function

The moment-generating function (MGF) of the NEGIGW is defined as

MX(t) = E(etx) =
∞

∑
r=0

tr

r!
µr. (17)

Therefore, substituting (16) into (17), the MGF is obtained as

MX(t) =
∞

∑
r=0

tr

r!

∞

∑
v3=0

ηv3 λr γ
r
β (v3 + 1)

r
β −1Γ

(
1 − r

β

)
, β > r, (18)

where ηv3 is given by (12).

3.4. Characteristic Function

The NEGIGW characteristic function is obtained as

ϕx(t) = E(eitx) =
∞

∑
r=0

(it)r

r!

∞

∑
v3=0

ηv3 λr γ
r
β (v3 + 1)

r
β −1Γ

(
1 − r

β

)
, β > r, (19)

where ηs is given by (12).

3.5. Rényi Entropy

The Rényi entropy can be used to determine the uncertainty measurement of the
random variable X. When the Rényi entropy value is high, the data’s uncertainty level
increases. According to [27], the Rényi entropy, RE(δ), can be expressed as

RE(δ) =
1

1 − δ
log

[ ∫ ∞

−∞
[g(x)]δdx

]
(20)

By substituting g(x) given in (6) into the (20) and applying the expansions (10) and (9).
RE(δ) is presented as

[g(x)]δ =
∞

∑
v3=0

η∗
v3

βδ γδλδβ x−δ(β+1) e−γ(δ+v3)(λ/x)β
, (21)

where

η∗
v3

=
δ

∑
v1=0

∞

∑
v2=0

(
δ

v1

) (
α(v1 + v2 + δ)− δ

v3

)
(−1)v3 αδδv2 θv1+v2 e−θδ

v2!
. (22)

By replacing (21) in (20), and calculating the integral, the Rényi entropy of the NEGIGW
can be derived as

RE(δ) =
1

1 − δ
log

[
∞

∑
v3=0

η∗
v3

β(δ−1) λ(1−δ)

(δ + v3)
1
β [δ(β+1)−1]

γ
1
β (δ−1)

Γ
(

1
β
[δ(β + 1)− 1]

)]
. (23)
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3.6. Order Statistics

Let Xi:n denote the ith order statistics for NEGIGW’s random sample (RS) X1, X2, . . . , Xn.
Therefore, the ith order statistics PDF, fi:n(x), is presented as

fi:n(x) =
n!

(i − 1)!(n − i)!
f (x)[F(x)]i−1[1 − F(x)]n−i. (24)

Using (9), the PDF of Xi:n becomes

fi:n(x) =
n

∑
k=0

(−1)kn!
(i − 1)!(n − i)!

(
n
k

)
f (x)[F(x)]k+i−1. (25)

Substituting (5) into (25), the PDF of Xi:n

fi:n(x) =
n

∑
k=0

(−1)kn!
(i − 1)!(n − i)!

(
n
k

)
f (x)

1 − (1 − e−γ(λ/x)β
)α

e
θ

(
1−

(
1−e−γ(λ/x)β

)α
)


k+i−1

, (26)

where f (x) given by (6).

4. Estimation of Parameters

This section presents three estimation methods used to estimate the parameters of
the NEGIGW.

4.1. ML Estimation Method

If x1, . . . , xn are NEGIGW RS of size n, the log-likelihood function (ℓ) for Θ =
(θ, γ, λ, α, β) is as follows:

ℓ(Θ) =n log(α) + nβ log(λ) + n log(β) + n log(γ)− (β + 1)
n

∑
i=1

log(xi)− γ
n

∑
i=1

(
λ

xi

)β

+ (α − 1)
n

∑
i=1

log
(

1 − e−γ(λ/xi)
β
)
− θ

n

∑
i=1

(
1 −

(
1 − e−γ(λ/xi)

β
)α)

+
n

∑
i=1

log
[
1 + θ

(
1 − e−γ(λ/xi)

β
)α]

.

(27)

The following are the first derivatives of (27), with respect to Θ = (θ, γ, λ, α, β)

∂ℓ

∂θ
= −

n

∑
i=1

(
1 −

(
1 − e−γ(λ/xi)

β
)α)

+
n

∑
i=1

(1 − e−γ(λ/xi)
β
)α

1 + θ
(

1 − e−γ(λ/xi)
β
)α , (28)

