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1. Introduction

The approximation properties of singular integrals have been established earlier
in [1–4]. The classic monograph [5], Ch. 15, inspires us and is the driving force in this
paper. Here we study some activated singular integral operators over R and we determine
the degree of their Lp, p ≥ 1, approximation to the unit operator with rates by the use of
smooth functions. We derive related inequalities involving the high Lp, p ≥ 1, modulus
of smoothness. Our studied operators are not in general positive. The surprising fact
here is the reverse process from applied mathematics to theoretical ones. Our kernels
here are derived by density functions coming from activation functions related to neural
networks approximation, see [6,7]. Of great interest and motivating the author are also the
articles [8–12]. In recent intense mathematical activity by the use of neural networks in
solving numerically differential equations our current work is expected to play a pivotal
role, as in the classic case played the earlier versions of singular integrals.

Regarding the history of the topic we make reference to the 2012 monograph [5]
from 2012, which was the first comprehensive work to address the traditional theory of
approximation by singular integral operators to the identity-unit operator in its entirety.
The fundamental approximation features of the generic Picard, Gauss-Weierstrass, Poisson-
Cauchy and Trigonometric singular integral operators over the real line were presented.
These are not positive linear operators. They specifically looked into the rate at which these
operators converge to the unit operator and their associated simultaneous approximation.
This is provided by use of high order modulus of smoothness of the high order derivative
of the engaged function via inequalities. It has been shown that some of these inequalities
are sharp, in fact they are attained.

2. Essential Background

Everything in this section comes from [5], Ch. 15. In the following we mention and
deal with the smooth general singular integral operators Θr,ξ( f , x) defined as follows.

For r ∈ N and n ∈ Z+, we set
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αj :=


(−1)r−j

(
r
j

)
j−n, j = 1, ..., r.

1 −
r
∑

j=1
(−1)r−j

(
r
j

)
j−n, j = 0,

(1)

that is
r
∑

j=0
αj = 1. Let ξ > 0, and let µξ be Borel probability measures on R.

Let f ∈ Cn(R) and f (n) ∈ Lp(R), 1 ≤ p < ∞; we define for x ∈ R, ξ > 0 the integral

Θr,ξ( f , x) :=
∫ ∞

−∞

(
r

∑
j=0

αj f (x + jt)

)
dµξ(t). (2)

The Θr,ξ operators are not in general positive operators; see [5].
We notice that Θr,ξ(c, x) = c, c constant, and

Θr,ξ( f , x)− f (x) =
r

∑
j=0

αj

(∫ ∞

−∞
f (x + jt)− f (x)

)
dµξ(t). (3)

We need the rth Lp-modulus of smoothness

ωr

(
f (n), h

)
p

:= sup
|t|≤h

∥∥∥∆r
t f (n)(x)

∥∥∥
p,x

, h > 0, (4)

where

∆r
t f (n)(x) :=

r

∑
j=0

(−1)r−j
(

r
j

)
f (n)(x + jt), (5)

see [13], p. 44. Here, we have ωr

(
f (n), h

)
p
< ∞, h > 0.

We need to introduce

δk :=
r

∑
j=0

αj jk, k = 1, ..., n ∈ N. (6)

Call

τ(w, x) :=
r

∑
j=0

αj jn f (n)(x + jw)− δn f (n)(x). (7)

Notice also that

−
r

∑
j=1

(−1)r−j
(

r
j

)
= (−1)r

(
r
0

)
. (8)

According to [5], we get
τ(w, x) = ∆r

w f (n)(x). (9)

Thus,
∥τ(w, x)∥p,x ≤ ωr

(
f (n), |w|

)
p
, w ∈ R. (10)

Using Taylor’s formula, one has

r

∑
j=0

αj[ f (x + jt)− f (x)] =
n

∑
k=1

f (k)(x)
k!

δktk + Rn(0, t, x), (11)

where

Rn(, t, x) :=
∫ t

0

(t − w)n−1

(n − 1)!
τ(w, x)dw, n ∈ N. (12)
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Assume
ck,ξ :=

∫ ∞

−∞
tkdµξ(t) ∈ R, k = 1, ..., n. (13)

Using the above terminology, we derive

∆(x) := Θr,ξ( f ; x)− f (x)−
n

∑
k=1

f (k)(x)
k!

δkck,ξ = R∗
n(x), (14)

where
R∗

n(x) :=
∫ ∞

−∞
Rn(0, t, x)dµξ(t), n ∈ N. (15)

We mention the first result.

Theorem 1 ([5]). Let p, q > 1, such that 1
p + 1

q = 1, n ∈ N and the rest as above. Furthermore,
assume that

Mξ :=
∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1dµξ(t) < ∞.

Then,

∥∆(x)∥p ≤ 1

((n − 1)!)(q(n − 1) + 1)
1
q (rp + 1)

1
p

(16)

(∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1dµξ(t)

) 1
p

ξ
1
p ωr

(
f (n), ξ

)
p
.

If Mξ ≤ λ, ∀ ξ < 0, λ > 0, and as ξ → 0 we get that ∥∆(x)∥p → 0.

The counterpart of Theorem 1 follows in case of p = 1.

Theorem 2 ([5]). Let f ∈ Cn(R) and f (n) ∈ L1(R), n ∈ N. Assume that

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1dµξ(t) < ∞. (17)

Then,

∥∆(x)∥1 ≤ 1
(r + 1)(n − 1)!

(18)(∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1dµξ(t)

)
ξωr

(
f (n), ξ

)
1
.

Additionally, assume that

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1dµξ(t) ≤ λ, λ > 0, (19)

∀ ξ > 0. Hence, as ξ → 0, we obtain ∥∆(x)∥1 → 0.

The case n = 0 follows.

Proposition 1. Let p, q > 1, such that 1
p + 1

q = 1, and the rest as above. Assume that

ρξ :=
∫ ∞

−∞

(
1 +

|t|
ξ

)rp
dµξ(t) < ∞. (20)
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Then, ∥∥Θr,ξ( f )− f
∥∥

p ≤ ωr( f , ξ)p

(∫ ∞

−∞

(
1 +

|t|
ξ

)rp
dµξ(t)

) 1
p

. (21)

Additionally, assume that ρξ ≤ λ, λ > 0, ∀ ξ > 0; then, as ξ → 0, we obtain Θr,ξ → unit
operator I in the Lp norm, p > 1.

We finally need

Proposition 2. Assume ∫ ∞

−∞

(
1 +

|t|
ξ

)r
dµξ(t) < ∞. (22)

Then, ∥∥Θr,ξ( f )− f
∥∥

1 ≤ ωr( f , ξ)1

(∫ ∞

−∞

(
1 +

|t|
ξ

)r
dµξ(t)

)
. (23)

Additionally, assuming that

∫ ∞

−∞

(
1 +

|t|
ξ

)r
dµξ(t) ≤ λ, λ > 0, (24)

∀ ξ > 0, we obtain as ξ → 0 that Θr,ξ → I in the L1 norm.

We will apply the above theory to our activated singular integral operators; see
Section 5.

3. Basics of Activation Functions

Here everything comes from [14].

3.1. On Richards’s Curve

Here, we follow [7], Chapter 1.
A Richards is curve is

φ(x) =
1

1 + e−µx ; x ∈ R, µ > 0, (25)

which is strictly increasing on R, and it is a sigmoid function; in particular, this is a
generalized logistic function. And it is an activation function in neural networks; see [7],
chapter 1.

It is
lim

x→+∞
φ(x) = 1 and lim

x→−∞
φ(x) = 0. (26)

We consider the function

G(x) =
1
2
(φ(x + 1)− φ(x − 1)), x ∈ R, (27)

which is G(x) > 0, and all x ∈ R.
It is

φ(0) =
1
2

, φ(x) = 1 − φ(−x), (28)

and
G(x) = G(−x), ∀ x ∈ R. (29)

We also have
G(0) =

eµ − 1
2(eµ + 1)

. (30)



Symmetry 2024, 16, 1022 5 of 22

We also get
lim

x→+∞
G(x) = lim

x→−∞
G(x) = 0, (31)

and G is a bell symmetric function with maximum

G(0) =
eµ − 1

2(eµ + 1)
. (32)

Theorem 3. It holds that
∞

∑
i=−∞

G(x − i) = 1, ∀ x ∈ R. (33)

Theorem 4. It holds that ∫ ∞

−∞
G(x)dx = 1. (34)

So, G is a density function.

We make

Remark 1. So, we have

G(x) =
1
2
(φ(x + 1)− φ(x − 1)), ∀ x ∈ R. (35)

(i) Let x ≥ 1. That is, 0 ≤ x − 1 < x + 1. Applying the mean value theorem, we get:

G(x) =
1
2

2φ′(η) = φ′(η) =
µe−µη

(1 + e−µη)2 , µ > 0, (36)

where 0 ≤ x − 1 < η < x + 1.
Notice that

G(x) < µe−µη < µe−µ(x−1), ∀ x ≥ 1. (37)

(ii) Now, let x ≤ −1. That is, x − 1 < x + 1 ≤ 0. Applying again the mean value theorem
we get:

G(x) =
1
2

2φ′(η) = φ′(η) =
µe−µη

(1 + e−µη)2 , (38)

where x − 1 < η < x + 1 ≤ 0.
Hence, we derive that

G(x) < µe−µη < µe−µ(x−1), ∀ x ≤ −1. (39)

Consequently, we proved that

G(x) < µe−µ(x−1), ∀ x ∈ (−∞,−1] ∪ [1,+∞) = R− (−1, 1). (40)

Let 0 < ξ ≤ 1; it holds that

G
(

x
ξ

)
< µe−µ

(
x
ξ −1

)
, ∀ x ≥ ξ, or ∀ x ≤ −ξ. (41)

Clearly, by Theorem 4, we have that

1
ξ

∫ ∞

−∞
G
(

x
ξ

)
dx = 1. (42)
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So that 1
ξ G
(

x
ξ

)
is a density function, and let dµξ(x) := 1

ξ G
(

x
ξ

)
dx, that is µξ is a Borel

probability measure.

We give the following essential result.

Theorem 5. Let 0 < ξ ≤ 1, and

c∗k,ξ :=
1
ξ

∫ ∞

−∞
xkG

(
x
ξ

)
dx, k = 1, ..., n ∈ N. (43)

Then, c∗k,ξ are finite and c∗k,ξ → 0, as ξ → 0.