∂ℓ

∂γ
=

n
γ
−

n

∑
i=1

(λ/xi)
β + (α − 1)

n

∑
i=1

e−γ(λ/xi)
β

1 − eγ(λ/xi)
β

(
λ

xi

)β

+ θα
n

∑
i=1

e−γ(λ/xi)
β
(

1 − e−γ(λ/xi)
β
)α−1

(
λ

xi

)β

+ θα
n

∑
i=1

e−γ(λ/xi)
β
(

1 − e−γ(λ/xi)
β
)α−1

1 + θ
(

1 − e−γ(λ/xi)
β
)α

(
λ

xi

)β

,

(29)
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∂ℓ

∂λ
=

nβ

λ
− γβλβ−1

n

∑
i=1

(
1
xi

)β

+ (α − 1)βγλβ−1
n

∑
i=1

e−γ(λ/xi)
β

1 − e−γ(λ/xi)
β

(
1
xi

)β

+ θαβγλβ−1
n

∑
i=1

e−γ(λ/xi)
β
(

1 − e−γ(λ/xi)
β
)α−1

(
1
xi

)β

+ αθγβλβ−1
n

∑
i=1

e−γ(λ/xi)
β
(

1 − e−γ(λ/xi)
β
)α−1

1 + θ
(

1 − e−γ(λ/xi)
β
)α ·

(
1
xi

)β

,

(30)

∂ℓ

∂α
=

n
α
+

n

∑
i=1

log
(

1 − e−γ(λ/xi)
β
)
+ θ

n

∑
i=1

(
1 − e−γ(λ/xi)

β
)α

log
(

1 − e−γ(λ/xi)
β
)

+ θ
n

∑
i=1

(
1 − e−γ(λ/xi)

β
)α

log
(

1 − e−γ(λ/xi)
β
)

1 + θ
(

1 − e−γ(λ/xi)
β
)α , and

(31)

∂ℓ

∂β
=n log(λ) +

n
β
−

n

∑
i=1

log(xi)− γ
n

∑
i=1

(
λ

xi

)β

log
(

λ

xi

)

+ γ(α − 1)
n

∑
i=1

e−γ(λ/xi)
β

1 − e−γ(λ/xi)
β

(
λ

xi

)β

log
(

λ

xi

)

[1.2ex] + θαγ
n

∑
i=1

e−γ(λ/xi)
β
(

1 − e−γ(λ/xi)
β
)α−1

(
λ

xi

)β

log
(

λ

xi

)

+ αθγ
n

∑
i=1

e−γ(λ/xi)
β
(

1 − e−γ(λ/xi)
β
)α−1

1 + θ
(

1 − e−γ(λ/xi)
β
)α

(
λ

xi

)β

log
(

λ

xi

)
.

(32)

Equations (28)–(32) can be solved by numerical techniques using any optimization ap-
proach, for instance, the Newton–Raphson method.

4.2. Maximum Product of Spacing Estimation Method

The MPS method, developed by Cheng and Tong [28], estimates the parameters of
the NEGIGW distribution. This method analyzes the spacings between observations in a
sample. The spacings, denoted by Di, are calculated for each observation i from 1 to n + 1
in the sample of size n using the formula.

Di = G(xi:n)− G(xi−1:n), i = 1, 2, . . . , n + 1, (33)

where G(xi:n) represents the CDF of the ith ordered observation xi:n in the sample. The MPS
estimate M is then obtained by averaging the logarithm of all the spacings:

M =
1

n + 1

n+1

∑
i=1

log Di. (34)

In essence, this method maximizes the geometric mean of the observational spacings.
Computing the CDF for every observation is computationally efficient for smaller datasets.
However, for large samples, this can become difficult. Furthermore, the robustness of the
MPS method depends on the data coming from a NEGIGW distribution, and it can be
susceptible to outliers that have a large effect on spacings.
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4.3. Percentile Estimation Method

Percentiles are useful in descriptive statistics and parameter estimation, see [29].
The PC method equates the sample percentile points with the corresponding population
percentile points for the NEGIGW (13). The PC estimates can be obtained by minimizing (35)
concerning the parameters of NEGIGW as follows:

P =
n

∑
i=1

xi:n − λ

− 1
γ

log

1 −
{

W
(
θeθ(1 − ui)

)
θ

} 1
α




−1
β


2

. (35)

5. Simulation Studies

This section evaluates the performance of the various estimation methods using
numerical studies. We randomly generated N = 1000 samples from NEGIGW with sizes
n = 30, 100, 200, and 500 for the following three sets of parameter values:

• SetI : θ = 20, γ = 0.3, λ = 0.05, α = 5, β = 2
• SetI I : θ = 20, γ = 0.2, λ = 0.09, α = 5, β = 1.2
• SetI I I : θ = 20, γ = 0.2, λ = 0.09, α = 5, β = 1.7
• SetIV : θ = 30, γ = 2.2, λ = 0.2, α = 7 and β = 1.7.

Three estimation techniques are performed to calculate the estimation for the NEGIGW
parameters using Monte Carlo simulation, following the steps below.