In fact it holds that ∣∣∣c∗k,ξ

∣∣∣ ≤ [1 + 2µ−keµk!
]
ξk < ∞, (44)

for k = 1, ..., n.
Next we present

Theorem 6. It holds that ∫ ∞

−∞
|t|n
(

1 +
|t|
ξ

)r
dµξ(t) < ∞; r, n ∈ N, (45)

for

dµξ(x) =
1
ξ

G
(

x
ξ

)
dx, 0 < ξ ≤ 1. (46)

Also, this integral converges to zero, as ξ → 0.

In fact, it holds that

1
ξ

∫ ∞

−∞
|x|n

(
1 +

|x|
ξ

)r
G
(

x
ξ

)
dx ≤

2r−1
[(

1 + 2µ−neµn!
)
+
(

1 + 2µ−(n+r)eµ(n + r)!
)]

ξn < ∞. (47)

3.2. On the q-Deformed and λ-Parametrized Hyperbolic Tangent Function gq,λ

We consider the activation function gq,λ, and study its related properties; all of the
basics come from [7], ch. 17.

Let the activation function be

gq,λ(x) =
eλx − qe−λx

eλx + qe−λx , λ, q > 0, x ∈ R. (48)

It is
gq,λ(0) =

1 − q
1 + q

,

and
gq,λ(−x) = −g 1

q ,λ(x), ∀ x ∈ R, (49)

with
gq,λ(+∞) = 1, gq,λ(−∞) = −1.

We consider the function

Mq,λ(x) :=
1
4
(

gq,λ(x + 1)− gq,λ(x − 1)
)
> 0, (50)
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∀ x ∈ R, q, λ > 0. We have Mq,λ(±∞) = 0, so that the x-axis is a horizontal asymptote.
It holds that

Mq,λ(−x) = M 1
q ,λ(x), ∀ x ∈ R, q, λ > 0, (51)

and
M 1

q ,λ(−x) = Mq,λ(x), ∀ x ∈ R.

The Mq,λ maximum is

Mq,λ

(
ln q
2λ

)
=

tanh(λ)
2

, λ > 0. (52)

Theorem 7. We have that

∞

∑
i=−∞

Mq,λ(x − i) = 1, ∀ x ∈ R, ∀ λ, q > 0. (53)

Theorem 8. It holds that ∫ ∞

−∞
Mq,λ(x)dx = 1, λ, q > 0. (54)

So, Mq,λ is a density function on R; λ, q > 0.

Remark 2. (i) Let x ≥ 1. That is, 0 ≤ x − 1 < x + 1. By the mean value theorem we obtain

Mq,λ(x) =
1
4
[
gq,λ(x + 1)− gq,λ(x − 1)

]
=

1
4
· 2 · 4qλe2λξ(

e2λξ + q
)2 =

2qλe2λξ(
e2λξ + q

)2 , (55)

for some 0 ≤ x − 1 < ξ < x + 1; λ, q > 0.
But e2λξ < e2λξ + q, and

Mq,λ(x) <
2qλ

(
e2λξ + q

)(
e2λξ + q

)2 =
2qλ(

e2λξ + q
) <

2qλ(
e2λ(x−1) + q

) <
2qλ

e2λ(x−1)
, (56)

x ≥ 1.
That is,

Mq,λ(x) < 2qλe−2λ(x−1), ∀ x ≥ 1. (57)

Set µ := 2λ, then
Mq,λ(x) < qµe−µ(x−1), ∀ x ≥ 1. (58)

(ii) Let now x ≤ −1. That is, x − 1 < x + 1 ≤ 0. Again, we have

Mq,λ(x) <
2qλ(

e2λξ + q
) , (59)

x − 1 < ξ < x + 1 ≤ 0; λ, q > 0.
We have

e2λ(x−1) < e2λξ < e2λ(x+1),

and
e2λ(x−1) + q < e2λξ + q < e2λ(x+1) + q. (60)

Hence,
1

e2λξ + q
<

1
e2λ(x−1) + q

. (61)
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Therefore, it holds that

Mq,λ(x) <
2qλ

e2λ(x−1) + q
<

2qλ

e2λ(x−1)
, x ≤ −1. (62)

That is
Mq,λ(x) < 2qλe−2λ(x−1), ∀ x ≤ −1. (63)

Set µ := 2λ; then,
Mq,λ(x) < qµe−µ(x−1), ∀ x ≤ −1. (64)

We have proved that
Mq,λ(x) < qµe−µ(x−1), (65)

∀ x ∈ (−∞,−1] ∪ [1,+∞) = R− (−1, 1).
Let 0 < ξ ≤ 1; it holds that

Mq,λ

(
x
ξ

)
< qµe−µ

(
x
ξ −1

)
, ∀ x ≥ ξ, or ∀ x ≤ −ξ. (66)

By Theorem 8, we have
1
ξ

∫ ∞

−∞
Mq,λ

(
x
ξ

)
dx = 1. (67)

So that 1
ξ Mq,λ

(
x
ξ

)
is a density function, and let

dµξ(x) :=
1
ξ

Mq,λ

(
x
ξ

)
dx, (68)

that is µξ is a Borel probability measure.

We give

Theorem 9. Let

ck,ξ :=
1
ξ

∫ ∞

−∞
xk Mq,λ

(
x
ξ

)
dx, k = 1, ..., n ∈ N. (69)

Then, ck,ξ are finite and ck,ξ → 0, as ξ → 0.

In fact, it holds that

∣∣ck,ξ
∣∣ ≤ [1 +

(
q +

1
q

)
µ−keµk!

]
ξk < ∞, k = 1, ..., n. (70)

It also follows

Theorem 10. It holds that (λ, q > 0; r, n ∈ N; 0 < ξ ≤ 1)

1
ξ

∫ ∞

−∞
|t|n
(

1 +
|t|
ξ

)r
Mq,λ

(
t
ξ

)
dt ≤

2r−1
[[

1 +
(

q +
1
q

)
µ−neµn!

]
+

[
1 +

(
q +

1
q

)
µ−(n+r)eµ(n + r)!

]]
ξn < ∞, (71)

and it converges to zero, as ξ → 0.

3.3. On the Gudermannian Generated Activation Function

Here, we follow [6], Ch. 2.
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Let the related normalized generator sigmoid function:

f (x) :=
8
π

∫ x

0

1
et + e−t dt, x ∈ R, (72)

and the neural network activation function be

ψ(x) :=
1
4
( f (x + 1)− f (x − 1)) > 0, x ∈ R. (73)

We mention

Theorem 11. It holds that ∫ ∞

−∞
ψ(x)dx = 1. (74)

So that ψ(x) is a density function.

By [6], p. 49, we found that

ψ(x) <
2

π cosh(x − 1)
, ∀ x ≥ 1. (75)

But
1

cosh(x − 1)
=

2
ex−1 + e−(x−1)

<
2

ex−1 = 2e−(x−1), (76)

∀ x ∈ R.
Therefore, it is

ψ(x) <
4
π

e−(x−1) =
4
π

ee−x, ∀ x ≥ 1. (77)

So here it is

dµξ(x) =
1
ξ

ψ

(
x
ξ

)
dx, 0 < ξ ≤ 1,

the related Borel probability measure.
We give the following results, their proofs as similar to Theorems 5, 6 are omitted.

Theorem 12. Let 0 < ξ ≤ 1, and

γk,ξ :=
1
ξ

∫ ∞

−∞
xkψ

(
x
ξ

)
dx, k = 1, ..., n ∈ N. (78)

Then, γk,ξ are finite and γk,ξ → 0, as ξ → 0.

Theorem 13. It holds
1
ξ

∫ ∞

−∞
|t|n
(

1 +
|t|
ξ

)r
ψ

(
t
ξ

)
dt < ∞; (79)

r, n ∈ N; 0 < ξ ≤ 1.
Also, this integral converges to zero, as ξ → 0.

3.4. On the q-Deformed and λ-Parametrized Logistic Type Activation Function

Here, all come from [7], Ch. 15.
The activation function now is

φq,λ(x) :=
1

1 + qe−λx , x ∈ R, (80)

where q, λ > 0.
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The density function here will be

Gq,λ(x) :=
1
2
(

φq,λ(x + 1)− φq,λ(x − 1)
)
> 0, x ∈ R. (81)

We mention

Theorem 14. It holds that ∫ ∞

−∞
Gq,λ(x)dx = 1. (82)

By [7], p. 373, we have

Gq,λ(x) < qλe−λ(x−1), ∀ x ≥ 1.

So, here, it is

dµξ(x) =
1
ξ

Gq,λ

(
x
ξ

)
dx, 0 < ξ ≤ 1, (83)

the related Borel probability measure.
We give the following results, their proofs as similar to Theorems 9, 10 are omitted.

Theorem 15. Let

δk,ξ :=
1
ξ

∫ ∞

−∞
xkGq,λ

(
x
ξ

)
dx, k = 1, ..., n ∈ N. (84)

Then, δk,ξ are finite and δk,ξ → 0, as ξ → 0.

Theorem 16. It holds that

IGq,λ ,ξ :=
1
ξ

∫ ∞

−∞
|t|n
(

1 +
|t|
ξ

)r
Gq,λ

(
t
ξ

)
dt < ∞; (85)

where λ, q > 0; r, n ∈ N; 0 < ξ ≤ 1.
Also, IGq,λ ,ξ → 0, as ξ → 0.

3.5. On the q-Deformed and β-Parametrized Half Hyperbolic Tangent Function φq,β

Here, all come from [7], Ch. 19.
The activation function now is

φq,β(x) :=
1 − qe−βt

1 + qe−βt , ∀ t ∈ R, (86)

where q, β > 0.
The corresponding density function will be

Φq,β(x) :=
1
4
(

φq,β(x + 1)− φq,β(x − 1)
)
> 0, ∀ x ∈ R. (87)

It holds

Theorem 17. ∫ ∞

−∞
Φq,β(x)dx = 1. (88)

By [7], p. 481, we have that

Φq,β(x) < βqe−β(x−1), ∀ x ≥ 1. (89)
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Thus, here, it is

dµξ(x) =
1
ξ

Φq,β

(
x
ξ

)
dx, 0 < ξ ≤ 1, (90)

the related Borel probability measure.
We state the following results; their proofs as similar to Theorems 9, 10 are omitted.

Theorem 18. Let

εk,ξ :=
1
ξ

∫ ∞

−∞
xkΦq,β

(
x
ξ

)
dx, k = 1, ..., n ∈ N. (91)

Then, εk,ξ are finite, and εk,ξ → 0, as ξ → 0.

Theorem 19. It holds that

IΦq,β ,ξ :=
1
ξ

∫ ∞

−∞
|t|n
(

1 +
|t|
ξ

)r
Φq,β

(
t
ξ

)
dt < ∞; (92)

where q, β > 0; r, n ∈ N; 0 < ξ ≤ 1.
Also, IΦq,β ,ξ → 0, as ξ → 0.