1. Generate a random sample from the NEGIGW distribution with size n.
2. Calculate the ML, MPS, and PC estimations for each parameter π.
3. Repeat the steps from 1 to 2, N times.
4. For each parameter, calculate the average estimate,(π̂), and mean square error (MSE),

where the MSE is defined as

MSE(π̂) = var(π̂) + [Bias(π̂)]2 =
1
N

N

∑
i=1

(π̂i−πtr)
2,

where π̂ represents the parameter estimate, πtr represents the true value of the pa-
rameter, and

Bias(π̂) =
1
N

N

∑
i=1

(π̂i − πtr).

The R programming is used for all estimation results [30]. An analysis of the parameter
estimates for the NEGIGW distribution using ML, MPS, and PC methods reveals a clear
trend, as shown in Tables 1–4. The tables display the ML, MPS, and PC estimation values
and corresponding MSE. The results show that, as the sample size increases, the MSE
generally decreases for all three methods, indicating improved accuracy with more data.
Additionally, parameter estimates themselves tend to converge towards the true values.
From Tables 1–3, the performance of ML and PC methods are similar in terms of small
MSE values. However, the MPS method is considered less efficient as it has larger MSE
values, especially at some parameter estimation. Out of all the estimators, the ML esti-
mator has the lowest MSE value. ML and PC are the most reliable choices for estimating
NEGIGW parameters.
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Table 1. Estimates and MSE of NEGIGW parameters for Set I.

Set I: θ = 20, γ = 0.3, λ = 0.05, α = 5 and β = 2.

n ML MPS PC

Estimate MSE Estimate MSE Estimate MSE

30

θ̂ 19.9997 (2.59 × 10−6) 20.1601 (6.7444) 19.9998 (6.12 × 10−5)
γ̂ 0.2978 (1.15 × 10−4) 0.2546 (1.07 × 10−2) 0.2999 (6.31 × 10−5)
λ̂ 0.0511 (3.57 × 10−5) 0.0591 (5.45 × 10−4) 0.0491 (3.72 × 10−5)
α̂ 4.9990 (3.17 × 10−5) 5.2934 (1.38 × 101) 4.99973 (3.22 × 10−5)
β̂ 1.9860 (6.21 × 10−3) 2.1186 (8.49 × 10−1) 2.0001 (3.14 × 10−5)

100

θ̂ 19.9999 (1.39 × 10−7) 20.0946 (2.2337) 19.99990 (5.91 × 10−5)
γ̂ 0.2998 (4.25 × 10−5) 0.2625 (0.0046) 0.2996 (4.25 × 10−5)
λ̂ 0.0501 (2.48 × 10−6) 0.0579 (0.0001) 0.0488 (4.61 × 10−5)
α̂ 4.9999 (1.85 × 10−6) 5.7276 (7.0071) 5.0005 (5.61 × 10−5)
β̂ 1.9987 (4.35 × 10−4) 1.9516 (0.0950) 1.9996 ( 8.62 × 10−5)

200

θ̂ 20.0000 (2.26 × 10−11) 20.0853 (1.3915) 20.0008 (8.66 × 10−4)
γ̂ 0.2999 (2.46 × 10−8) 0.2681 (3.10 × 10−3) 0.2996 (2.57 × 10−5)
λ̂ 0.0500 (1.65 × 10−7) 0.0565 (9.60 × 10−5) 0.0484 (1.06 × 10−4)
α̂ 5.0000 (3.02 × 10−10) 5.6960 (6.0409) 5.0006 (3.54 × 10−4)
β̂ 2.0000 (2.07 × 10−8) 1.9491 (3.20 × 10−2) 2.0005 (3.67 × 10−4)

500

θ̂ 20.0000 (1.21 × 10−14) 20.0496 (9.34 × 10−1) 20.0001 (3.88 × 10−5)
γ̂ 0.2999 (4.81 × 10−10) 0.2798 (1.23 × 10−3) 0.2996 (7.50 × 10−5)
λ̂ 0.0499 (6.23 × 10−8) 0.0555 (5.94 × 10−5) 0.0480 (6.73 × 10−5)
α̂ 5.0000 (1.74 × 10−13) 5.9106 (4.7893) 5.0000 (1.76 × 10−4)
β̂ 1.9999 (1.16 × 10−10) 1.9361 ( 1.42 × 10−2) 1.9998 (5.54 × 10−5)

Table 2. Estimates and MSE of NEGIGW parameters for Set II.