4. More on Activation Probability Measures

We present

Theorem 20. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N, l := max(r, n), ⌈·⌉ be the ceiling of the
number, and h := 2(l⌈p⌉+ 1). It holds that

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1G

(
t
ξ

)
dt ≤

2h
{

1 +
[
1 + 2µ−heµh!

]}
< +∞. (93)

Proof. We have, in general:

Mξ :=
∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np+1dµξ(t) ≤

∫ ∞

−∞

((
1 +

|t|
ξ

)r⌈p⌉+1
+ 1

)
(1 + |t|)n⌈p⌉+1dµξ(t) ≤ (94)

2
∫ ∞

−∞

(
1 +

|t|
ξ

)r⌈p⌉+1

(1 + |t|)n⌈p⌉+1dµξ(t) ≤

2
∫ ∞

−∞

(
1 +

|t|
ξ

)r⌈p⌉+1(
1 +

|t|
ξ

)n⌈p⌉+1
dµξ(t) ≤

(l := max(r, n))

2
∫ ∞

−∞

(
1 +

|t|
ξ

)2(l⌈p⌉+1)
dµξ(t) ≤

2 · 22(l⌈p⌉+1)−1
∫ ∞

−∞

[
1 +

|t|2(l⌈p⌉+1)

ξ2(l⌈p⌉+1)

]
dµξ(t) =

22(l⌈p⌉+1)
[

1 +
1

ξ2(l⌈p⌉+1)

∫ ∞

−∞
|t|2(l⌈p⌉+1)dµξ(t)

]
(call h := 2(l⌈p⌉+ 1)) (95)
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= 2h
[

1 +
1
ξh

∫ ∞

−∞
|t|hdµξ(t)

]
(setting dµξ(x) =

1
ξ

G
(

x
ξ

)
dx)

= 2h
[

1 +
1
ξh

1
ξ

∫ ∞

−∞
|x|hG

(
x
ξ

)
dx
]

(44)
≤

2h
{

1 +
1
ξh

[
1 + 2µ−heµh!

]
ξh
}

= 2h
{

1 +
[
1 + 2µ−heµh!

]}
< +∞.

We continue with

Theorem 21. Let r, n ∈ N, 0 < ξ ≤ 1. It holds that

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1G

(
t
ξ

)
dt ≤

2r+n
[
1 +

[
1 + 2µ−(r+n)eµ(r + n)!

]]
< +∞. (96)

Proof. We have that ∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1dµξ(t) ≤

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
+ 1

)
(1 + |t|)n−1dµξ(t) ≤

2
∫ ∞

−∞

(
1 +

|t|
ξ

)r+1(
1 +

|t|
ξ

)n−1
dµξ(t) =

2
∫ ∞

−∞

(
1 +

|t|
ξ

)r+n
dµξ(t) ≤ (97)

2 · 2r+n−1
∫ ∞

−∞

(
1 +

|t|r+n

ξr+n

)
dµξ(t) =

2r+n
[

1 +
1

ξr+n

∫ ∞

−∞
|t|r+ndµξ(t)

]
=

(at dµξ(x) =
1
ξ

G
(

x
ξ

)
dx)

= 2r+n
[

1 +
1

ξr+n
1
ξ

∫ ∞

−∞
|x|r+nG

(
x
ξ

)
dx
]

(44)
≤

2r+n
{

1 +
1

ξr+n

[
1 + 2µ−(r+n)eµ(r + n)!

]
ξr+n

}
=

2r+n
[
1 +

[
1 + 2µ−(r+n)eµ(r + n)!

]]
< +∞. (98)

We continue with

Proposition 3. Let r ∈ N. It holds that
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1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r
G
(

t
ξ

)
dt ≤

2r−1[1 + [1 + 2µ−reµr!
]]

< +∞. (99)

Proof. We have that ∫ ∞

−∞

(
1 +

|t|
ξ

)r
dµξ(t) ≤

2r−1
∫ ∞

−∞

(
1 +

|t|r

ξr

)
dµξ(t) =

2r−1
[

1 +
1
ξr

∫ ∞

−∞
|t|rdµξ(t)

]
(100)

(at dµξ(x) =
1
ξ

G
(

x
ξ

)
dx)

= 2r−1
[

1 +
1
ξr

1
ξ

∫ ∞

−∞
|x|rG

(
x
ξ

)
dx
]

(44)
≤

2r−1
[

1 +
1
ξr

[
1 + 2µ−reµr!

]
ξr
]
= (101)

2r−1[1 + [1 + 2µ−reµr!
]]

< +∞.

Proposition 4. Let r ∈ N, p > 1, λ := r⌈p⌉ ∈ N. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
G
(

t
ξ

)
dt ≤ (102)

2λ−1
[
1 +

[
1 + 2µ−λeµλ!

]]
< +∞.

Proof. We have that ∫ ∞

−∞

(
1 +

|t|
ξ

)rp
dµξ(t) ≤

∫ ∞

−∞

(
1 +

|t|
ξ

)r⌈p⌉
dµξ(t)

(at dµξ(x) =
1
ξ

G
(

x
ξ

)
dx) (103)

=
1
ξ

∫ ∞

−∞

(
1 +

|x|
ξ

)r⌈p⌉
G
(

x
ξ

)
dx

(call λ := r⌈p⌉, λ ∈ N)

=
1
ξ

∫ ∞

−∞

(
1 +

|x|
ξ

)λ

G
(

x
ξ

)
dx

(as in the proof of Proposition 3)

< +∞.