Set II: θ = 20, γ = 0.2, λ = 0.09, α = 5 and β = 1.2.

n ML MPS PC

Estimate MSE Estimate MSE Estimate MSE

30

θ̂ 20.0022 (0.0042) 23.7632 (1.00 × 102) 20.0003 (4.00 × 10−5)
γ̂ 0.1847 (0.0006) 0.2033 (0.0208) 0.1995 (1.07 × 10−4)
λ̂ 0.0936 (0.0007) 0.1396 (0.0130) 0.0893 (4.40 × 10−5)
α̂ 5.0066 (0.02501) 9.6769 (1.55 × 102) 4.9999 (6.99 × 10−5)
β̂ 1.2451 (0.0274) 1.3933 (0.6815) 1.1999 (1.18 × 10−4)

100

θ̂ 20.0004 (2.40 × 10−4) 21.1927 (3.62 × 101) 19.9996 (2.40 × 10−4)
γ̂ 0.1895 (2.57 × 10−4) 0.1956 (0.007) 0.1996 (2.80 × 10−4)
λ̂ 0.0939 (2.16 × 10−4) 0.1121 (0.0035) 0.0893 (1.78 × 10−4)
α̂ 5.0014 (2.42 × 10−4) 7.0864 (5.710 × 101) 5.0004 (6.74 × 10−5)
β̂ 1.2111 (7.83 × 10−3) 1.2303 (0.1045) 1.1994 (2.50 × 10−4)

200

θ̂ 20.0001 (9.07 × 10−7) 20.1055 (1.58 × 101) 19.9999 (8.37 × 10−5)
γ̂ 0.1924 (1.19 × 10−4) 0.1902 (0.0063) 0.1999 (9.21 × 10−5)
λ̂ 0.0934 (1.17 × 10−4) 0.1081 (0.0011) 0.0891 (7.68 × 10−5)
α̂ 5.0005 (1.10 × 10−5) 6.7276 (2.66 × 101) 5.0001 (4.89 × 10−5)
β̂ 1.2029 (3.69 × 10−3) 1.2066 (0.0508) 1.1998 (8.30 × 10−5)

500

θ̂ 20.0000 (2.83 × 10−7) 19.7828 (7.2341) 20.0001 (3.02 × 10−5)
γ̂ 0.1936 (7.46 × 10−5) 0.1952 (2.04 × 10−3) 0.2002 (7.27 × 10−5)
λ̂ 0.0927 (4.37 × 10−5) 0.1000 (4.11 × 10−4) 0.0886 (7.27 × 10−5)
α̂ 5.0002 (3.48 × 10−6) 5.9146 (1.04 × 101) 4.9998 (5.85 × 10−5)
β̂ 1.2003 (1.20 × 10−3) 1.1851 (1.03 × 10−2) 1.1998 (4.06 × 10−5)
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Table 3. Estimates and MSE of NEGIGW parameters for Set III.

Set III: θ = 20, γ = 0.2, λ = 0.09, α = 5 and β = 1.7.

n ML MPS PC

Estimate MSE Estimate MSE Estimate MSE

30

θ̂ 20.0014 (9.23 × 10−5) 22.0293 (6.02 × 101) 20.0001 (2.26 × 10−4)
γ̂ 0.1730 (3.72 × 10−4) 0.1762 (0.01069) 0.1994 (1.72 × 10−4)
λ̂ 0.0964 (3.72 × 10−4) 0.0064 (0.0057) 0.0881 (1.39 × 10−4)
α̂ 5.0052 (7.00 × 10−4) 7.5851 (9.55 × 101) 4.9997 (1.65 × 10−4)
β̂ 1.7500 (4.54 × 10−2) 2.0051 (1.3373) 1.7005 (1.37 × 10−4)

100

θ̂ 20.0003 (5.14 × 10−6) 20.5078 (1.83 × 101) 19.9996 (1.29 × 10−4)
γ̂ 0.1828 (5.26 × 10−4) 0.1706 (0.0058) 0.1993 (1.53 × 10−4)
λ̂ 0.0952 (1.43 × 10−4) 0.1093 (0.0017) 0.0886 (1.10 × 10−4)
α̂ 5.0012 (6.53 × 10−5) 6.5891 (3.43 × 101) 5.0007 (2.23 × 10−4)
β̂ 1.7087 (1.21 × 10−2) 1.7573 (0.2168) 1.7002 (2.35 × 10−4)

200

θ̂ 20.0001 (2.39 × 10−6) 20.2710 (1.59 × 101) 20.0011 (1.37 × 10−3)
γ̂ 0.1872 (3.32 × 10−4) 0.1788 (3.78 × 10−3) 0.1991 (2.52 × 10−4)
λ̂ 0.0942 (8.62 × 10−5) 0.1062 (9.79 × 10−4) 0.0879 (2.11 × 10−4)
α̂ 5.0005 (3.05 × 10−5) 6.4389 (2.48 × 101) 5.0012 (6.82 × 10−4)
β̂ 1.7005 (5.91 × 10−3) 1.6945 (7.93 × 10−2) 1.7006 (5.68 × 10−4)