We continue with the following results.
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Theorem 22. All as in Theorem 20. Then,

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1Mq,λ

(
t
ξ

)
dt ≤ (104)

2h
{

1 +
[

1 +
(

q +
1
q

)
µ−heµh!

]}
< +∞,

where q, λ > 0.

Proof. Similar to Theorem 20 and (70).

Theorem 23. Let r, n ∈ N, 0 < ξ ≤ 1. Then,

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1Mq,λ

(
t
ξ

)
dt ≤ (105)

2r+n
[

1 +
[

1 +
(

q +
1
q

)
µ−(r+n)eµ(r + n)!

]]
< +∞.

Proof. Similar to Theorem 21 and (70).

Proposition 5. Let r ∈ N. It holds that

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r
Mq,λ

(
t
ξ

)
dt ≤ (106)

2r−1
[

1 +
[

1 +
(

q +
1
q

)
µ−reµr!

]]
< +∞.

Proof. Similar to Proposition 3 and (70).

Proposition 6. Let r ∈ N, p > 1, λ := r⌈p⌉. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
Mq,λ

(
t
ξ

)
dt ≤ (107)

2λ−1
[

1 +
[

1 +
(

q +
1
q

)
µ−λeµλ!

]]
< +∞.

Proof. Similar to Proposition 4 and (70).

We continue with more related results.

Theorem 24. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N. Then, there exists λ1 > 0 such that

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1ψ

(
t
ξ

)
dt ≤ λ1. (108)

Proof. Similar to Theorem 20.

Theorem 25. Let r, n ∈ N, 0 < ξ ≤ 1. Then, there exists λ2 > 0 such that

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1ψ

(
t
ξ

)
dt ≤ λ2. (109)

Proof. Similar to Theorem 21.
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Proposition 7. Let r ∈ N. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r
ψ

(
t
ξ

)
dt ≤ λ3 ∈ R. (110)

Proof. As in Proposition 3.

Proposition 8. Let r ∈ N, p > 1. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
ψ

(
t
ξ

)
dt ≤ λ4 ∈ R. (111)

Proof. As in Proposition 4.

More needed results:

Theorem 26. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N, q, λ > 0. Then, there exists ρ1 > 0:

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1Gq,λ

(
t
ξ

)
dt ≤ ρ1. (112)

Proof. Similar to Theorem 22.

Theorem 27. Let r, n ∈ N, 0 < ξ ≤ 1. Then, there exists ρ2 > 0:

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1Gq,λ

(
t
ξ

)
dt ≤ ρ2. (113)

Proof. Similar to Theorem 23.

Proposition 9. Let r ∈ N. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r
Gq,λ

(
t
ξ

)
dt ≤ ρ3 ∈ R. (114)

Proof. As in Proposition 5.

Proposition 10. Let r ∈ N, p > 1. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
Gq,λ

(
t
ξ

)
dt ≤ ρ4 ∈ R. (115)

Proof. As in Proposition 6.

Furthermore, we have the following.

Theorem 28. Let p > 1, r ∈ N, 0 < ξ ≤ 1, n ∈ N; q, β > 0. Then, there exists ψ1 > 0

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1Φq,β

(
t
ξ

)
dt ≤ ψ1. (116)

Proof. Similar to Theorem 22.
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Theorem 29. Let r, n ∈ N, 0 < ξ ≤ 1. Then, there exists ψ2 > 0

1
ξ

∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1Φq,β

(
t
ξ

)
dt ≤ ψ2. (117)

Proof. Similar to Theorem 23.

Proposition 11. Let r ∈ N. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)r
Φq,β

(
t
ξ

)
dt ≤ ψ3 ∈ R. (118)

Proof. As in Proposition 5.

Proposition 12. Let r ∈ N, p > 1. Then,

1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
Φq,β

(
t
ξ

)
dt ≤ ψ4 ∈ R. (119)

Proof. As in Proposition 6.

5. Main Results

Here, we describe the Lp, p ≥ 1, approximation properties of the following activated
singular integral operators, which are special cases of Θr,ξ( f , x); see (2). Their definitions
are based on Sections 3 and 4. Basically, we apply our listed results in Section 2.

Definition 1. Let f : R → R be a Borel measurable function, and αj, as in (1), x ∈ R, 0 < ξ ≤ 1.
We call
(1)

Θ1,r,ξ( f , x) =
1
ξ

∫ ∞

−∞

(
r

∑
j=1

αj f (x + jt)

)
G
(

t
ξ

)
dt, (120)

(2)

Θ2,r,ξ( f , x) =
1
ξ

∫ ∞

−∞

(
r

∑
j=1

αj f (x + jt)

)
Mq,λ

(
t
ξ

)
dt, q, λ > 0, (121)

(3)

Θ3,r,ξ( f , x) =
1
ξ

∫ ∞

−∞

(
r

∑
j=1

αj f (x + jt)

)
ψ

(
t
ξ

)
dt, (122)

(4)

Θ4,r,ξ( f , x) =
1
ξ

∫ ∞

−∞

(
r

∑
j=1

αj f (x + jt)

)
Gq,λ

(
t
ξ

)
dt, q, λ > 0, (123)

and
(5)

Θ5,r,ξ( f , x) =
1
ξ

∫ ∞

−∞

(
r

∑
j=1

αj f (x + jt)

)
Φq,β

(
t
ξ

)
dt, q, β > 0. (124)

We give the following results, grouped by operator.

Theorem 30. Let p, q > 1 : 1
p + 1

q = 1, n ∈ N.
Call

∆1(x) := Θ1,r,ξ( f , x)− f (x)−
n

∑
k=1

f (k)(x)
k!

δkc∗k,ξ . (125)
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Then,

∥∆1(x)∥p ≤ 1

((n − 1)!)(q(n − 1) + 1)
1
q (rp + 1)

1
p

(126)

(∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1G

(
t
ξ

)
dt

) 1
p

ωr

(
f (n), ξ

)
p
,

and ∥∆1(x)∥p → 0, as ξ → 0.

Proof. By Theorems 1, 5, and 20.

Theorem 31. Let f ∈ Cn(R) : f (n) ∈ L1(R), n ∈ N. Then,

∥∆1(x)∥1 ≤ 1
(r + 1)(n − 1)!(∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1G

(
t
ξ

)
dt

)
ωr

(
f (n), ξ

)
1
, (127)

and ∥∆1(x)∥1 → 0, as ξ → 0.

Proof. By Theorems 2, 5 and 21.

Proposition 13. Let p, q > 1 : 1
p + 1

q = 1. Then,

∥∥Θ1,r,ξ( f )− f
∥∥

p ≤ ωr( f , ξ)p
1
ξ

(
1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
G
(

t
ξ

)
dt
) 1

p

, (128)

and Θ1,r,ξ → I in Lp norm, p > 1, as ξ → 0.

Proof. By Propositions 1 and 4, and Theorem 5.

Proposition 14. It holds ∥∥Θ1,r,ξ( f )− f
∥∥

1 ≤ ωr( f , ξ)1
1
ξ∫ ∞

−∞

(
1 +

|t|
ξ

)r
G
(

t
ξ

)
dt, (129)

and Θ1,r,ξ → I in L1 norm, as ξ → 0.

Proof. By Propositions 2 and 3, and Theorem 5.

We continue with the set of results for Θ2,r,ξ operator, q, λ > 0.

Theorem 32. Let p, q > 1 : 1
p + 1

q = 1, n ∈ N.
Call

∆2(x) := Θ2,r,ξ( f , x)− f (x)−
n

∑
k=1

f (k)(x)
k!

δkck,ξ . (130)

Then,

∥∆2(x)∥p ≤ 1

((n − 1)!)(q(n − 1) + 1)
1
q (rp + 1)

1
p

(131)
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(∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1Mq,λ

(
t
ξ

)
dt

) 1
p

ωr

(
f (n), ξ

)
p
,

and ∥∆2(x)∥p → 0, as ξ → 0.

Proof. By Theorems 1, 9, and 22.

Theorem 33. Let f ∈ Cn(R) : f (n) ∈ L1(R), n ∈ N. Then,

∥∆2(x)∥1 ≤ 1
(r + 1)(n − 1)!(∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1Mq,λ

(
t
ξ

)
dt

)
ωr

(
f (n), ξ

)
1
, (132)

and ∥∆2(x)∥1 → 0, as ξ → 0.

Proof. By Theorems 2, 9, and 23.

Proposition 15. Let p, q > 1 : 1
p + 1

q = 1. Then,∥∥Θ2,r,ξ( f )− f
∥∥

p ≤ ωr( f , ξ)p

(
1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
Mq,λ

(
t
ξ

)
dt
) 1

p

, (133)

and Θ2,r,ξ → I in Lp norm, p > 1, as ξ → 0.

Proof. By Propositions 1 and 6, and Theorem 9.

Proposition 16. It holds that

∥∥Θ2,r,ξ( f )− f
∥∥

1 ≤ ωr( f , ξ)1
1
ξ∫ ∞

−∞

(
1 +

|t|
ξ

)r
Mq,λ

(
t
ξ

)
dt, (134)

and Θ2,r,ξ → I in L1 norm, as ξ → 0.

Proof. By Propositions 2 and 5, and Theorem 9.

We continue with the set of results for Θ3,r,ξ operator.

Theorem 34. Let p, q > 1 : 1
p + 1

q = 1, n ∈ N.
Call

∆3(x) := Θ3,r,ξ( f , x)− f (x)−
n

∑
k=1

f (k)(x)
k!

δkγk,ξ . (135)

Then,

∥∆3(x)∥p ≤ 1

((n − 1)!)(q(n − 1) + 1)
1
q (rp + 1)

1
p

(136)

(∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1ψ

(
t
ξ

)
dt

) 1
p

ωr

(
f (n), ξ

)
p
,

and ∥∆3(x)∥p → 0, as ξ → 0.



Symmetry 2024, 16, 1022 19 of 22

Proof. By Theorems 1, 12, and 24.

Theorem 35. Let f ∈ Cn(R) : f (n) ∈ L1(R), n ∈ N. Then,

∥∆3(x)∥1 ≤ 1
(r + 1)(n − 1)!(∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1ψ

(
t
ξ

)
dt

)
ωr

(
f (n), ξ

)
1
, (137)

and ∥∆3(x)∥1 → 0, as ξ → 0.