500

θ̂ 20.0000 (5.19 × 10−7) 19.8140 (8.4763) 19.9999 (1.47 × 10−4)
γ̂ 0.1935 ( 1.19 × 10−4) 0.1866 (2.03 × 10−3) 0.1994 (2.67 × 10−4)
λ̂ 0.0922 (2.74 × 10−5) 0.1040 (4.98 × 10−4) 0.0873 (1.59 × 10−4)
α̂ 5.0000 (6.77 × 10−6) 6.4854 (1.39 × 101) 5.0000 (4.24 × 10−4)
β̂ 1.6973 (1.44 × 10−3) 1.6559 (2.79 × 10−2) 1.6998 (1.50 × 10−4)

Table 4. Estimates and MSE of NEGIGW parameters for Set IV.

Set IV: θ = 30, γ = 2.2, λ = 0.2, α = 7 and β = 1.7.

n ML MPS PC

Estimate MSE Estimate MSE Estimate MSE

30

θ̂ 29.9988 (5.07 × 10−3) 32.5644 (6.89 × 101) 29.9941 (8.93 × 10−2)
γ̂ 2.1964 (3.86 × 10−4) 1.1960 (1.4776) 2.1613 (2.90 × 10−1)
λ̂ 0.1976 (2.15 × 10−4) 0.3014 (3.73 × 10−2) 0.1599 (1.23 × 10−1)
α̂ 6.9989 (3.30 × 10−2) 10.0888 (1.54 × 102) 6.9908 (1.01 × 10−1)
β̂ 1.7817 (6.95 × 10−2) 2.372 (3.5218) 1.6899 (1.35 × 10−1)

100

θ̂ 30.0003 (3.12 × 10−6) 31.5468 (3.80 × 101) 29.9949 (8.78 × 10−2)
γ̂ 2.1983 (4.07 × 10−6) 1.4975 (8.25 × 10−1) 2.1667 (2.05 × 10−1)
λ̂ 0.1993 (6.40 × 10−5) 0.2610 (1.44 × 10−2) 0.1449 (1.09 × 10−1)
α̂ 7.0013 (3.89 × 10−5) 9.4165 (9.63 × 101) 6.9984 (9.66 × 10−2)
β̂ 1.7252 (1.67 × 10−2) 1.8678 (3.91 × 10−1) 1.7002 (1.25 × 10−1)

200

θ̂ 30.0001 (1.09 × 10−6) 30.5452 (1.69 × 101) 29.9957 (7.04 × 10−2)
γ̂ 2.1984 (3.08 × 10−6) 1.6412 (5.75 × 10−1) 2.1825 (9.99 × 10−2)
λ̂ 0.1999 (2.86 × 10−5) 0.2384 3.98 × 10−3 0.1374 (2.94 × 10−2)
α̂ 7.00050 (1.50 × 10−5) 8.3229 (5.07 × 101) 7.0067 (5.17 × 10−2)
β̂ 1.7065 (6.90 × 10−3) 1.7931 (1.67 × 10−1) 1.715 (6.47 × 10−2)

500

θ̂ 30.0000 (3.90 × 10−7) 30.2673 (5.475) 29.9715 (8.06 × 10−4)
γ̂ 2.1989 ( 1.61 × 10−6) 1.8225 (2.98 × 10−1) 2.1789 (4.43 × 10−4)
λ̂ 0.1998 (1.18 × 10−5) 0.2245 (1.24 × 10−3) 0.1471 (2.79 × 10−3)
α̂ 7.0003 (5.70 × 10−6) 8.0011 (2.47 × 101) 6.9577 (1.78 × 10−3)
β̂ 1.7055 (2.86 × 10−3) 1.734 (6.45 × 10−2) 1.6625 (1.40 × 10−3)
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6. Applications

This section demonstrates the usefulness of the NEGIGW by utilizing five real-world
data in various fields. The datasets are provided below.

Data 1: Remission Periods of Bladder Cancer Patients
The data present the remission periods in months of 128 bladder cancer patients, [31]:

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 3.52
4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 9.22 13.80

25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51 2.54
3.70 5.17 7.28 9.74 14.76 26.31 0.81 2.62 3.82 5.32 7.32

10.06 14.77 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26 0.90
2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69 4.23 5.41
7.62 10.75 16.62 43.01 1.19 2.75 4.26 5.41 7.63 17.12 46.12
1.26 2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62
7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46
4.40 5.85 8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02
2.02 3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07

21.73 2.07 3.36 6.93 8.65 12.63 22.69

Data 2: Failure of Engine’s Turbocharger
The data consist of 40 observations for the time (in 103 h) of the failure of a certain

kind of engine’s turbocharger, [32]:

1.6 3.5 4.8 5.4 6.0 6.5 7.0 7.3 7.7 8.0 8.4
2.0 3.9 5.0 5.6 6.1 6.5 7.1 7.3 7.8 8.1 8.4
2.6 4.5 5.1 5.8 6.3 6.7 7.3 7.7 7.9 8.3 8.5
3.0 4.6 5.3 6.0 8.7 8.8 9.0

Data 3: Failure Times of Aircraft Windshield
The data present the failure times of 84 aircraft windshields [33]:

0.040 1.866 2.385 3.443 0.301 1.876 2.481 3.467 0.309 1.899 2.610
3.478 0.557 1.911 2.625 3.578 0.943 1.912 2.632 3.595 1.070 1.914
2.646 3.699 1.124 1.981 2.661 3.779 1.248 2.010 2.688 3.924 1.281
2.038 2.823 4.035 1.281 2.085 2.890 4.121 1.303 2.089 2.902 4.167
1.432 2.097 2.934 4.240 1.480 2.135 2.962 4.255 1.505 2.154 2.964
4.278 1.506 2.190 3.000 4.305 1.568 2.194 3.103 4.376 1.615 2.223
3.114 4.449 1.619 2.224 3.117 4.485 1.652 2.229 3.166 4.570 1.652
2.300 3.344 4.602 1.757 2.324 3.376 4.663

Data 4: Service Times of Aircraft Windshield
The data present the service times of 63 aircraft windshields [33].

0.046 1.436 2.592 0.140 1.492 2.600 0.150 1.580 2.670 0.248 1.719
2.717 0.280 1.794 2.819 0.313 1.915 2.820 0.389 1.920 2.878 0.487
1.963 2.950 0.622 1.978 3.003 0.900 2.053 3.102 0.952 2.065 3.304
0.996 2.117 3.483 1.003 2.137 3.500 1.010 2.141 3.622 1.085 2.163
3.665 1.092 2.183 3.695 1.152 2.240 4.015 1.183 2.341 4.628 1.244
2.435 4.806 1.249 2.464 4.881 1.262 2.543 5.140

Data 5: Fatigue Fracture of Kevlar 373/epoxy
The data represent the life of fatigue fracture of Kevlar 373/epoxy subjected to constant

pressure at 90 % stress level until all had failed [34].
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0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671 0.6566
0.6748 0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113
0.9120 0.9836 1.0483 1.0596 1.0773 1.1733 1.2570 1.2766 1.2985 1.3211
1.3503 1.3551 1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460 1.7630
1.7746 1.8275 1.8375 1.8503 1.8808 1.8878 1.8881 1.9316 1.9558 2.0048
2.0408 2.0903 2.1093 2.1330 2.2100 2.2460 2.2878 2.3203 2.3470 2.3513
2.4951 2.5260 2.9911 3.0256 3.2678 3.4045 3.4846 3.7433 3.7455 3.9143
4.8073 5.4005 5.4435 5.5295 6.5541 9.0960

The total time test (TTT) plot developed by [35] is a valuable graphical tool for deter-
mining if the data are suitable for a particular distribution. Figure 3 displays the TTT plots
for the fifth dataset. It can be seen that the first dataset represents a bathtub hazard rate,
and the second, third, fourth, and fifth datasets represent increasing hazard rate functions.
The adequacy of the five datasets for the NEGIGW is determined by comparing its fit to
the following distributions with their CDFs defined as

• The Generalized Inverse Generalized Weibull Distribution (GIGW) given in (3).
• The Exponential Fréchet (NEXF) Distribution [5]

F(x) = 1 − 1−e−(λ/x)β

eθe−(λ/x)β .

• The Exponentiated Generalized Inverse Weibull (EGIW) Distribution [31]

F(x) = [1 − {1 − e−(λ/x)β}
α
]
q
.

• The Exponentiated Weibull Exponential (EWE) Distribution [36]

F(x) = [1 − e−(
jx
h )k

]
z
.

• The Inverse Weibull (IW) Distribution [37]

F(x) = e−(λ/x)β
.

Figure 3. TTT plots for datasets.
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As noted in Section 5, the ML demonstrated better results. MLs of the parameters for
each distribution were computed along with their corresponding log-likelihood values.
In order to assess the effectiveness of the NEGIGW, various goodness of fit (GoF) criteria
were employed, namely the corrected Akaike information criterion (CAIC), Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), Hannan–Quinn information
criterion (HQIC), and the Kolomogorov–Smirnov (K-S) test. The p-value corresponding to
the K-S test is calculated. The optimal model is characterized by the minimum value of
these statistics and the maximum p-value.