Proof. By Theorems 2, 12, and 25.

Proposition 17. Let p, q > 1 : 1
p + 1

q = 1. Then,∥∥Θ3,r,ξ( f )− f
∥∥

p ≤ ωr( f , ξ)p

(
1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
ψ

(
t
ξ

)
dt
) 1

p

, (138)

and Θ3,r,ξ → I in Lp norm, p > 1, as ξ → 0.

Proof. By Propositions 1 and 8, and Theorem 12.

Proposition 18. It holds that

∥∥Θ3,r,ξ( f )− f
∥∥

1 ≤ ωr( f , ξ)1
1
ξ∫ ∞

−∞

(
1 +

|t|
ξ

)r
ψ

(
t
ξ

)
dt, (139)

and Θ3,r,ξ → I in L1 norm, as ξ → 0.

Proof. By Propositions 2 and 7, and Theorem 12.

We continue with the set of results for Θ4,r,ξ operator, q, λ > 0.

Theorem 36. Let p, q > 1 : 1
p + 1

q = 1, n ∈ N.
Call

∆4(x) := Θ4,r,ξ( f , x)− f (x)−
n

∑
k=1

f (k)(x)
k!

δkδk,ξ . (140)

Then,

∥∆4(x)∥p ≤ 1

((n − 1)!)(q(n − 1) + 1)
1
q (rp + 1)

1
p

(141)

(∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1Gq,λ

(
t
ξ

)
dt

) 1
p

ωr

(
f (n), ξ

)
p
,

and ∥∆4(x)∥p → 0, as ξ → 0.

Proof. By Theorems 1, 15, and 26.
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Theorem 37. Let f ∈ Cn(R) : f (n) ∈ L1(R), n ∈ N. Then,

∥∆4(x)∥1 ≤ 1
(r + 1)(n − 1)!(∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1Gq,λ

(
t
ξ

)
dt

)
ωr

(
f (n), ξ

)
1
, (142)

and ∥∆4(x)∥1 → 0, as ξ → 0.

Proof. By Theorems 2, 15, and 27.

Proposition 19. Let p, q > 1 : 1
p + 1

q = 1. Then,∥∥Θ4,r,ξ( f )− f
∥∥

p ≤ ωr( f , ξ)p

(
1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
Gq,λ

(
t
ξ

)
dt
) 1

p

, (143)

and Θ4r,ξ → I in Lp norm, p > 1, as ξ → 0.

Proof. By Propositions 1 and 10, and Theorem 15.

Proposition 20. It holds that

∥∥Θ4,r,ξ( f )− f
∥∥

1 ≤ ωr( f , ξ)1
1
ξ∫ ∞

−∞

(
1 +

|t|
ξ

)r
Gq,λ

(
t
ξ

)
dt, (144)

and Θ4,r,ξ → I in L1 norm, as ξ → 0.

Proof. By Propositions 2 and 9, and Theorem 15.

We finish with Θ5,r,ξ operator results, q, β > 0.

Theorem 38. Let p, q > 1 : 1
p + 1

q = 1, n ∈ N.
Call

∆5(x) := Θ5,r,ξ( f , x)− f (x)−
n

∑
k=1

f (k)(x)
k!

δkεk,ξ . (145)

Then,

∥∆5(x)∥p ≤ 1

((n − 1)!)(q(n − 1) + 1)
1
q (rp + 1)

1
p

(146)

(∫ ∞

−∞

((
1 +

|t|
ξ

)rp+1
− 1

)
|t|np−1Φq,β

(
t
ξ

)
dt

) 1
p

ωr

(
f (n), ξ

)
p
,

and ∥∆5(x)∥p → 0, as ξ → 0.

Proof. By Theorems 1, 18, and 28.

Theorem 39. Let f ∈ Cn(R) : f (n) ∈ L1(R), n ∈ N. Then,

∥∆5(x)∥1 ≤ 1
(r + 1)(n − 1)!
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(∫ ∞

−∞

((
1 +

|t|
ξ

)r+1
− 1

)
|t|n−1Φq,β

(
t
ξ

)
dt

)
ωr

(
f (n), ξ

)
1
, (147)

and ∥∆5(x)∥1 → 0, as ξ → 0.

Proof. By Theorems 2, 18, and 29.

Proposition 21. Let p, q > 1 : 1
p + 1

q = 1. Then,∥∥Θ5,r,ξ( f )− f
∥∥

p ≤ ωr( f , ξ)p

(
1
ξ

∫ ∞

−∞

(
1 +

|t|
ξ

)rp
Φq,β

(
t
ξ

)
dt
) 1

p

, (148)

and Θ5,r,ξ → I in Lp norm, p > 1, as ξ → 0.

Proof. By Propositions 1 and 12, and Theorem 18.

Proposition 22. It holds that

∥∥Θ5,r,ξ( f )− f
∥∥

1 ≤ ωr( f , ξ)1
1
ξ∫ ∞

−∞

(
1 +

|t|
ξ

)r
Φq,β

(
t
ξ

)
dt, (149)

and Θ5,r,ξ → I in L1 norm, as ξ → 0.

Proof. By Propositions 2, 11, and Theorem 18.

6. Conclusions

Here, we presented the new idea of going from the neural networks main tools, the
activation functions, to singular integrals approximation. That is the rare case of employing
applied mathematics to theoretical ones.
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