Tables 5–9 summarize the MLs of the parameters, the log-likelihood, and the GoF for
each model. The results in Tables 5–9 indicate that the NEGIGW has the lowest CAIC, AIC,
BIC, HQIC, and K-S measures. The NEGIGW has the highest p-values among all the fitted
models. Furthermore, Figures 4–8 display the density and CDF for the NEGIGW and the
competitive distributions. The histogram represents the empirical density for the data and
the dot black line represents the empirical CDF for the data. The Figures demonstrate that
NEGIGW best matches the actual distribution of the examined datasets. Consequently,
when compared to competing distributions, the NEGIGW is the most appropriate model
for the analyzed data.

Table 5. Measures of ML and GoF for the first data.

Distributions NEGIGW GIGW NEXF EGIW EWE IW

Estimates θ̂ = 40.0485 θ̂ = 11.1467 q̂ = 10.9153 ĵ = 0.4596
γ̂ = 8.9609 γ̂ = 6.4492 k̂ = 0.5434
λ̂ = 1.9341 λ̂ = 0.7863 λ̂ = 86.1435 λ̂ = 50.5093 ĥ = 0.7251 λ̂ = 3.2582
α̂ = 31.0659 α̂ = 22.4685 α̂ = 11.6619 ẑ = 5.8631
β̂ = 0.1495 β̂ = 0.3052 β̂ = 0.3818 β̂ = 0.1951 β̂ = 0.7520

−ℓ −410.9638 −413.7740 −417.8249 −424.7263 −413.7165 −444.0008
CAIC 832.4194 835.8732 841.8433 857.7778 835.7582 892.0975
AIC 831.9276 835.5480 841.6498 857.4526 835.4330 892.0015
BIC 846.1877 846.9561 850.2059 868.8607 846.8412 897.7056

HQIC 837.7216 840.1832 845.1262 862.0878 840.0682 894.3191

K-S 0.0495 0.0578 0.0784 0.0934 0.0544 0.1407
p-value 0.9118 0.7848 0.4101 0.2138 0.8419 0.01250

Table 6. Measures of ML and GoF for the second data.

Distributions NEGIGW GIGW NEXF EGIW EWE IW

Estimates θ̂ = 113.6416 θ̂ = 46.7096 q̂ = 88.8453 ĵ = 3.8269
γ̂ = 10.7248 γ̂ = 49.1384 k̂ = 1.0587
λ̂ = 4.6217 λ̂ = 0.1821 λ̂ = 41.7403 λ̂ = 12.8390 ĥ = 7.6894 λ̂ = 4.6721
α̂ = 97.6858 α̂ = 71.4909 α̂ = 14.9492 ẑ = 17.8675
β̂ = 0.3634 β̂ = 0.6764 β̂ = 0.7394 β̂ = 0.3051 β̂ = 1.9445

−ℓ −84.98336 −87.92892 −88.71552 −97.82884 −93.78136 −101.5917
CAIC 181.7314 185.0007 184.0977 204.8005 196.7056 207.5079
AIC 179.9667 183.8578 183.4310 203.6577 195.5627 207.1836
BIC 188.4111 190.6134 188.4977 210.4132 202.3182 210.5613

HQIC 183.0199 186.3004 185.2630 206.1003 198.0053 208.4049

K-S 0.1175 0.1321 0.1372 0.2079 0.1261 0.2438
p-value 0.6379 0.4873 0.4381 0.0628 0.5481 0.0172
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Figure 4. The NEGIGW is compared to other distributions for the first data. (Right): CDF for all
distributions. (Left): observed and expected frequencies for all distributions.

Figure 5. The NEGIGW is compared to other distributions for the second data. (Right): CDF for all
distributions. (Left): observed and expected frequencies for all distributions.
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Table 7. Measures of ML and GoF for the third data.

Distributions NEGIGW GIGW NEXF EGIW EWE IW

Estimates θ̂ = 62.9467 θ̂ = 38.6179 q̂ = 48.1213 ĵ = 7.0647

γ̂ = 7.4028 γ̂ = 4.3172 k̂ = 0.3127

λ̂ = 4.1741 λ̂ = 2.8629 λ̂ = 46.6470 λ̂ = 27.6062 ĥ = 0.1155 λ̂ = 1.4486

α̂ = 56.5685 α̂ = 80.5273 α̂ = 17.0032 ẑ = 69.9833

β̂ = 0.2438 β̂ = 0.3792 β̂ = 0.4541 β̂ = 0.1619 β̂ = 0.8387

−ℓ −138.2479 −146.3092 −150.8618 −175.9310 −163.8430 −194.5367

CAIC 287.2651 301.1247 308.0236 360.3683 336.1922 393.2215

AIC 286.4959 300.6184 307.7236 359.8620 335.6859 393.0733

BIC 298.6500 310.3417 315.0160 369.5853 345.4092 397.9350

HQIC 291.3817 304.5271 310.6551 363.7707 339.5946 395.0277

K-S 0.1067 0.1455 0.1616 0.2334 0.1812 0.3127

p-value 0.2937 0.0569 0.0248 0.0002 0.0079 1.4533 × 10−7

Figure 6. The NEGIGW is compared to other distributions for the third data. (Right): CDF for all
distributions. (Left): observed and expected frequencies for all distributions.
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Table 8. Measures of ML and GoF for the fourth data.

Distributions NEGIGW GIGW NEXF EGIW EWE IW

Estimates θ̂ = 114.3494 θ̂ = 60.2657 q̂ = 43.8506 ĵ = 7.0741

γ̂ = 8.3534 γ̂ = 3.911 k̂ = 0.2408

λ̂ = 4.4939 λ̂ = 3.1471 λ̂ = 68.1877 λ̂ = 48.6810 ĥ = 0.0186 λ̂ = 0.9307

α̂ = 97.7212 α̂ = 77.6282 α̂ = 28.6196 ẑ = 69.9850

β̂ = 0.1560 β̂ = 0.2879 β̂ = 0.3961 β̂ = 0.1765 β̂ = 0.8102

−ℓ −103.7424 −108.1407 −115.3408 −144.9830 −117.5368 −131.3029

CAIC 218.5375 224.9711 237.0883 298.6557 243.7633 266.8058

AIC 217.4849 224.2814 236.6816 297.9660 243.0736 266.6058

BIC 228.2005 232.8539 243.1110 306.5385 251.6461 270.8921

HQIC 221.6994 227.6530 239.2103 301.3376 246.4452 268.2916

K-S 0.1406 0.1626 0.2184 0.3978 0.1752 0.2215

p-value 0.1499 0.0635 0.0041 1.65 × 10−9 0.0366 1.49 × 10−1

Figure 7. The NEGIGW is compared to other distributions for the fourth data. (Right): CDF for all
distributions. (Left): observed and expected frequencies for all distributions.
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Table 9. Measures of ML and GoF for the fifth data.

Distributions NEGIGW GIGW NEXF EGIW EWE IW

Estimates θ̂ = 36.4168 θ̂ = 13.5573 q̂ = 0.5567 ĵ = 3.9945

γ̂ = 1.0614 γ̂ = 3.911 k̂ = 0.5579

λ̂ = 3.4524 λ̂ = 1.0997 λ̂ = 21.1117 λ̂ = 50.4851 ĥ = 1.3137 λ̂ = 0.8207

α̂ = 31.4465 α̂ = 0.6286 α̂ = 28.4964 ẑ = 7.0722

β̂ = 0.1811 β̂ = 0.8498 β̂ = 0.4038 β̂ = 0.4141 β̂ = 0.7588

−ℓ −123.6436 −127.4275 −131.5939 −127.7306 −126.4810 −153.5392

CAIC 258.1444 263.4185 269.5211 264.0246 261.5253 311.2428

AIC 257.2873 262.8551 269.1877 263.4612 260.9619 311.0784

BIC 268.9409 272.1780 276.1799 272.7841 270.2848 315.7399

HQIC 261.9446 266.5810 271.9821 267.1871 264.6878 312.9414

K-S 0.0845 0.1044 0.1310 0.1177 0.0934 0.1893

p-value 0.6179 0.3540 0.1343 0.2239 0.4918 7.37 × 10−3

Figure 8. The NEGIGW is compared to other distributions for the fifth data. (Right): CDF for all
distributions. (Left): observed and expected frequencies for all distributions.

7. Concluding Remarks

This article introduces a new exponential generalized inverse generalized Weibull
(NEGIGW) distribution based on the NLTE-X family. The suggested NEGIGW was mo-
tivated by the idea that generalization gives more flexibility in examining practical data.
The NEGIGW’s hazard rate function takes several forms, allowing it to mimic various
hazard behaviors in real-world settings such as medical, biological, engineering, and other
applications. Important statistical properties are derived in close form. The estimation
of the NEGIGW’s parameters is obtained using three methods of estimation; ML, MPS,
and PC. An extensive simulation study is performed to compare the performance of these
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methods. The simulation results indicate that in terms of MSEs, the ML performs better
than other methods. Five applications from medical, biological, and engineering fields
are used to demonstrate the usefulness of the NEGIGW. We concluded that the proposed
NEGIGW fits better than other competing models. This generalization is expected to lead
to further lifetimes and reliability analysis applications.
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